scirs2_io/
enhanced_algorithms.rs

1//! Enhanced Algorithms for Advanced Mode
2//!
3//! This module provides advanced algorithmic enhancements for the advanced coordinator,
4//! including new optimization strategies, advanced pattern recognition, and self-improving
5//! algorithmic components.
6
7#![allow(dead_code)]
8#![allow(clippy::too_many_arguments)]
9
10use crate::error::{IoError, Result};
11use scirs2_core::ndarray::{Array1, Array2};
12use scirs2_core::random::Rng;
13use statrs::statistics::Statistics;
14use std::collections::{HashMap, VecDeque};
15use std::time::Instant;
16
17/// Advanced pattern recognition system with deep learning capabilities
18#[derive(Debug)]
19pub struct AdvancedPatternRecognizer {
20    /// Multi-layer pattern detection networks
21    pattern_networks: Vec<PatternNetwork>,
22    /// Historical pattern database
23    pattern_database: HashMap<String, PatternMetadata>,
24    /// Real-time pattern analysis buffer
25    analysis_buffer: VecDeque<PatternInstance>,
26    /// Learning rate for pattern adaptation
27    learning_rate: f32,
28}
29
30impl Default for AdvancedPatternRecognizer {
31    fn default() -> Self {
32        Self::new()
33    }
34}
35
36impl AdvancedPatternRecognizer {
37    /// Create a new advanced pattern recognizer
38    pub fn new() -> Self {
39        let pattern_networks = vec![
40            PatternNetwork::new("repetition", 16, 8, 4),
41            PatternNetwork::new("sequential", 16, 8, 4),
42            PatternNetwork::new("fractal", 32, 16, 8),
43            PatternNetwork::new("entropy", 16, 8, 4),
44            PatternNetwork::new("compression", 24, 12, 6),
45        ];
46
47        Self {
48            pattern_networks,
49            pattern_database: HashMap::new(),
50            analysis_buffer: VecDeque::with_capacity(1000),
51            learning_rate: 0.001,
52        }
53    }
54
55    /// Analyze data for advanced patterns using deep learning
56    pub fn analyze_patterns(&mut self, data: &[u8]) -> Result<AdvancedPatternAnalysis> {
57        let mut pattern_scores = HashMap::new();
58        let mut emergent_patterns = Vec::new();
59
60        // Extract multi-scale features
61        let features = self.extract_multiscale_features(data)?;
62
63        // Pre-compute data characteristics to avoid borrow conflicts
64        let data_characteristics = self.characterize_data(data);
65
66        // Collect network analysis results first
67        let mut network_results = Vec::new();
68        for network in &mut self.pattern_networks {
69            let score = network.analyze(&features)?;
70            let pattern_type = network.pattern_type.clone();
71            network_results.push((pattern_type, score));
72        }
73
74        // Now process results without mutable borrow conflicts
75        for (pattern_type, score) in network_results {
76            // Check if pattern is novel
77            let is_novel = self.is_novel_pattern(&pattern_type, score);
78
79            pattern_scores.insert(pattern_type.clone(), score);
80
81            // Detect emergent patterns
82            if score > 0.8 && is_novel {
83                emergent_patterns.push(EmergentPattern {
84                    pattern_type,
85                    confidence: score,
86                    discovered_at: Instant::now(),
87                    data_characteristics: data_characteristics.clone(),
88                });
89            }
90        }
91
92        // Update pattern database
93        self.update_pattern_database(data, &pattern_scores)?;
94
95        // Cross-correlate patterns for meta-patterns
96        let meta_patterns = self.detect_meta_patterns(&pattern_scores)?;
97        let optimization_recommendations =
98            self.generate_optimization_recommendations(&pattern_scores);
99
100        Ok(AdvancedPatternAnalysis {
101            pattern_scores,
102            emergent_patterns,
103            meta_patterns,
104            complexity_index: self.calculate_complexity_index(&features),
105            predictability_score: self.calculate_predictability(data),
106            optimization_recommendations,
107        })
108    }
109
110    /// Extract multi-scale features from data
111    fn extract_multiscale_features(&self, data: &[u8]) -> Result<Array2<f32>> {
112        // Extract features for each scale separately to ensure consistent dimensions
113        let byte_features = self.extract_byte_level_features(data);
114        let local_features_4 = self.extract_local_structure_features(data, 4);
115        let local_features_16 = self.extract_local_structure_features(data, 16);
116        let global_features = self.extract_global_structure_features(data);
117
118        // Find the maximum number of features to ensure consistent dimensions
119        let max_features = [
120            byte_features.len(),
121            local_features_4.len(),
122            local_features_16.len(),
123            global_features.len(),
124        ]
125        .into_iter()
126        .max()
127        .unwrap_or(0);
128
129        // Create padded feature vectors and build the 2D array
130        let mut padded_features = Vec::with_capacity(4 * max_features);
131
132        // Helper function to pad a feature vector
133        let pad_features = |mut features: Vec<f32>, target_len: usize| {
134            features.resize(target_len, 0.0);
135            features
136        };
137
138        // Add all feature scales with consistent padding
139        padded_features.extend(pad_features(byte_features, max_features));
140        padded_features.extend(pad_features(local_features_4, max_features));
141        padded_features.extend(pad_features(local_features_16, max_features));
142        padded_features.extend(pad_features(global_features, max_features));
143
144        // Convert to 2D array (4 scales x max_features)
145        let feature_array = Array2::from_shape_vec((4, max_features), padded_features)
146            .map_err(|e| IoError::Other(format!("Feature extraction error: {e}")))?;
147
148        Ok(feature_array)
149    }
150
151    /// Extract byte-level statistical features
152    fn extract_byte_level_features(&self, data: &[u8]) -> Vec<f32> {
153        let mut frequency = [0u32; 256];
154        for &byte in data {
155            frequency[byte as usize] += 1;
156        }
157
158        let len = data.len() as f32;
159        let mut features = Vec::new();
160
161        // Statistical moments
162        let mean = data.iter().map(|&x| x as f32).sum::<f32>() / len;
163        let variance = data.iter().map(|&x| (x as f32 - mean).powi(2)).sum::<f32>() / len;
164        let skewness = data.iter().map(|&x| (x as f32 - mean).powi(3)).sum::<f32>()
165            / (len * variance.powf(1.5));
166        let kurtosis =
167            data.iter().map(|&x| (x as f32 - mean).powi(4)).sum::<f32>() / (len * variance.powi(2));
168
169        features.extend(&[mean / 255.0, variance / (255.0 * 255.0), skewness, kurtosis]);
170
171        // Entropy measures
172        let mut shannon_entropy = 0.0;
173        let mut gini_index = 0.0;
174
175        for &freq in &frequency {
176            if freq > 0 {
177                let p = freq as f32 / len;
178                shannon_entropy -= p * p.log2();
179                gini_index += p * p;
180            }
181        }
182
183        features.push(shannon_entropy / 8.0);
184        features.push(1.0 - gini_index);
185
186        features
187    }
188
189    /// Extract local structure features with specified window size
190    fn extract_local_structure_features(&self, data: &[u8], window_size: usize) -> Vec<f32> {
191        let mut features = Vec::new();
192
193        if data.len() < window_size {
194            return vec![0.0; 4]; // Return zero features for insufficient data
195        }
196
197        let mut autocorrelations = Vec::new();
198        let mut transitions = 0;
199        let mut periodicity_score: f32 = 0.0;
200
201        // Calculate autocorrelations at different lags
202        for lag in 1..window_size.min(8) {
203            let mut correlation = 0.0;
204            let mut count = 0;
205
206            for i in 0..(data.len() - lag) {
207                if i + lag < data.len() {
208                    correlation += (data[i] as f32) * (data[i + lag] as f32);
209                    count += 1;
210                }
211            }
212
213            if count > 0 {
214                autocorrelations.push(correlation / count as f32);
215            }
216        }
217
218        // Count transitions
219        for window in data.windows(window_size) {
220            for i in 1..window.len() {
221                if window[i] != window[i - 1] {
222                    transitions += 1;
223                }
224            }
225        }
226
227        // Calculate periodicity
228        for period in 2..window_size.min(16) {
229            let mut matches = 0;
230            let mut total = 0;
231
232            for i in 0..(data.len() - period) {
233                if data[i] == data[i + period] {
234                    matches += 1;
235                }
236                total += 1;
237            }
238
239            if total > 0 {
240                periodicity_score = periodicity_score.max(matches as f32 / total as f32);
241            }
242        }
243
244        features.push(
245            autocorrelations.iter().sum::<f32>()
246                / autocorrelations.len().max(1) as f32
247                / (255.0 * 255.0),
248        );
249        features.push(transitions as f32 / data.len() as f32);
250        features.push(periodicity_score);
251        features.push(autocorrelations.len() as f32 / 8.0);
252
253        features
254    }
255
256    /// Extract global structure features
257    fn extract_global_structure_features(&self, data: &[u8]) -> Vec<f32> {
258        let mut features = Vec::new();
259
260        // Lempel-Ziv complexity
261        let lz_complexity = self.calculate_lempel_ziv_complexity(data);
262        features.push(lz_complexity);
263
264        // Longest common subsequence with reversed data
265        let reversed_data: Vec<u8> = data.iter().rev().cloned().collect();
266        let lcs_ratio = self.calculate_lcs_ratio(data, &reversed_data);
267        features.push(lcs_ratio);
268
269        // Fractal dimension estimate
270        let fractal_dimension = self.estimate_fractal_dimension(data);
271        features.push(fractal_dimension);
272
273        // Run length encoding ratio
274        let rle_ratio = self.calculate_rle_ratio(data);
275        features.push(rle_ratio);
276
277        features
278    }
279
280    /// Calculate Lempel-Ziv complexity
281    fn calculate_lempel_ziv_complexity(&self, data: &[u8]) -> f32 {
282        let mut dictionary = std::collections::HashSet::new();
283        let mut i = 0;
284        let mut complexity = 0;
285
286        while i < data.len() {
287            let mut j = i + 1;
288            while j <= data.len() && dictionary.contains(&data[i..j]) {
289                j += 1;
290            }
291
292            if j <= data.len() {
293                dictionary.insert(data[i..j].to_vec());
294            }
295
296            complexity += 1;
297            i = j.min(data.len());
298        }
299
300        complexity as f32 / data.len() as f32
301    }
302
303    /// Calculate longest common subsequence ratio
304    fn calculate_lcs_ratio(&self, data1: &[u8], data2: &[u8]) -> f32 {
305        let len1 = data1.len();
306        let len2 = data2.len();
307
308        if len1 == 0 || len2 == 0 {
309            return 0.0;
310        }
311
312        // Use a simplified LCS algorithm for large data
313        let sample_size = 100.min(len1).min(len2);
314        let mut dp = vec![vec![0; sample_size + 1]; sample_size + 1];
315
316        for i in 1..=sample_size {
317            for j in 1..=sample_size {
318                if data1[i - 1] == data2[j - 1] {
319                    dp[i][j] = dp[i - 1][j - 1] + 1;
320                } else {
321                    dp[i][j] = dp[i - 1][j].max(dp[i][j - 1]);
322                }
323            }
324        }
325
326        dp[sample_size][sample_size] as f32 / sample_size as f32
327    }
328
329    /// Estimate fractal dimension using box-counting method
330    fn estimate_fractal_dimension(&self, data: &[u8]) -> f32 {
331        if data.len() < 4 {
332            return 1.0;
333        }
334
335        let mut dimensions = Vec::new();
336
337        for scale in [2, 4, 8, 16].iter() {
338            if data.len() >= *scale {
339                let mut boxes = std::collections::HashSet::new();
340
341                for chunk in data.chunks(*scale) {
342                    let min_val = *chunk.iter().min().unwrap_or(&0);
343                    let max_val = *chunk.iter().max().unwrap_or(&255);
344                    boxes.insert((min_val / 16, max_val / 16)); // Quantize to reduce memory
345                }
346
347                if !boxes.is_empty() {
348                    dimensions.push(((*scale as f32).ln(), (boxes.len() as f32).ln()));
349                }
350            }
351        }
352
353        if dimensions.len() < 2 {
354            return 1.0;
355        }
356
357        // Calculate slope (fractal dimension)
358        let n = dimensions.len() as f32;
359        let sum_x: f32 = dimensions.iter().map(|(x, _)| *x).sum();
360        let sum_y: f32 = dimensions.iter().map(|(_, y)| y).sum();
361        let sum_xy: f32 = dimensions.iter().map(|(x, y)| x * y).sum();
362        let sum_x2: f32 = dimensions.iter().map(|(x, _)| x * x).sum();
363
364        let slope = (n * sum_xy - sum_x * sum_y) / (n * sum_x2 - sum_x * sum_x);
365        slope.abs().min(2.0) // Clamp to reasonable range
366    }
367
368    /// Calculate run-length encoding compression ratio
369    fn calculate_rle_ratio(&self, data: &[u8]) -> f32 {
370        if data.is_empty() {
371            return 1.0;
372        }
373
374        let mut compressed_size = 0;
375        let mut i = 0;
376
377        while i < data.len() {
378            let current_byte = data[i];
379            let mut run_length = 1;
380
381            while i + run_length < data.len() && data[i + run_length] == current_byte {
382                run_length += 1;
383            }
384
385            compressed_size += if run_length > 3 { 2 } else { run_length }; // RLE encoding
386            i += run_length;
387        }
388
389        compressed_size as f32 / data.len() as f32
390    }
391
392    /// Check if pattern is novel
393    fn is_novel_pattern(&self, pattern_type: &str, score: f32) -> bool {
394        if let Some(metadata) = self.pattern_database.get(pattern_type) {
395            score > metadata.max_score * 1.1 // 10% improvement threshold
396        } else {
397            true // New pattern _type
398        }
399    }
400
401    /// Characterize data for pattern metadata
402    fn characterize_data(&self, data: &[u8]) -> DataCharacteristics {
403        DataCharacteristics {
404            size: data.len(),
405            entropy: self.calculate_shannon_entropy(data),
406            mean: data.iter().map(|&x| x as f32).sum::<f32>() / data.len() as f32,
407            variance: {
408                let mean = data.iter().map(|&x| x as f32).sum::<f32>() / data.len() as f32;
409                data.iter().map(|&x| (x as f32 - mean).powi(2)).sum::<f32>() / data.len() as f32
410            },
411        }
412    }
413
414    /// Calculate Shannon entropy
415    fn calculate_shannon_entropy(&self, data: &[u8]) -> f32 {
416        let mut frequency = [0u32; 256];
417        for &byte in data {
418            frequency[byte as usize] += 1;
419        }
420
421        let len = data.len() as f32;
422        let mut entropy = 0.0;
423
424        for &freq in &frequency {
425            if freq > 0 {
426                let p = freq as f32 / len;
427                entropy -= p * p.log2();
428            }
429        }
430
431        entropy / 8.0
432    }
433
434    /// Update pattern database with new observations
435    fn update_pattern_database(
436        &mut self,
437        data: &[u8],
438        pattern_scores: &HashMap<String, f32>,
439    ) -> Result<()> {
440        let data_characteristics = self.characterize_data(data);
441
442        for (pattern_type, &score) in pattern_scores {
443            let metadata = self
444                .pattern_database
445                .entry(pattern_type.clone())
446                .or_insert_with(|| PatternMetadata {
447                    pattern_type: pattern_type.clone(),
448                    observation_count: 0,
449                    max_score: 0.0,
450                    avg_score: 0.0,
451                    last_seen: Instant::now(),
452                    associated_data_characteristics: Vec::new(),
453                });
454
455            metadata.observation_count += 1;
456            metadata.max_score = metadata.max_score.max(score);
457            metadata.avg_score = (metadata.avg_score * (metadata.observation_count - 1) as f32
458                + score)
459                / metadata.observation_count as f32;
460            metadata.last_seen = Instant::now();
461            metadata
462                .associated_data_characteristics
463                .push(data_characteristics.clone());
464
465            // Keep only recent characteristics
466            if metadata.associated_data_characteristics.len() > 100 {
467                metadata.associated_data_characteristics.remove(0);
468            }
469        }
470
471        Ok(())
472    }
473
474    /// Detect meta-patterns by analyzing correlations between different pattern types
475    fn detect_meta_patterns(
476        &self,
477        pattern_scores: &HashMap<String, f32>,
478    ) -> Result<Vec<MetaPattern>> {
479        let mut meta_patterns = Vec::new();
480
481        // Look for correlated patterns
482        let score_pairs: Vec<_> = pattern_scores.iter().collect();
483
484        for i in 0..score_pairs.len() {
485            for j in (i + 1)..score_pairs.len() {
486                let (type1, &score1) = score_pairs[i];
487                let (type2, &score2) = score_pairs[j];
488
489                // Detect strong correlations
490                if score1 > 0.7 && score2 > 0.7 {
491                    meta_patterns.push(MetaPattern {
492                        pattern_combination: vec![type1.clone(), type2.clone()],
493                        correlation_strength: (score1 * score2).sqrt(),
494                        synergy_type: self.determine_synergy_type(type1, type2),
495                    });
496                }
497            }
498        }
499
500        Ok(meta_patterns)
501    }
502
503    /// Determine synergy type between patterns
504    fn determine_synergy_type(&self, type1: &str, type2: &str) -> SynergyType {
505        match (type1, type2) {
506            ("repetition", "compression") => SynergyType::ReinforcingCompression,
507            ("sequential", "entropy") => SynergyType::ContrastedRandomness,
508            ("fractal", "periodicity") => SynergyType::HierarchicalStructure,
509            _ => SynergyType::Unknown,
510        }
511    }
512
513    /// Calculate complexity index from multi-scale features
514    fn calculate_complexity_index(&self, features: &Array2<f32>) -> f32 {
515        // Calculate weighted sum across scales
516        let weights = Array1::from(vec![0.4, 0.3, 0.2, 0.1]); // Higher weight for finer scales
517        let scale_complexities = features.mean_axis(scirs2_core::ndarray::Axis(1)).unwrap();
518        weights.dot(&scale_complexities)
519    }
520
521    /// Calculate predictability score
522    fn calculate_predictability(&self, data: &[u8]) -> f32 {
523        if data.len() < 10 {
524            return 0.5;
525        }
526
527        let mut correct_predictions = 0;
528        let prediction_window = 5.min(data.len() - 1);
529
530        for i in prediction_window..data.len() {
531            // Simple predictor based on recent history
532            let recent_bytes = &data[i - prediction_window..i];
533            let predicted = self.predict_next_byte(recent_bytes);
534
535            if predicted == data[i] {
536                correct_predictions += 1;
537            }
538        }
539
540        correct_predictions as f32 / (data.len() - prediction_window) as f32
541    }
542
543    /// Simple byte prediction based on history
544    fn predict_next_byte(&self, history: &[u8]) -> u8 {
545        if history.is_empty() {
546            return 0;
547        }
548
549        // Use most frequent byte in recent history
550        let mut frequency = [0u32; 256];
551        for &byte in history {
552            frequency[byte as usize] += 1;
553        }
554
555        frequency
556            .iter()
557            .enumerate()
558            .max_by_key(|(_, &count)| count)
559            .map(|(byte, _)| byte as u8)
560            .unwrap_or(0)
561    }
562
563    /// Generate optimization recommendations based on pattern analysis
564    fn generate_optimization_recommendations(
565        &self,
566        pattern_scores: &HashMap<String, f32>,
567    ) -> Vec<OptimizationRecommendation> {
568        let mut recommendations = Vec::new();
569
570        for (pattern_type, &score) in pattern_scores {
571            match pattern_type.as_str() {
572                "repetition" if score > 0.8 => {
573                    recommendations.push(OptimizationRecommendation {
574                        optimization_type: "compression".to_string(),
575                        reason: "High repetition detected - compression will be highly effective"
576                            .to_string(),
577                        expected_improvement: score * 0.7,
578                        confidence: score,
579                    });
580                }
581                "sequential" if score > 0.7 => {
582                    recommendations.push(OptimizationRecommendation {
583                        optimization_type: "streaming".to_string(),
584                        reason: "Sequential access pattern - streaming optimization recommended"
585                            .to_string(),
586                        expected_improvement: score * 0.5,
587                        confidence: score,
588                    });
589                }
590                "fractal" if score > 0.8 => {
591                    recommendations.push(OptimizationRecommendation {
592                        optimization_type: "hierarchical_processing".to_string(),
593                        reason:
594                            "Fractal structure detected - hierarchical processing will be efficient"
595                                .to_string(),
596                        expected_improvement: score * 0.6,
597                        confidence: score,
598                    });
599                }
600                "entropy" if score < 0.3 => {
601                    recommendations.push(OptimizationRecommendation {
602                        optimization_type: "aggressive_compression".to_string(),
603                        reason: "Low entropy - aggressive compression algorithms recommended"
604                            .to_string(),
605                        expected_improvement: (1.0 - score) * 0.8,
606                        confidence: 1.0 - score,
607                    });
608                }
609                _ => {}
610            }
611        }
612
613        recommendations
614    }
615}
616
617/// Specialized pattern detection network
618#[derive(Debug)]
619struct PatternNetwork {
620    pattern_type: String,
621    weights: Array2<f32>,
622    bias: Array1<f32>,
623    activation_history: VecDeque<f32>,
624}
625
626impl PatternNetwork {
627    fn new(pattern_type: &str, input_size: usize, hidden_size: usize, _output_size: usize) -> Self {
628        // Xavier initialization for weights
629        let scale = (2.0 / (input_size + hidden_size) as f32).sqrt();
630        let mut rng = scirs2_core::random::rng();
631        let weights = Array2::from_shape_fn((hidden_size, input_size), |_| {
632            (rng.random::<f32>() - 0.5) * 2.0 * scale
633        });
634
635        Self {
636            pattern_type: pattern_type.to_string(),
637            weights,
638            bias: Array1::zeros(hidden_size),
639            activation_history: VecDeque::with_capacity(100),
640        }
641    }
642
643    fn analyze(&mut self, features: &Array2<f32>) -> Result<f32> {
644        // Flatten features for network input
645        let flattened = features.as_slice().unwrap();
646        let input = Array1::from(flattened.to_vec());
647
648        // Resize input to match network size if necessary
649        let network_input = if input.len() > self.weights.ncols() {
650            input
651                .slice(scirs2_core::ndarray::s![..self.weights.ncols()])
652                .to_owned()
653        } else {
654            let mut padded = Array1::zeros(self.weights.ncols());
655            padded
656                .slice_mut(scirs2_core::ndarray::s![..input.len()])
657                .assign(&input);
658            padded
659        };
660
661        // Forward pass
662        let hidden = self.weights.dot(&network_input) + &self.bias;
663        let activated = hidden.mapv(Self::relu);
664
665        // Pattern-specific scoring
666        let score = match self.pattern_type.as_str() {
667            "repetition" => self.score_repetition_pattern(&activated),
668            "sequential" => self.score_sequential_pattern(&activated),
669            "fractal" => self.score_fractal_pattern(&activated),
670            "entropy" => self.score_entropy_pattern(&activated),
671            "compression" => self.score_compression_pattern(&activated),
672            _ => activated.mean().unwrap_or(0.0),
673        };
674
675        self.activation_history.push_back(score);
676        if self.activation_history.len() > 100 {
677            self.activation_history.pop_front();
678        }
679
680        Ok(score.clamp(0.0, 1.0))
681    }
682
683    fn relu(x: f32) -> f32 {
684        x.max(0.0)
685    }
686
687    fn score_repetition_pattern(&self, activations: &Array1<f32>) -> f32 {
688        // Look for repeating patterns in activations
689        let mut max_repetition: f32 = 0.0;
690
691        for window_size in 2..=activations.len() / 2 {
692            let mut repetition_score = 0.0;
693            let mut count = 0;
694
695            for i in 0..=(activations.len() - 2 * window_size) {
696                let window1 = activations.slice(scirs2_core::ndarray::s![i..i + window_size]);
697                let window2 = activations.slice(scirs2_core::ndarray::s![
698                    i + window_size..i + 2 * window_size
699                ]);
700
701                let similarity = window1
702                    .iter()
703                    .zip(window2.iter())
704                    .map(|(a, b)| 1.0 - (a - b).abs())
705                    .sum::<f32>()
706                    / window_size as f32;
707
708                repetition_score += similarity;
709                count += 1;
710            }
711
712            if count > 0 {
713                max_repetition = max_repetition.max(repetition_score / count as f32);
714            }
715        }
716
717        max_repetition
718    }
719
720    fn score_sequential_pattern(&self, activations: &Array1<f32>) -> f32 {
721        if activations.len() < 2 {
722            return 0.0;
723        }
724
725        // Calculate how sequential/monotonic the activations are
726        let mut increasing = 0;
727        let mut decreasing = 0;
728
729        for i in 1..activations.len() {
730            if activations[i] > activations[i - 1] {
731                increasing += 1;
732            } else if activations[i] < activations[i - 1] {
733                decreasing += 1;
734            }
735        }
736
737        let total_transitions = activations.len() - 1;
738        let max_direction = increasing.max(decreasing);
739
740        max_direction as f32 / total_transitions as f32
741    }
742
743    fn score_fractal_pattern(&self, activations: &Array1<f32>) -> f32 {
744        // Look for self-similar patterns at different scales
745        let mut fractal_score = 0.0;
746        let mut scale_count = 0;
747
748        for scale in [2, 4, 8].iter() {
749            if activations.len() >= scale * 2 {
750                let downsampled1 = self.downsample(activations, *scale, 0);
751                let downsampled2 = self.downsample(activations, *scale, *scale);
752
753                if !downsampled1.is_empty() && !downsampled2.is_empty() {
754                    let similarity = self.calculate_similarity(&downsampled1, &downsampled2);
755                    fractal_score += similarity;
756                    scale_count += 1;
757                }
758            }
759        }
760
761        if scale_count > 0 {
762            fractal_score / scale_count as f32
763        } else {
764            0.0
765        }
766    }
767
768    fn score_entropy_pattern(&self, activations: &Array1<f32>) -> f32 {
769        // Calculate entropy of quantized activations
770        let quantized: Vec<u8> = activations.iter().map(|&x| (x * 255.0) as u8).collect();
771
772        let mut frequency = [0u32; 256];
773        for &val in &quantized {
774            frequency[val as usize] += 1;
775        }
776
777        let len = quantized.len() as f32;
778        let mut entropy = 0.0;
779
780        for &freq in &frequency {
781            if freq > 0 {
782                let p = freq as f32 / len;
783                entropy -= p * p.log2();
784            }
785        }
786
787        entropy / 8.0 // Normalize to [0, 1]
788    }
789
790    fn score_compression_pattern(&self, activations: &Array1<f32>) -> f32 {
791        // Estimate compressibility based on run-length encoding potential
792        let quantized: Vec<u8> = activations.iter().map(|&x| (x * 255.0) as u8).collect();
793
794        let mut compressed_size = 0;
795        let mut i = 0;
796
797        while i < quantized.len() {
798            let current = quantized[i];
799            let mut run_length = 1;
800
801            while i + run_length < quantized.len() && quantized[i + run_length] == current {
802                run_length += 1;
803            }
804
805            compressed_size += if run_length > 2 { 2 } else { run_length };
806            i += run_length;
807        }
808
809        1.0 - (compressed_size as f32 / quantized.len() as f32)
810    }
811
812    fn downsample(&self, data: &Array1<f32>, scale: usize, offset: usize) -> Vec<f32> {
813        data.iter().skip(offset).step_by(scale).cloned().collect()
814    }
815
816    fn calculate_similarity(&self, data1: &[f32], data2: &[f32]) -> f32 {
817        if data1.is_empty() || data2.is_empty() {
818            return 0.0;
819        }
820
821        let min_len = data1.len().min(data2.len());
822        let mut similarity = 0.0;
823
824        for i in 0..min_len {
825            similarity += 1.0 - (data1[i] - data2[i]).abs();
826        }
827
828        similarity / min_len as f32
829    }
830}
831
832// Supporting data structures
833
834/// Complete analysis result from advanced pattern recognition
835#[derive(Debug, Clone)]
836pub struct AdvancedPatternAnalysis {
837    /// Scores for each detected pattern type, ranging from 0.0 to 1.0
838    pub pattern_scores: HashMap<String, f32>,
839    /// List of emergent patterns discovered during analysis
840    pub emergent_patterns: Vec<EmergentPattern>,
841    /// Meta-patterns formed by correlations between multiple pattern types
842    pub meta_patterns: Vec<MetaPattern>,
843    /// Overall complexity index of the analyzed data (0.0 to 1.0)
844    pub complexity_index: f32,
845    /// Predictability score indicating how predictable the data is (0.0 to 1.0)
846    pub predictability_score: f32,
847    /// Optimization recommendations based on the pattern analysis
848    pub optimization_recommendations: Vec<OptimizationRecommendation>,
849}
850
851/// Represents an emergent pattern discovered during data analysis
852#[derive(Debug, Clone)]
853pub struct EmergentPattern {
854    /// Type of the emergent pattern that was discovered
855    pub pattern_type: String,
856    /// Confidence score for the pattern detection (0.0 to 1.0)
857    pub confidence: f32,
858    /// Timestamp when the pattern was discovered
859    pub discovered_at: Instant,
860    /// Characteristics of the data where the pattern was found
861    pub data_characteristics: DataCharacteristics,
862}
863
864/// Represents a meta-pattern formed by correlations between multiple pattern types
865#[derive(Debug, Clone)]
866pub struct MetaPattern {
867    /// Combination of pattern types that form this meta-pattern
868    pub pattern_combination: Vec<String>,
869    /// Strength of correlation between the combined patterns (0.0 to 1.0)
870    pub correlation_strength: f32,
871    /// Type of synergy observed between the patterns
872    pub synergy_type: SynergyType,
873}
874
875/// Types of synergy between different patterns
876#[derive(Debug, Clone)]
877pub enum SynergyType {
878    /// Patterns that reinforce compression effectiveness
879    ReinforcingCompression,
880    /// Patterns with contrasted randomness characteristics
881    ContrastedRandomness,
882    /// Patterns that exhibit hierarchical structure relationships
883    HierarchicalStructure,
884    /// Unknown or undefined synergy type
885    Unknown,
886}
887
888/// Represents an optimization recommendation based on pattern analysis
889#[derive(Debug, Clone)]
890pub struct OptimizationRecommendation {
891    /// Type of optimization that is recommended
892    pub optimization_type: String,
893    /// Explanation of why this optimization is recommended
894    pub reason: String,
895    /// Expected performance improvement ratio (e.g., 0.25 = 25% improvement)
896    pub expected_improvement: f32,
897    /// Confidence level in this recommendation (0.0 to 1.0)
898    pub confidence: f32,
899}
900
901#[derive(Debug, Clone)]
902struct PatternMetadata {
903    pattern_type: String,
904    observation_count: usize,
905    max_score: f32,
906    avg_score: f32,
907    last_seen: Instant,
908    associated_data_characteristics: Vec<DataCharacteristics>,
909}
910
911#[derive(Debug, Clone)]
912/// Statistical characteristics of data for pattern analysis
913pub struct DataCharacteristics {
914    /// Size of the data in bytes
915    pub size: usize,
916    /// Shannon entropy of the data (0.0 to 1.0, normalized)
917    pub entropy: f32,
918    /// Arithmetic mean of the data values
919    pub mean: f32,
920    /// Statistical variance of the data values
921    pub variance: f32,
922}
923
924#[derive(Debug, Clone)]
925struct PatternInstance {
926    pattern_type: String,
927    score: f32,
928    timestamp: Instant,
929    data_hash: u64,
930}
931
932#[cfg(test)]
933mod tests {
934    use super::*;
935
936    #[test]
937    fn test_advanced_pattern_recognizer_creation() {
938        let recognizer = AdvancedPatternRecognizer::new();
939        assert_eq!(recognizer.pattern_networks.len(), 5);
940    }
941
942    #[test]
943    fn test_pattern_analysis() {
944        let mut recognizer = AdvancedPatternRecognizer::new();
945        let test_data = vec![1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5];
946
947        let analysis = recognizer.analyze_patterns(&test_data).unwrap();
948        assert!(!analysis.pattern_scores.is_empty());
949        assert!(analysis.complexity_index >= 0.0 && analysis.complexity_index <= 1.0);
950        assert!(analysis.predictability_score >= 0.0 && analysis.predictability_score <= 1.0);
951    }
952
953    #[test]
954    fn test_multiscale_feature_extraction() {
955        let recognizer = AdvancedPatternRecognizer::new();
956        let test_data = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
957
958        let features = recognizer.extract_multiscale_features(&test_data).unwrap();
959        assert_eq!(features.nrows(), 4); // 4 scales
960        assert!(features.ncols() > 0);
961    }
962
963    #[test]
964    fn test_lempel_ziv_complexity() {
965        let recognizer = AdvancedPatternRecognizer::new();
966
967        // Test with repetitive data
968        let repetitive_data = vec![1, 1, 1, 1, 1, 1, 1, 1];
969        let complexity1 = recognizer.calculate_lempel_ziv_complexity(&repetitive_data);
970
971        // Test with random data
972        let random_data = vec![1, 2, 3, 4, 5, 6, 7, 8];
973        let complexity2 = recognizer.calculate_lempel_ziv_complexity(&random_data);
974
975        assert!(complexity2 > complexity1); // Random data should be more complex
976    }
977
978    #[test]
979    fn test_pattern_network() {
980        let mut network = PatternNetwork::new("test", 10, 5, 3);
981        let mut rng = scirs2_core::random::rng();
982        let features = Array2::from_shape_fn((2, 5), |_| rng.random::<f32>());
983
984        let score = network.analyze(&features).unwrap();
985        assert!((0.0..=1.0).contains(&score));
986    }
987}