pub fn relative_squared_error<F, S1, S2, D1, D2>(
y_true: &ArrayBase<S1, D1>,
y_pred: &ArrayBase<S2, D2>,
) -> Result<F>Expand description
Calculates the relative squared error (RSE)
RSE is the ratio of the sum of squared errors to the sum of squared deviations from the mean of the true values.
§Arguments
y_true- Ground truth (correct) target valuesy_pred- Estimated target values
§Returns
- The relative squared error
§Examples
use scirs2_core::ndarray::array;
use scirs2_metrics::regression::relative_squared_error;
let y_true = array![3.0, -0.5, 2.0, 7.0];
let y_pred = array![2.5, 0.0, 2.0, 8.0];
let rse = relative_squared_error(&y_true, &y_pred).unwrap();
assert!(rse > 0.0 && rse < 1.0);