pub fn mean_absolute_error<F, S1, S2, D1, D2>(
y_true: &ArrayBase<S1, D1>,
y_pred: &ArrayBase<S2, D2>,
) -> Result<F>Expand description
Calculates the mean absolute error (MAE)
Mean absolute error measures the average absolute difference between the estimated values and the actual value.
§Arguments
y_true- Ground truth (correct) target valuesy_pred- Estimated target values
§Returns
- The mean absolute error
§Examples
use scirs2_core::ndarray::array;
use scirs2_metrics::regression::mean_absolute_error;
let y_true = array![3.0, -0.5, 2.0, 7.0];
let y_pred = array![2.5, 0.0, 2.0, 8.0];
let mae: f64 = mean_absolute_error(&y_true, &y_pred).unwrap();
// Expecting: (|3.0-2.5| + |-0.5-0.0| + |2.0-2.0| + |7.0-8.0|) / 4 = 0.5
assert!(mae > 0.499 && mae < 0.501);