Expand description
Clustering metrics module
This module provides functions for evaluating clustering algorithms, including silhouette score, Davies-Bouldin index, Calinski-Harabasz index, and Adjusted Rand index.
§Internal Metrics
Internal metrics assess clustering without external ground truth:
- Silhouette score
- Davies-Bouldin index
- Calinski-Harabasz index
- Dunn index
- Inter-cluster and intra-cluster distance metrics
§External Metrics
External metrics assess clustering compared to ground truth:
- Adjusted Rand index
- Normalized Mutual Information
- Adjusted Mutual Information
- Homogeneity, Completeness, V-measure
- Fowlkes-Mallows score
Re-exports§
pub use self::evaluation::dunn_index_enhanced;pub use self::evaluation::elbow_method;pub use self::density::*;pub use self::distance::*;pub use self::external_metrics::*;pub use self::validation::*;
Modules§
- density
- Density-based metrics for clustering evaluation
- distance
- Cluster distance metrics module
- evaluation
- Clustering evaluation utilities
- external_
metrics - External clustering metrics module
- validation
- Specialized clustering validation metrics
Structs§
- Silhouette
Analysis - Structure containing detailed silhouette analysis results
Functions§
- calinski_
harabasz_ score - Calculates the Calinski-Harabasz index (Variance Ratio Criterion)
- davies_
bouldin_ score - Calculates the Davies-Bouldin index for a clustering
- dunn_
index - Calculates the Dunn index for a clustering
- silhouette_
analysis - Calculates detailed silhouette information for a clustering
- silhouette_
samples - Calculate silhouette samples for a clustering
- silhouette_
score - Calculates the silhouette score for a clustering
- silhouette_
scores_ per_ cluster - Calculate silhouette scores per cluster