Module clustering

Module clustering 

Source
Expand description

Clustering metrics module

This module provides functions for evaluating clustering algorithms, including silhouette score, Davies-Bouldin index, Calinski-Harabasz index, and Adjusted Rand index.

§Internal Metrics

Internal metrics assess clustering without external ground truth:

  • Silhouette score
  • Davies-Bouldin index
  • Calinski-Harabasz index
  • Dunn index
  • Inter-cluster and intra-cluster distance metrics

§External Metrics

External metrics assess clustering compared to ground truth:

  • Adjusted Rand index
  • Normalized Mutual Information
  • Adjusted Mutual Information
  • Homogeneity, Completeness, V-measure
  • Fowlkes-Mallows score

Re-exports§

pub use self::evaluation::dunn_index_enhanced;
pub use self::evaluation::elbow_method;
pub use self::density::*;
pub use self::distance::*;
pub use self::external_metrics::*;
pub use self::validation::*;

Modules§

density
Density-based metrics for clustering evaluation
distance
Cluster distance metrics module
evaluation
Clustering evaluation utilities
external_metrics
External clustering metrics module
validation
Specialized clustering validation metrics

Structs§

SilhouetteAnalysis
Structure containing detailed silhouette analysis results

Functions§

calinski_harabasz_score
Calculates the Calinski-Harabasz index (Variance Ratio Criterion)
davies_bouldin_score
Calculates the Davies-Bouldin index for a clustering
dunn_index
Calculates the Dunn index for a clustering
silhouette_analysis
Calculates detailed silhouette information for a clustering
silhouette_samples
Calculate silhouette samples for a clustering
silhouette_score
Calculates the silhouette score for a clustering
silhouette_scores_per_cluster
Calculate silhouette scores per cluster