relative_squared_error

Function relative_squared_error 

Source
pub fn relative_squared_error<F, S1, S2, D1, D2>(
    y_true: &ArrayBase<S1, D1>,
    y_pred: &ArrayBase<S2, D2>,
) -> Result<F>
where F: Float + NumCast + Debug + SimdUnifiedOps, S1: Data<Elem = F>, S2: Data<Elem = F>, D1: Dimension, D2: Dimension,
Expand description

Calculates the relative squared error (RSE)

RSE is the ratio of the sum of squared errors to the sum of squared deviations from the mean of the true values.

§Arguments

  • y_true - Ground truth (correct) target values
  • y_pred - Estimated target values

§Returns

  • The relative squared error

§Examples

use scirs2_core::ndarray::array;
use scirs2_metrics::regression::relative_squared_error;

let y_true = array![3.0, -0.5, 2.0, 7.0];
let y_pred = array![2.5, 0.0, 2.0, 8.0];

let rse = relative_squared_error(&y_true, &y_pred).unwrap();
assert!(rse > 0.0 && rse < 1.0);