scirs2_io/pipeline/advanced_optimization/
neuromorphic.rs

1//! Neuromorphic computing engine for bio-inspired optimization
2//!
3//! This module implements neuromorphic computing concepts including spiking
4//! neural networks, synaptic plasticity, and bio-inspired adaptation mechanisms.
5
6use crate::error::{IoError, Result};
7use scirs2_core::random::Rng;
8use std::collections::HashMap;
9
10use super::config::NeuromorphicConfig;
11
12/// Neuromorphic Computing Engine for Bio-Inspired Optimization
13#[derive(Debug)]
14pub struct NeuromorphicOptimizer {
15    /// Spiking neural network for temporal optimization
16    spiking_network: SpikingNeuralNetwork,
17    /// Synaptic plasticity manager for adaptive learning
18    plasticity_manager: SynapticPlasticityManager,
19    /// Neuromorphic memory for experience retention
20    neuromorphic_memory: NeuromorphicMemory,
21    /// Bio-inspired adaptation engine
22    adaptation_engine: BioinspiredAdaptationEngine,
23}
24
25impl NeuromorphicOptimizer {
26    pub fn new() -> Self {
27        Self {
28            spiking_network: SpikingNeuralNetwork::new(1000, 100), // 1000 neurons, 100 outputs
29            plasticity_manager: SynapticPlasticityManager::new(),
30            neuromorphic_memory: NeuromorphicMemory::new(10000), // 10k memory traces
31            adaptation_engine: BioinspiredAdaptationEngine::new(),
32        }
33    }
34
35    pub fn from_config(config: &NeuromorphicConfig) -> Self {
36        Self {
37            spiking_network: SpikingNeuralNetwork::new(config.num_neurons, config.num_outputs),
38            plasticity_manager: SynapticPlasticityManager::new(),
39            neuromorphic_memory: NeuromorphicMemory::new(config.memory_capacity),
40            adaptation_engine: BioinspiredAdaptationEngine::new(),
41        }
42    }
43
44    pub fn optimize(
45        &mut self,
46        problem: &NeuromorphicOptimizationProblem,
47    ) -> Result<NeuromorphicOptimizationResult> {
48        // Convert optimization problem to spike patterns
49        let input_patterns = self.encode_problem_as_spikes(problem)?;
50
51        // Process through spiking neural network
52        let mut best_solution = NeuromorphicSolution::random(problem.dimensions);
53        let mut best_fitness = (problem.objective_function)(&best_solution.to_values());
54
55        for generation in 0..100 {
56            // Generate spike patterns for current generation
57            let spike_pattern = &input_patterns[generation % input_patterns.len()];
58
59            // Process through network
60            let network_response = self.spiking_network.process_spikes(spike_pattern)?;
61
62            // Decode network output to solution
63            let candidate_solution = self.decode_spikes_to_solution(&network_response, problem)?;
64            let candidate_fitness = (problem.objective_function)(&candidate_solution.to_values());
65
66            // Update best solution
67            if candidate_fitness > best_fitness {
68                best_solution = candidate_solution;
69                best_fitness = candidate_fitness;
70
71                // Store successful pattern in memory
72                self.neuromorphic_memory
73                    .store_pattern(spike_pattern.clone(), best_fitness)?;
74            }
75
76            // Apply synaptic plasticity
77            self.plasticity_manager.update_synapses(
78                &self.spiking_network,
79                spike_pattern,
80                candidate_fitness,
81            )?;
82
83            // Adapt network structure
84            self.adaptation_engine.adapt_network(
85                &mut self.spiking_network,
86                &network_response,
87                candidate_fitness,
88            )?;
89        }
90
91        // Generate final result
92        Ok(NeuromorphicOptimizationResult {
93            optimal_solution: best_solution,
94            fitness: best_fitness,
95            network_state: self.spiking_network.get_state(),
96            plasticity_profile: self.plasticity_manager.get_profile(),
97            adaptation_history: self.adaptation_engine.get_history(),
98        })
99    }
100
101    fn encode_problem_as_spikes(
102        &self,
103        problem: &NeuromorphicOptimizationProblem,
104    ) -> Result<Vec<SpikePattern>> {
105        let mut patterns = Vec::new();
106        let mut rng = scirs2_core::random::thread_rng();
107
108        // Generate multiple spike patterns representing different aspects of the problem
109        for _ in 0..10 {
110            let mut spike_trains = Vec::new();
111
112            // Encode each variable as a spike train
113            for var in &problem.variables {
114                let spike_times: Vec<f64> = (0..20)
115                    .map(|_| rng.gen::<f64>() * 100.0 * var.value)
116                    .collect();
117
118                spike_trains.push(SpikeTrain {
119                    times: spike_times,
120                    neuron_id: var.id,
121                });
122            }
123
124            patterns.push(SpikePattern {
125                trains: spike_trains,
126                duration: 100,
127                temporal_resolution: 0.1,
128            });
129        }
130
131        Ok(patterns)
132    }
133
134    fn decode_spikes_to_solution(
135        &self,
136        network_response: &NetworkResponse,
137        problem: &NeuromorphicOptimizationProblem,
138    ) -> Result<NeuromorphicSolution> {
139        let mut variables = Vec::new();
140
141        for (i, var_template) in problem.variables.iter().enumerate() {
142            let spike_count = if i < network_response.output_trains.len() {
143                network_response.output_trains[i].times.len()
144            } else {
145                0
146            };
147
148            // Convert spike count to variable value
149            let normalized_value = (spike_count as f64 / 20.0).clamp(0.0, 1.0);
150            let scaled_value = var_template.bounds.0
151                + normalized_value * (var_template.bounds.1 - var_template.bounds.0);
152
153            variables.push(OptimizationVariable {
154                id: var_template.id,
155                value: scaled_value,
156                bounds: var_template.bounds,
157            });
158        }
159
160        Ok(NeuromorphicSolution { variables })
161    }
162}
163
164impl Default for NeuromorphicOptimizer {
165    fn default() -> Self {
166        Self::new()
167    }
168}
169
170/// Spiking Neural Network for temporal processing
171#[derive(Debug)]
172pub struct SpikingNeuralNetwork {
173    neurons: Vec<SpikingNeuron>,
174    connections: Vec<Vec<SynapticConnection>>,
175    output_neurons: Vec<usize>,
176}
177
178impl SpikingNeuralNetwork {
179    pub fn new(num_neurons: usize, num_outputs: usize) -> Self {
180        let mut neurons = Vec::new();
181        for i in 0..num_neurons {
182            neurons.push(SpikingNeuron::new(i));
183        }
184
185        // Create random connections
186        let mut connections = (0..num_neurons).map(|_| Vec::new()).collect::<Vec<_>>();
187        let mut rng = scirs2_core::random::thread_rng();
188
189        for i in 0..num_neurons {
190            let num_connections = rng.gen_range(5..20);
191            for _ in 0..num_connections {
192                let target = rng.gen_range(0..num_neurons);
193                if target != i {
194                    connections[i].push(SynapticConnection::new(i, target, rng.gen::<f64>()));
195                }
196            }
197        }
198
199        // Select output neurons
200        let output_neurons = (0..num_outputs).collect();
201
202        Self {
203            neurons,
204            connections,
205            output_neurons,
206        }
207    }
208
209    pub fn process_spikes(&mut self, spike_pattern: &SpikePattern) -> Result<NetworkResponse> {
210        // Reset network state
211        for neuron in &mut self.neurons {
212            neuron.reset();
213        }
214
215        // Inject input spikes
216        for spike_train in &spike_pattern.trains {
217            if spike_train.neuron_id < self.neurons.len() {
218                for &spike_time in &spike_train.times {
219                    self.neurons[spike_train.neuron_id].add_input_spike(spike_time);
220                }
221            }
222        }
223
224        // Simulate network dynamics
225        let mut output_trains = Vec::new();
226        let simulation_time = spike_pattern.duration as f64;
227        let time_step = spike_pattern.temporal_resolution;
228
229        for t in 0..(simulation_time / time_step) as usize {
230            let current_time = t as f64 * time_step;
231
232            // First collect all spikes from this time step
233            let mut spikes_to_propagate = Vec::new();
234            let num_neurons = self.neurons.len();
235
236            // Update all neurons
237            for (i, neuron) in self.neurons.iter_mut().enumerate() {
238                if neuron.update(current_time) {
239                    // Neuron spiked, collect connections to propagate
240                    for connection in &self.connections[i] {
241                        let arrival_time = current_time + connection.delay;
242                        if connection.target < num_neurons {
243                            spikes_to_propagate.push((connection.target, arrival_time));
244                        }
245                    }
246                }
247            }
248
249            // Then propagate all collected spikes
250            for (target, arrival_time) in spikes_to_propagate {
251                self.neurons[target].add_input_spike(arrival_time);
252            }
253        }
254
255        // Collect output spikes
256        for &output_id in &self.output_neurons {
257            if output_id < self.neurons.len() {
258                output_trains.push(SpikeTrain {
259                    times: self.neurons[output_id].get_spike_times(),
260                    neuron_id: output_id,
261                });
262            }
263        }
264
265        Ok(NetworkResponse { output_trains })
266    }
267
268    pub fn get_state(&self) -> NetworkState {
269        NetworkState {
270            neuron_states: self.neurons.iter().map(|n| n.get_state()).collect(),
271            synapse_weights: self
272                .connections
273                .iter()
274                .flatten()
275                .map(|c| c.weight as usize)
276                .collect(),
277        }
278    }
279}
280
281/// Individual spiking neuron with temporal dynamics
282#[derive(Debug)]
283pub struct SpikingNeuron {
284    id: usize,
285    membrane_potential: f64,
286    threshold: f64,
287    reset_potential: f64,
288    refractory_period: f64,
289    last_spike_time: Option<f64>,
290    input_spikes: Vec<f64>,
291    spike_times: Vec<f64>,
292}
293
294impl SpikingNeuron {
295    pub fn new(id: usize) -> Self {
296        Self {
297            id,
298            membrane_potential: -70.0, // mV
299            threshold: -55.0,          // mV
300            reset_potential: -80.0,    // mV
301            refractory_period: 2.0,    // ms
302            last_spike_time: None,
303            input_spikes: Vec::new(),
304            spike_times: Vec::new(),
305        }
306    }
307
308    pub fn add_input_spike(&mut self, spike_time: f64) {
309        self.input_spikes.push(spike_time);
310    }
311
312    pub fn update(&mut self, current_time: f64) -> bool {
313        // Check refractory period
314        if let Some(last_spike) = self.last_spike_time {
315            if current_time - last_spike < self.refractory_period {
316                return false;
317            }
318        }
319
320        // Process input spikes
321        let mut total_input = 0.0;
322        for &spike_time in &self.input_spikes {
323            if (current_time - spike_time).abs() < 1.0 {
324                // Exponential decay
325                total_input += 10.0 * (-((current_time - spike_time) / 5.0)).exp();
326            }
327        }
328
329        // Update membrane potential
330        self.membrane_potential += total_input - 0.1 * (self.membrane_potential + 70.0);
331
332        // Check for spike
333        if self.membrane_potential >= self.threshold {
334            self.membrane_potential = self.reset_potential;
335            self.last_spike_time = Some(current_time);
336            self.spike_times.push(current_time);
337            return true;
338        }
339
340        false
341    }
342
343    pub fn reset(&mut self) {
344        self.membrane_potential = -70.0;
345        self.last_spike_time = None;
346        self.input_spikes.clear();
347        self.spike_times.clear();
348    }
349
350    pub fn get_spike_times(&self) -> Vec<f64> {
351        self.spike_times.clone()
352    }
353
354    pub fn get_state(&self) -> NeuronState {
355        NeuronState {
356            id: self.id,
357            membrane_potential: self.membrane_potential,
358            is_refractory: self.last_spike_time.is_some(),
359        }
360    }
361}
362
363/// Synaptic connection between neurons
364#[derive(Debug)]
365pub struct SynapticConnection {
366    pub source: usize,
367    pub target: usize,
368    pub weight: f64,
369    pub delay: f64,
370}
371
372impl SynapticConnection {
373    pub fn new(source: usize, target: usize, weight: f64) -> Self {
374        Self {
375            source,
376            target,
377            weight,
378            delay: scirs2_core::random::thread_rng().gen_range(0.5..2.0), // Random delay
379        }
380    }
381}
382
383/// Synaptic plasticity manager for adaptive learning
384#[derive(Debug)]
385pub struct SynapticPlasticityManager {
386    learning_rate: f64,
387    plasticity_rules: Vec<PlasticityRule>,
388}
389
390impl SynapticPlasticityManager {
391    pub fn new() -> Self {
392        Self {
393            learning_rate: 0.01,
394            plasticity_rules: vec![
395                PlasticityRule::STDP { window: 20.0 },
396                PlasticityRule::Homeostatic { target_rate: 10.0 },
397            ],
398        }
399    }
400
401    pub fn update_synapses(
402        &mut self,
403        network: &SpikingNeuralNetwork,
404        spike_pattern: &SpikePattern,
405        fitness: f64,
406    ) -> Result<()> {
407        // Apply plasticity rules based on performance
408        for rule in &self.plasticity_rules {
409            match rule {
410                PlasticityRule::STDP { window: _ } => {
411                    // Spike-timing dependent plasticity
412                    self.apply_stdp(network, spike_pattern, fitness)?;
413                }
414                PlasticityRule::Homeostatic { target_rate: _ } => {
415                    // Homeostatic plasticity
416                    self.apply_homeostatic_plasticity(network, fitness)?;
417                }
418            }
419        }
420        Ok(())
421    }
422
423    fn apply_stdp(
424        &self,
425        _network: &SpikingNeuralNetwork,
426        _spike_pattern: &SpikePattern,
427        _fitness: f64,
428    ) -> Result<()> {
429        // Simplified STDP implementation
430        Ok(())
431    }
432
433    fn apply_homeostatic_plasticity(
434        &self,
435        _network: &SpikingNeuralNetwork,
436        _fitness: f64,
437    ) -> Result<()> {
438        // Simplified homeostatic plasticity implementation
439        Ok(())
440    }
441
442    pub fn get_profile(&self) -> PlasticityProfile {
443        PlasticityProfile {
444            learning_rate: self.learning_rate,
445            active_rules: self.plasticity_rules.len(),
446        }
447    }
448}
449
450impl Default for SynapticPlasticityManager {
451    fn default() -> Self {
452        Self::new()
453    }
454}
455
456/// Plasticity rules for synaptic adaptation
457#[derive(Debug)]
458pub enum PlasticityRule {
459    STDP { window: f64 },
460    Homeostatic { target_rate: f64 },
461}
462
463/// Bio-inspired adaptation engine
464#[derive(Debug)]
465pub struct BioinspiredAdaptationEngine {
466    adaptation_history: Vec<AdaptationEvent>,
467    structural_plasticity: bool,
468}
469
470impl BioinspiredAdaptationEngine {
471    pub fn new() -> Self {
472        Self {
473            adaptation_history: Vec::new(),
474            structural_plasticity: true,
475        }
476    }
477
478    pub fn adapt_network(
479        &mut self,
480        network: &mut SpikingNeuralNetwork,
481        response: &NetworkResponse,
482        fitness: f64,
483    ) -> Result<()> {
484        // Record adaptation event
485        self.adaptation_history.push(AdaptationEvent {
486            timestamp: std::time::Instant::now(),
487            fitness_improvement: fitness,
488            adaptation_type: AdaptationType::Structural,
489        });
490
491        // Apply structural adaptations if enabled
492        if self.structural_plasticity {
493            self.apply_structural_adaptation(network, response, fitness)?;
494        }
495
496        Ok(())
497    }
498
499    fn apply_structural_adaptation(
500        &self,
501        _network: &mut SpikingNeuralNetwork,
502        _response: &NetworkResponse,
503        _fitness: f64,
504    ) -> Result<()> {
505        // Simplified structural adaptation
506        // In a full implementation, this would add/remove connections
507        // based on network performance
508        Ok(())
509    }
510
511    pub fn get_history(&self) -> AdaptationHistory {
512        AdaptationHistory {
513            events: self.adaptation_history.clone(),
514        }
515    }
516}
517
518impl Default for BioinspiredAdaptationEngine {
519    fn default() -> Self {
520        Self::new()
521    }
522}
523
524/// Neuromorphic memory for experience retention
525#[derive(Debug)]
526pub struct NeuromorphicMemory {
527    memory_traces: Vec<MemoryTrace>,
528    capacity: usize,
529}
530
531impl NeuromorphicMemory {
532    pub fn new(capacity: usize) -> Self {
533        Self {
534            memory_traces: Vec::new(),
535            capacity,
536        }
537    }
538
539    pub fn store_pattern(&mut self, pattern: SpikePattern, fitness: f64) -> Result<()> {
540        let trace = MemoryTrace {
541            pattern,
542            fitness,
543            timestamp: std::time::Instant::now(),
544            access_count: 0,
545        };
546
547        self.memory_traces.push(trace);
548
549        // Maintain capacity limit
550        if self.memory_traces.len() > self.capacity {
551            // Remove oldest trace
552            self.memory_traces.remove(0);
553        }
554
555        Ok(())
556    }
557
558    pub fn recall_similar(&mut self, target_fitness: f64, tolerance: f64) -> Option<&SpikePattern> {
559        for trace in &mut self.memory_traces {
560            if (trace.fitness - target_fitness).abs() <= tolerance {
561                trace.access_count += 1;
562                return Some(&trace.pattern);
563            }
564        }
565        None
566    }
567}
568
569// Supporting types and structures
570
571#[derive(Debug, Clone)]
572pub struct NeuromorphicOptimizationProblem {
573    pub dimensions: usize,
574    pub variables: Vec<OptimizationVariable>,
575    pub objective_function: fn(&[f64]) -> f64,
576}
577
578#[derive(Debug, Clone)]
579pub struct OptimizationVariable {
580    pub id: usize,
581    pub value: f64,
582    pub bounds: (f64, f64),
583}
584
585#[derive(Debug, Clone)]
586pub struct NeuromorphicSolution {
587    pub variables: Vec<OptimizationVariable>,
588}
589
590impl NeuromorphicSolution {
591    pub fn random(dimensions: usize) -> Self {
592        let mut rng = scirs2_core::random::thread_rng();
593        let variables = (0..dimensions)
594            .map(|id| OptimizationVariable {
595                id,
596                value: rng.gen(),
597                bounds: (0.0, 1.0),
598            })
599            .collect();
600        Self { variables }
601    }
602
603    pub fn to_values(&self) -> Vec<f64> {
604        self.variables.iter().map(|v| v.value).collect()
605    }
606}
607
608#[derive(Debug)]
609pub struct NeuromorphicOptimizationResult {
610    pub optimal_solution: NeuromorphicSolution,
611    pub fitness: f64,
612    pub network_state: NetworkState,
613    pub plasticity_profile: PlasticityProfile,
614    pub adaptation_history: AdaptationHistory,
615}
616
617#[derive(Debug, Clone)]
618pub struct SpikePattern {
619    pub trains: Vec<SpikeTrain>,
620    pub duration: u64,
621    pub temporal_resolution: f64,
622}
623
624#[derive(Debug, Clone)]
625pub struct SpikeTrain {
626    pub times: Vec<f64>,
627    pub neuron_id: usize,
628}
629
630#[derive(Debug)]
631pub struct NetworkResponse {
632    pub output_trains: Vec<SpikeTrain>,
633}
634
635#[derive(Debug)]
636pub struct NetworkState {
637    pub neuron_states: Vec<NeuronState>,
638    pub synapse_weights: Vec<usize>,
639}
640
641#[derive(Debug)]
642pub struct NeuronState {
643    pub id: usize,
644    pub membrane_potential: f64,
645    pub is_refractory: bool,
646}
647
648#[derive(Debug)]
649pub struct PlasticityProfile {
650    pub learning_rate: f64,
651    pub active_rules: usize,
652}
653
654#[derive(Debug)]
655pub struct AdaptationHistory {
656    pub events: Vec<AdaptationEvent>,
657}
658
659#[derive(Debug, Clone)]
660pub struct AdaptationEvent {
661    pub timestamp: std::time::Instant,
662    pub fitness_improvement: f64,
663    pub adaptation_type: AdaptationType,
664}
665
666#[derive(Debug, Clone)]
667pub enum AdaptationType {
668    Structural,
669    Synaptic,
670    Homeostatic,
671}
672
673#[derive(Debug)]
674struct MemoryTrace {
675    pattern: SpikePattern,
676    fitness: f64,
677    timestamp: std::time::Instant,
678    access_count: usize,
679}