pub fn relative_absolute_error<F, S1, S2, D1, D2>(
y_true: &ArrayBase<S1, D1>,
y_pred: &ArrayBase<S2, D2>,
) -> Result<F>Expand description
Calculates the relative absolute error (RAE)
RAE is the ratio of the sum of absolute errors to the sum of absolute deviations from the mean of the true values.
§Arguments
y_true- Ground truth (correct) target valuesy_pred- Estimated target values
§Returns
- The relative absolute error
§Examples
use scirs2_core::ndarray::array;
use scirs2_metrics::regression::relative_absolute_error;
let y_true = array![3.0, -0.5, 2.0, 7.0];
let y_pred = array![2.5, 0.0, 2.0, 8.0];
let rae = relative_absolute_error(&y_true, &y_pred).unwrap();
assert!(rae > 0.0 && rae < 1.0);