scirs2_metrics/optimization/gpu_kernels/
runtime.rs

1//! GPU runtime interface and implementations
2//!
3//! This module provides the GPU runtime trait and concrete implementations
4//! for different compute backends (CUDA, OpenCL, Metal, Vulkan).
5
6#![allow(clippy::too_many_arguments)]
7#![allow(dead_code)]
8
9use crate::error::{MetricsError, Result};
10use scirs2_core::ndarray::{Array1, Array2, ArrayView1, ArrayView2};
11use scirs2_core::numeric::{Float, NumCast};
12use std::collections::HashMap;
13use std::time::{Duration, Instant};
14
15/// GPU runtime interface trait for different backends
16pub trait GpuRuntime: Send + Sync {
17    /// Initialize the GPU runtime
18    fn initialize(&mut self) -> Result<()>;
19
20    /// Check if GPU is available
21    fn is_available(&self) -> bool;
22
23    /// Get device information
24    fn device_info(&self) -> HashMap<String, String>;
25
26    /// Allocate GPU memory
27    fn allocate<T: Float>(&mut self, size: usize) -> Result<GpuBuffer>;
28
29    /// Transfer data to GPU
30    fn transfer_to_gpu<T: Float>(&mut self, data: &[T], buffer: &GpuBuffer) -> Result<()>;
31
32    /// Transfer data from GPU
33    fn transfer_from_gpu<T: Float>(&mut self, buffer: &GpuBuffer, data: &mut [T]) -> Result<()>;
34
35    /// Launch kernel
36    fn launch_kernel(
37        &mut self,
38        kernel_name: &str,
39        grid_size: (u32, u32, u32),
40        block_size: (u32, u32, u32),
41        args: &[GpuKernelArg],
42    ) -> Result<()>;
43
44    /// Synchronize GPU execution
45    fn synchronize(&mut self) -> Result<()>;
46
47    /// Release GPU memory
48    fn deallocate(&mut self, buffer: &GpuBuffer) -> Result<()>;
49
50    /// Get memory usage statistics
51    fn memory_stats(&self) -> GpuMemoryStats;
52
53    /// Get performance statistics
54    fn performance_stats(&self) -> GpuPerformanceStats;
55}
56
57/// GPU buffer handle
58#[derive(Debug, Clone)]
59pub struct GpuBuffer {
60    /// Buffer ID
61    pub id: u64,
62    /// Size in bytes
63    pub size: usize,
64    /// Buffer type
65    pub buffer_type: GpuBufferType,
66    /// Backend-specific handle
67    pub handle: GpuBufferHandle,
68}
69
70/// GPU buffer type
71#[derive(Debug, Clone)]
72pub enum GpuBufferType {
73    /// Input buffer (read-only)
74    Input,
75    /// Output buffer (write-only)
76    Output,
77    /// Input/Output buffer (read-write)
78    InputOutput,
79    /// Constant buffer
80    Constant,
81}
82
83/// Backend-specific buffer handle
84#[derive(Debug, Clone)]
85pub enum GpuBufferHandle {
86    /// CUDA device pointer
87    Cuda(u64),
88    /// OpenCL memory object
89    OpenCL(u64),
90    /// Metal buffer
91    Metal(u64),
92    /// Vulkan buffer
93    Vulkan(u64),
94}
95
96/// GPU kernel argument
97#[derive(Debug, Clone)]
98pub enum GpuKernelArg {
99    /// Buffer argument
100    Buffer(GpuBuffer),
101    /// Scalar value
102    Scalar(GpuScalar),
103}
104
105/// GPU scalar value
106#[derive(Debug, Clone)]
107pub enum GpuScalar {
108    /// 32-bit float
109    F32(f32),
110    /// 64-bit float
111    F64(f64),
112    /// 32-bit integer
113    I32(i32),
114    /// 64-bit integer
115    I64(i64),
116    /// 32-bit unsigned integer
117    U32(u32),
118    /// 64-bit unsigned integer
119    U64(u64),
120}
121
122/// GPU memory statistics
123#[derive(Debug, Clone)]
124pub struct GpuMemoryStats {
125    /// Total memory in bytes
126    pub total_memory: u64,
127    /// Free memory in bytes
128    pub free_memory: u64,
129    /// Used memory in bytes
130    pub used_memory: u64,
131    /// Number of allocations
132    pub allocation_count: u64,
133}
134
135/// GPU performance statistics
136#[derive(Debug, Clone)]
137pub struct GpuPerformanceStats {
138    /// Total kernel execution time
139    pub total_kernel_time: Duration,
140    /// Memory transfer time
141    pub memory_transfer_time: Duration,
142    /// Number of kernel launches
143    pub kernel_launches: u64,
144    /// GPU utilization percentage
145    pub gpu_utilization: f64,
146    /// Memory bandwidth utilization
147    pub memory_bandwidth_utilization: f64,
148}
149
150/// CUDA runtime implementation
151#[derive(Debug)]
152pub struct CudaRuntime {
153    /// Device ID
154    device_id: i32,
155    /// Context handle
156    context: Option<u64>,
157    /// Stream handle
158    stream: Option<u64>,
159    /// Memory statistics
160    memory_stats: GpuMemoryStats,
161    /// Performance statistics
162    performance_stats: GpuPerformanceStats,
163}
164
165impl CudaRuntime {
166    /// Create new CUDA runtime
167    pub fn new(device_id: i32) -> Self {
168        Self {
169            device_id,
170            context: None,
171            stream: None,
172            memory_stats: GpuMemoryStats::default(),
173            performance_stats: GpuPerformanceStats::default(),
174        }
175    }
176}
177
178impl GpuRuntime for CudaRuntime {
179    fn initialize(&mut self) -> Result<()> {
180        // Initialize CUDA context and stream
181        // This would use actual CUDA API calls
182        self.context = Some(0x12345678); // Placeholder
183        self.stream = Some(0x87654321); // Placeholder
184        Ok(())
185    }
186
187    fn is_available(&self) -> bool {
188        // Check CUDA availability
189        true // Placeholder
190    }
191
192    fn device_info(&self) -> HashMap<String, String> {
193        let mut info = HashMap::new();
194        info.insert("backend".to_string(), "CUDA".to_string());
195        info.insert("device_id".to_string(), self.device_id.to_string());
196        info.insert("compute_capability".to_string(), "8.0".to_string());
197        info.insert("memory".to_string(), "8GB".to_string());
198        info
199    }
200
201    fn allocate<T: Float>(&mut self, size: usize) -> Result<GpuBuffer> {
202        let buffer_size = size * std::mem::size_of::<T>();
203        let buffer = GpuBuffer {
204            id: scirs2_core::random::random::<u64>(),
205            size: buffer_size,
206            buffer_type: GpuBufferType::InputOutput,
207            handle: GpuBufferHandle::Cuda(0x11111111), // Placeholder
208        };
209        self.memory_stats.used_memory += buffer_size as u64;
210        self.memory_stats.allocation_count += 1;
211        Ok(buffer)
212    }
213
214    fn transfer_to_gpu<T: Float>(&mut self, _data: &[T], _buffer: &GpuBuffer) -> Result<()> {
215        // Transfer data to GPU
216        Ok(())
217    }
218
219    fn transfer_from_gpu<T: Float>(&mut self, _buffer: &GpuBuffer, _data: &mut [T]) -> Result<()> {
220        // Transfer data from GPU
221        Ok(())
222    }
223
224    fn launch_kernel(
225        &mut self,
226        _kernel_name: &str,
227        _grid_size: (u32, u32, u32),
228        _block_size: (u32, u32, u32),
229        _args: &[GpuKernelArg],
230    ) -> Result<()> {
231        // Launch CUDA kernel
232        self.performance_stats.kernel_launches += 1;
233        Ok(())
234    }
235
236    fn synchronize(&mut self) -> Result<()> {
237        // Synchronize CUDA stream
238        Ok(())
239    }
240
241    fn deallocate(&mut self, buffer: &GpuBuffer) -> Result<()> {
242        self.memory_stats.used_memory = self
243            .memory_stats
244            .used_memory
245            .saturating_sub(buffer.size as u64);
246        self.memory_stats.allocation_count = self.memory_stats.allocation_count.saturating_sub(1);
247        Ok(())
248    }
249
250    fn memory_stats(&self) -> GpuMemoryStats {
251        self.memory_stats.clone()
252    }
253
254    fn performance_stats(&self) -> GpuPerformanceStats {
255        self.performance_stats.clone()
256    }
257}
258
259/// OpenCL runtime implementation
260#[derive(Debug)]
261pub struct OpenClRuntime {
262    /// Platform ID
263    platform_id: u64,
264    /// Device ID
265    device_id: u64,
266    /// Context handle
267    context: Option<u64>,
268    /// Command queue handle
269    command_queue: Option<u64>,
270    /// Memory statistics
271    memory_stats: GpuMemoryStats,
272    /// Performance statistics
273    performance_stats: GpuPerformanceStats,
274}
275
276impl OpenClRuntime {
277    /// Create new OpenCL runtime
278    pub fn new(platform_id: u64, device_id: u64) -> Self {
279        Self {
280            platform_id,
281            device_id,
282            context: None,
283            command_queue: None,
284            memory_stats: GpuMemoryStats::default(),
285            performance_stats: GpuPerformanceStats::default(),
286        }
287    }
288}
289
290/// Metal runtime implementation for macOS
291#[derive(Debug)]
292pub struct MetalRuntime {
293    /// Device handle
294    device: Option<u64>,
295    /// Command queue handle
296    command_queue: Option<u64>,
297    /// Memory statistics
298    memory_stats: GpuMemoryStats,
299    /// Performance statistics
300    performance_stats: GpuPerformanceStats,
301}
302
303impl MetalRuntime {
304    /// Create new Metal runtime
305    pub fn new() -> Self {
306        Self {
307            device: None,
308            command_queue: None,
309            memory_stats: GpuMemoryStats::default(),
310            performance_stats: GpuPerformanceStats::default(),
311        }
312    }
313}
314
315impl GpuRuntime for MetalRuntime {
316    fn initialize(&mut self) -> Result<()> {
317        // Initialize Metal device and command queue
318        self.device = Some(0x22222222); // Placeholder
319        self.command_queue = Some(0x33333333); // Placeholder
320        Ok(())
321    }
322
323    fn is_available(&self) -> bool {
324        // Check Metal availability (macOS only)
325        cfg!(target_os = "macos")
326    }
327
328    fn device_info(&self) -> HashMap<String, String> {
329        let mut info = HashMap::new();
330        info.insert("backend".to_string(), "Metal".to_string());
331        info.insert("device_name".to_string(), "Apple GPU".to_string());
332        info
333    }
334
335    fn allocate<T: Float>(&mut self, size: usize) -> Result<GpuBuffer> {
336        let buffer_size = size * std::mem::size_of::<T>();
337        let buffer = GpuBuffer {
338            id: scirs2_core::random::random::<u64>(),
339            size: buffer_size,
340            buffer_type: GpuBufferType::InputOutput,
341            handle: GpuBufferHandle::Metal(0x44444444), // Placeholder
342        };
343        Ok(buffer)
344    }
345
346    fn transfer_to_gpu<T: Float>(&mut self, _data: &[T], _buffer: &GpuBuffer) -> Result<()> {
347        Ok(())
348    }
349
350    fn transfer_from_gpu<T: Float>(&mut self, _buffer: &GpuBuffer, _data: &mut [T]) -> Result<()> {
351        Ok(())
352    }
353
354    fn launch_kernel(
355        &mut self,
356        _kernel_name: &str,
357        _grid_size: (u32, u32, u32),
358        _block_size: (u32, u32, u32),
359        _args: &[GpuKernelArg],
360    ) -> Result<()> {
361        Ok(())
362    }
363
364    fn synchronize(&mut self) -> Result<()> {
365        Ok(())
366    }
367
368    fn deallocate(&mut self, _buffer: &GpuBuffer) -> Result<()> {
369        Ok(())
370    }
371
372    fn memory_stats(&self) -> GpuMemoryStats {
373        self.memory_stats.clone()
374    }
375
376    fn performance_stats(&self) -> GpuPerformanceStats {
377        self.performance_stats.clone()
378    }
379}
380
381/// Vulkan runtime implementation for cross-platform compute
382#[derive(Debug)]
383pub struct VulkanRuntime {
384    /// Instance handle
385    instance: Option<u64>,
386    /// Device handle
387    device: Option<u64>,
388    /// Command pool handle
389    command_pool: Option<u64>,
390    /// Memory statistics
391    memory_stats: GpuMemoryStats,
392    /// Performance statistics
393    performance_stats: GpuPerformanceStats,
394}
395
396impl VulkanRuntime {
397    /// Create new Vulkan runtime
398    pub fn new() -> Self {
399        Self {
400            instance: None,
401            device: None,
402            command_pool: None,
403            memory_stats: GpuMemoryStats::default(),
404            performance_stats: GpuPerformanceStats::default(),
405        }
406    }
407}
408
409impl GpuRuntime for VulkanRuntime {
410    fn initialize(&mut self) -> Result<()> {
411        // Initialize Vulkan instance, device, and command pool
412        self.instance = Some(0x55555555); // Placeholder
413        self.device = Some(0x66666666); // Placeholder
414        self.command_pool = Some(0x77777777); // Placeholder
415        Ok(())
416    }
417
418    fn is_available(&self) -> bool {
419        // Check Vulkan availability
420        true // Placeholder
421    }
422
423    fn device_info(&self) -> HashMap<String, String> {
424        let mut info = HashMap::new();
425        info.insert("backend".to_string(), "Vulkan".to_string());
426        info.insert("api_version".to_string(), "1.3".to_string());
427        info
428    }
429
430    fn allocate<T: Float>(&mut self, size: usize) -> Result<GpuBuffer> {
431        let buffer_size = size * std::mem::size_of::<T>();
432        let buffer = GpuBuffer {
433            id: scirs2_core::random::random::<u64>(),
434            size: buffer_size,
435            buffer_type: GpuBufferType::InputOutput,
436            handle: GpuBufferHandle::Vulkan(0x88888888), // Placeholder
437        };
438        Ok(buffer)
439    }
440
441    fn transfer_to_gpu<T: Float>(&mut self, _data: &[T], _buffer: &GpuBuffer) -> Result<()> {
442        Ok(())
443    }
444
445    fn transfer_from_gpu<T: Float>(&mut self, _buffer: &GpuBuffer, _data: &mut [T]) -> Result<()> {
446        Ok(())
447    }
448
449    fn launch_kernel(
450        &mut self,
451        _kernel_name: &str,
452        _grid_size: (u32, u32, u32),
453        _block_size: (u32, u32, u32),
454        _args: &[GpuKernelArg],
455    ) -> Result<()> {
456        Ok(())
457    }
458
459    fn synchronize(&mut self) -> Result<()> {
460        Ok(())
461    }
462
463    fn deallocate(&mut self, _buffer: &GpuBuffer) -> Result<()> {
464        Ok(())
465    }
466
467    fn memory_stats(&self) -> GpuMemoryStats {
468        self.memory_stats.clone()
469    }
470
471    fn performance_stats(&self) -> GpuPerformanceStats {
472        self.performance_stats.clone()
473    }
474}
475
476impl GpuRuntime for OpenClRuntime {
477    fn initialize(&mut self) -> Result<()> {
478        // Initialize OpenCL context and command queue
479        self.context = Some(0xAAAAAAAA); // Placeholder
480        self.command_queue = Some(0xBBBBBBBB); // Placeholder
481        Ok(())
482    }
483
484    fn is_available(&self) -> bool {
485        // Check OpenCL availability
486        true // Placeholder
487    }
488
489    fn device_info(&self) -> HashMap<String, String> {
490        let mut info = HashMap::new();
491        info.insert("backend".to_string(), "OpenCL".to_string());
492        info.insert("platform_id".to_string(), self.platform_id.to_string());
493        info.insert("device_id".to_string(), self.device_id.to_string());
494        info
495    }
496
497    fn allocate<T: Float>(&mut self, size: usize) -> Result<GpuBuffer> {
498        let buffer_size = size * std::mem::size_of::<T>();
499        let buffer = GpuBuffer {
500            id: scirs2_core::random::random::<u64>(),
501            size: buffer_size,
502            buffer_type: GpuBufferType::InputOutput,
503            handle: GpuBufferHandle::OpenCL(0xCCCCCCCC), // Placeholder
504        };
505        Ok(buffer)
506    }
507
508    fn transfer_to_gpu<T: Float>(&mut self, _data: &[T], _buffer: &GpuBuffer) -> Result<()> {
509        Ok(())
510    }
511
512    fn transfer_from_gpu<T: Float>(&mut self, _buffer: &GpuBuffer, _data: &mut [T]) -> Result<()> {
513        Ok(())
514    }
515
516    fn launch_kernel(
517        &mut self,
518        _kernel_name: &str,
519        _grid_size: (u32, u32, u32),
520        _block_size: (u32, u32, u32),
521        _args: &[GpuKernelArg],
522    ) -> Result<()> {
523        Ok(())
524    }
525
526    fn synchronize(&mut self) -> Result<()> {
527        Ok(())
528    }
529
530    fn deallocate(&mut self, _buffer: &GpuBuffer) -> Result<()> {
531        Ok(())
532    }
533
534    fn memory_stats(&self) -> GpuMemoryStats {
535        self.memory_stats.clone()
536    }
537
538    fn performance_stats(&self) -> GpuPerformanceStats {
539        self.performance_stats.clone()
540    }
541}
542
543impl Default for GpuMemoryStats {
544    fn default() -> Self {
545        Self {
546            total_memory: 8 * 1024 * 1024 * 1024, // 8GB placeholder
547            free_memory: 8 * 1024 * 1024 * 1024,
548            used_memory: 0,
549            allocation_count: 0,
550        }
551    }
552}
553
554impl Default for GpuPerformanceStats {
555    fn default() -> Self {
556        Self {
557            total_kernel_time: Duration::new(0, 0),
558            memory_transfer_time: Duration::new(0, 0),
559            kernel_launches: 0,
560            gpu_utilization: 0.0,
561            memory_bandwidth_utilization: 0.0,
562        }
563    }
564}
565
566impl Default for MetalRuntime {
567    fn default() -> Self {
568        Self::new()
569    }
570}
571
572impl Default for VulkanRuntime {
573    fn default() -> Self {
574        Self::new()
575    }
576}