1use crate::error::{IoError, Result};
7use scirs2_core::random::Rng;
8use std::collections::HashMap;
9
10use super::config::NeuromorphicConfig;
11
12#[derive(Debug)]
14pub struct NeuromorphicOptimizer {
15 spiking_network: SpikingNeuralNetwork,
17 plasticity_manager: SynapticPlasticityManager,
19 neuromorphic_memory: NeuromorphicMemory,
21 adaptation_engine: BioinspiredAdaptationEngine,
23}
24
25impl NeuromorphicOptimizer {
26 pub fn new() -> Self {
27 Self {
28 spiking_network: SpikingNeuralNetwork::new(1000, 100), plasticity_manager: SynapticPlasticityManager::new(),
30 neuromorphic_memory: NeuromorphicMemory::new(10000), adaptation_engine: BioinspiredAdaptationEngine::new(),
32 }
33 }
34
35 pub fn from_config(config: &NeuromorphicConfig) -> Self {
36 Self {
37 spiking_network: SpikingNeuralNetwork::new(config.num_neurons, config.num_outputs),
38 plasticity_manager: SynapticPlasticityManager::new(),
39 neuromorphic_memory: NeuromorphicMemory::new(config.memory_capacity),
40 adaptation_engine: BioinspiredAdaptationEngine::new(),
41 }
42 }
43
44 pub fn optimize(
45 &mut self,
46 problem: &NeuromorphicOptimizationProblem,
47 ) -> Result<NeuromorphicOptimizationResult> {
48 let input_patterns = self.encode_problem_as_spikes(problem)?;
50
51 let mut best_solution = NeuromorphicSolution::random(problem.dimensions);
53 let mut best_fitness = (problem.objective_function)(&best_solution.to_values());
54
55 for generation in 0..100 {
56 let spike_pattern = &input_patterns[generation % input_patterns.len()];
58
59 let network_response = self.spiking_network.process_spikes(spike_pattern)?;
61
62 let candidate_solution = self.decode_spikes_to_solution(&network_response, problem)?;
64 let candidate_fitness = (problem.objective_function)(&candidate_solution.to_values());
65
66 if candidate_fitness > best_fitness {
68 best_solution = candidate_solution;
69 best_fitness = candidate_fitness;
70
71 self.neuromorphic_memory
73 .store_pattern(spike_pattern.clone(), best_fitness)?;
74 }
75
76 self.plasticity_manager.update_synapses(
78 &self.spiking_network,
79 spike_pattern,
80 candidate_fitness,
81 )?;
82
83 self.adaptation_engine.adapt_network(
85 &mut self.spiking_network,
86 &network_response,
87 candidate_fitness,
88 )?;
89 }
90
91 Ok(NeuromorphicOptimizationResult {
93 optimal_solution: best_solution,
94 fitness: best_fitness,
95 network_state: self.spiking_network.get_state(),
96 plasticity_profile: self.plasticity_manager.get_profile(),
97 adaptation_history: self.adaptation_engine.get_history(),
98 })
99 }
100
101 fn encode_problem_as_spikes(
102 &self,
103 problem: &NeuromorphicOptimizationProblem,
104 ) -> Result<Vec<SpikePattern>> {
105 let mut patterns = Vec::new();
106 let mut rng = scirs2_core::random::thread_rng();
107
108 for _ in 0..10 {
110 let mut spike_trains = Vec::new();
111
112 for var in &problem.variables {
114 let spike_times: Vec<f64> = (0..20)
115 .map(|_| rng.gen::<f64>() * 100.0 * var.value)
116 .collect();
117
118 spike_trains.push(SpikeTrain {
119 times: spike_times,
120 neuron_id: var.id,
121 });
122 }
123
124 patterns.push(SpikePattern {
125 trains: spike_trains,
126 duration: 100,
127 temporal_resolution: 0.1,
128 });
129 }
130
131 Ok(patterns)
132 }
133
134 fn decode_spikes_to_solution(
135 &self,
136 network_response: &NetworkResponse,
137 problem: &NeuromorphicOptimizationProblem,
138 ) -> Result<NeuromorphicSolution> {
139 let mut variables = Vec::new();
140
141 for (i, var_template) in problem.variables.iter().enumerate() {
142 let spike_count = if i < network_response.output_trains.len() {
143 network_response.output_trains[i].times.len()
144 } else {
145 0
146 };
147
148 let normalized_value = (spike_count as f64 / 20.0).clamp(0.0, 1.0);
150 let scaled_value = var_template.bounds.0
151 + normalized_value * (var_template.bounds.1 - var_template.bounds.0);
152
153 variables.push(OptimizationVariable {
154 id: var_template.id,
155 value: scaled_value,
156 bounds: var_template.bounds,
157 });
158 }
159
160 Ok(NeuromorphicSolution { variables })
161 }
162}
163
164impl Default for NeuromorphicOptimizer {
165 fn default() -> Self {
166 Self::new()
167 }
168}
169
170#[derive(Debug)]
172pub struct SpikingNeuralNetwork {
173 neurons: Vec<SpikingNeuron>,
174 connections: Vec<Vec<SynapticConnection>>,
175 output_neurons: Vec<usize>,
176}
177
178impl SpikingNeuralNetwork {
179 pub fn new(num_neurons: usize, num_outputs: usize) -> Self {
180 let mut neurons = Vec::new();
181 for i in 0..num_neurons {
182 neurons.push(SpikingNeuron::new(i));
183 }
184
185 let mut connections = (0..num_neurons).map(|_| Vec::new()).collect::<Vec<_>>();
187 let mut rng = scirs2_core::random::thread_rng();
188
189 for i in 0..num_neurons {
190 let num_connections = rng.gen_range(5..20);
191 for _ in 0..num_connections {
192 let target = rng.gen_range(0..num_neurons);
193 if target != i {
194 connections[i].push(SynapticConnection::new(i, target, rng.gen::<f64>()));
195 }
196 }
197 }
198
199 let output_neurons = (0..num_outputs).collect();
201
202 Self {
203 neurons,
204 connections,
205 output_neurons,
206 }
207 }
208
209 pub fn process_spikes(&mut self, spike_pattern: &SpikePattern) -> Result<NetworkResponse> {
210 for neuron in &mut self.neurons {
212 neuron.reset();
213 }
214
215 for spike_train in &spike_pattern.trains {
217 if spike_train.neuron_id < self.neurons.len() {
218 for &spike_time in &spike_train.times {
219 self.neurons[spike_train.neuron_id].add_input_spike(spike_time);
220 }
221 }
222 }
223
224 let mut output_trains = Vec::new();
226 let simulation_time = spike_pattern.duration as f64;
227 let time_step = spike_pattern.temporal_resolution;
228
229 for t in 0..(simulation_time / time_step) as usize {
230 let current_time = t as f64 * time_step;
231
232 let mut spikes_to_propagate = Vec::new();
234 let num_neurons = self.neurons.len();
235
236 for (i, neuron) in self.neurons.iter_mut().enumerate() {
238 if neuron.update(current_time) {
239 for connection in &self.connections[i] {
241 let arrival_time = current_time + connection.delay;
242 if connection.target < num_neurons {
243 spikes_to_propagate.push((connection.target, arrival_time));
244 }
245 }
246 }
247 }
248
249 for (target, arrival_time) in spikes_to_propagate {
251 self.neurons[target].add_input_spike(arrival_time);
252 }
253 }
254
255 for &output_id in &self.output_neurons {
257 if output_id < self.neurons.len() {
258 output_trains.push(SpikeTrain {
259 times: self.neurons[output_id].get_spike_times(),
260 neuron_id: output_id,
261 });
262 }
263 }
264
265 Ok(NetworkResponse { output_trains })
266 }
267
268 pub fn get_state(&self) -> NetworkState {
269 NetworkState {
270 neuron_states: self.neurons.iter().map(|n| n.get_state()).collect(),
271 synapse_weights: self
272 .connections
273 .iter()
274 .flatten()
275 .map(|c| c.weight as usize)
276 .collect(),
277 }
278 }
279}
280
281#[derive(Debug)]
283pub struct SpikingNeuron {
284 id: usize,
285 membrane_potential: f64,
286 threshold: f64,
287 reset_potential: f64,
288 refractory_period: f64,
289 last_spike_time: Option<f64>,
290 input_spikes: Vec<f64>,
291 spike_times: Vec<f64>,
292}
293
294impl SpikingNeuron {
295 pub fn new(id: usize) -> Self {
296 Self {
297 id,
298 membrane_potential: -70.0, threshold: -55.0, reset_potential: -80.0, refractory_period: 2.0, last_spike_time: None,
303 input_spikes: Vec::new(),
304 spike_times: Vec::new(),
305 }
306 }
307
308 pub fn add_input_spike(&mut self, spike_time: f64) {
309 self.input_spikes.push(spike_time);
310 }
311
312 pub fn update(&mut self, current_time: f64) -> bool {
313 if let Some(last_spike) = self.last_spike_time {
315 if current_time - last_spike < self.refractory_period {
316 return false;
317 }
318 }
319
320 let mut total_input = 0.0;
322 for &spike_time in &self.input_spikes {
323 if (current_time - spike_time).abs() < 1.0 {
324 total_input += 10.0 * (-((current_time - spike_time) / 5.0)).exp();
326 }
327 }
328
329 self.membrane_potential += total_input - 0.1 * (self.membrane_potential + 70.0);
331
332 if self.membrane_potential >= self.threshold {
334 self.membrane_potential = self.reset_potential;
335 self.last_spike_time = Some(current_time);
336 self.spike_times.push(current_time);
337 return true;
338 }
339
340 false
341 }
342
343 pub fn reset(&mut self) {
344 self.membrane_potential = -70.0;
345 self.last_spike_time = None;
346 self.input_spikes.clear();
347 self.spike_times.clear();
348 }
349
350 pub fn get_spike_times(&self) -> Vec<f64> {
351 self.spike_times.clone()
352 }
353
354 pub fn get_state(&self) -> NeuronState {
355 NeuronState {
356 id: self.id,
357 membrane_potential: self.membrane_potential,
358 is_refractory: self.last_spike_time.is_some(),
359 }
360 }
361}
362
363#[derive(Debug)]
365pub struct SynapticConnection {
366 pub source: usize,
367 pub target: usize,
368 pub weight: f64,
369 pub delay: f64,
370}
371
372impl SynapticConnection {
373 pub fn new(source: usize, target: usize, weight: f64) -> Self {
374 Self {
375 source,
376 target,
377 weight,
378 delay: scirs2_core::random::thread_rng().gen_range(0.5..2.0), }
380 }
381}
382
383#[derive(Debug)]
385pub struct SynapticPlasticityManager {
386 learning_rate: f64,
387 plasticity_rules: Vec<PlasticityRule>,
388}
389
390impl SynapticPlasticityManager {
391 pub fn new() -> Self {
392 Self {
393 learning_rate: 0.01,
394 plasticity_rules: vec![
395 PlasticityRule::STDP { window: 20.0 },
396 PlasticityRule::Homeostatic { target_rate: 10.0 },
397 ],
398 }
399 }
400
401 pub fn update_synapses(
402 &mut self,
403 network: &SpikingNeuralNetwork,
404 spike_pattern: &SpikePattern,
405 fitness: f64,
406 ) -> Result<()> {
407 for rule in &self.plasticity_rules {
409 match rule {
410 PlasticityRule::STDP { window: _ } => {
411 self.apply_stdp(network, spike_pattern, fitness)?;
413 }
414 PlasticityRule::Homeostatic { target_rate: _ } => {
415 self.apply_homeostatic_plasticity(network, fitness)?;
417 }
418 }
419 }
420 Ok(())
421 }
422
423 fn apply_stdp(
424 &self,
425 _network: &SpikingNeuralNetwork,
426 _spike_pattern: &SpikePattern,
427 _fitness: f64,
428 ) -> Result<()> {
429 Ok(())
431 }
432
433 fn apply_homeostatic_plasticity(
434 &self,
435 _network: &SpikingNeuralNetwork,
436 _fitness: f64,
437 ) -> Result<()> {
438 Ok(())
440 }
441
442 pub fn get_profile(&self) -> PlasticityProfile {
443 PlasticityProfile {
444 learning_rate: self.learning_rate,
445 active_rules: self.plasticity_rules.len(),
446 }
447 }
448}
449
450impl Default for SynapticPlasticityManager {
451 fn default() -> Self {
452 Self::new()
453 }
454}
455
456#[derive(Debug)]
458pub enum PlasticityRule {
459 STDP { window: f64 },
460 Homeostatic { target_rate: f64 },
461}
462
463#[derive(Debug)]
465pub struct BioinspiredAdaptationEngine {
466 adaptation_history: Vec<AdaptationEvent>,
467 structural_plasticity: bool,
468}
469
470impl BioinspiredAdaptationEngine {
471 pub fn new() -> Self {
472 Self {
473 adaptation_history: Vec::new(),
474 structural_plasticity: true,
475 }
476 }
477
478 pub fn adapt_network(
479 &mut self,
480 network: &mut SpikingNeuralNetwork,
481 response: &NetworkResponse,
482 fitness: f64,
483 ) -> Result<()> {
484 self.adaptation_history.push(AdaptationEvent {
486 timestamp: std::time::Instant::now(),
487 fitness_improvement: fitness,
488 adaptation_type: AdaptationType::Structural,
489 });
490
491 if self.structural_plasticity {
493 self.apply_structural_adaptation(network, response, fitness)?;
494 }
495
496 Ok(())
497 }
498
499 fn apply_structural_adaptation(
500 &self,
501 _network: &mut SpikingNeuralNetwork,
502 _response: &NetworkResponse,
503 _fitness: f64,
504 ) -> Result<()> {
505 Ok(())
509 }
510
511 pub fn get_history(&self) -> AdaptationHistory {
512 AdaptationHistory {
513 events: self.adaptation_history.clone(),
514 }
515 }
516}
517
518impl Default for BioinspiredAdaptationEngine {
519 fn default() -> Self {
520 Self::new()
521 }
522}
523
524#[derive(Debug)]
526pub struct NeuromorphicMemory {
527 memory_traces: Vec<MemoryTrace>,
528 capacity: usize,
529}
530
531impl NeuromorphicMemory {
532 pub fn new(capacity: usize) -> Self {
533 Self {
534 memory_traces: Vec::new(),
535 capacity,
536 }
537 }
538
539 pub fn store_pattern(&mut self, pattern: SpikePattern, fitness: f64) -> Result<()> {
540 let trace = MemoryTrace {
541 pattern,
542 fitness,
543 timestamp: std::time::Instant::now(),
544 access_count: 0,
545 };
546
547 self.memory_traces.push(trace);
548
549 if self.memory_traces.len() > self.capacity {
551 self.memory_traces.remove(0);
553 }
554
555 Ok(())
556 }
557
558 pub fn recall_similar(&mut self, target_fitness: f64, tolerance: f64) -> Option<&SpikePattern> {
559 for trace in &mut self.memory_traces {
560 if (trace.fitness - target_fitness).abs() <= tolerance {
561 trace.access_count += 1;
562 return Some(&trace.pattern);
563 }
564 }
565 None
566 }
567}
568
569#[derive(Debug, Clone)]
572pub struct NeuromorphicOptimizationProblem {
573 pub dimensions: usize,
574 pub variables: Vec<OptimizationVariable>,
575 pub objective_function: fn(&[f64]) -> f64,
576}
577
578#[derive(Debug, Clone)]
579pub struct OptimizationVariable {
580 pub id: usize,
581 pub value: f64,
582 pub bounds: (f64, f64),
583}
584
585#[derive(Debug, Clone)]
586pub struct NeuromorphicSolution {
587 pub variables: Vec<OptimizationVariable>,
588}
589
590impl NeuromorphicSolution {
591 pub fn random(dimensions: usize) -> Self {
592 let mut rng = scirs2_core::random::thread_rng();
593 let variables = (0..dimensions)
594 .map(|id| OptimizationVariable {
595 id,
596 value: rng.gen(),
597 bounds: (0.0, 1.0),
598 })
599 .collect();
600 Self { variables }
601 }
602
603 pub fn to_values(&self) -> Vec<f64> {
604 self.variables.iter().map(|v| v.value).collect()
605 }
606}
607
608#[derive(Debug)]
609pub struct NeuromorphicOptimizationResult {
610 pub optimal_solution: NeuromorphicSolution,
611 pub fitness: f64,
612 pub network_state: NetworkState,
613 pub plasticity_profile: PlasticityProfile,
614 pub adaptation_history: AdaptationHistory,
615}
616
617#[derive(Debug, Clone)]
618pub struct SpikePattern {
619 pub trains: Vec<SpikeTrain>,
620 pub duration: u64,
621 pub temporal_resolution: f64,
622}
623
624#[derive(Debug, Clone)]
625pub struct SpikeTrain {
626 pub times: Vec<f64>,
627 pub neuron_id: usize,
628}
629
630#[derive(Debug)]
631pub struct NetworkResponse {
632 pub output_trains: Vec<SpikeTrain>,
633}
634
635#[derive(Debug)]
636pub struct NetworkState {
637 pub neuron_states: Vec<NeuronState>,
638 pub synapse_weights: Vec<usize>,
639}
640
641#[derive(Debug)]
642pub struct NeuronState {
643 pub id: usize,
644 pub membrane_potential: f64,
645 pub is_refractory: bool,
646}
647
648#[derive(Debug)]
649pub struct PlasticityProfile {
650 pub learning_rate: f64,
651 pub active_rules: usize,
652}
653
654#[derive(Debug)]
655pub struct AdaptationHistory {
656 pub events: Vec<AdaptationEvent>,
657}
658
659#[derive(Debug, Clone)]
660pub struct AdaptationEvent {
661 pub timestamp: std::time::Instant,
662 pub fitness_improvement: f64,
663 pub adaptation_type: AdaptationType,
664}
665
666#[derive(Debug, Clone)]
667pub enum AdaptationType {
668 Structural,
669 Synaptic,
670 Homeostatic,
671}
672
673#[derive(Debug)]
674struct MemoryTrace {
675 pattern: SpikePattern,
676 fitness: f64,
677 timestamp: std::time::Instant,
678 access_count: usize,
679}