scirs2_integrate/specialized/fluid_dynamics/turbulence/
les.rs

1//! Large Eddy Simulation (LES) implementation
2//!
3//! This module provides LES solvers and subgrid-scale (SGS) models for
4//! turbulence simulation using the filtered Navier-Stokes equations.
5
6use super::models::SGSModel as SGSModelTrait;
7use crate::error::IntegrateResult;
8use scirs2_core::ndarray::{Array2, Array3, Array4};
9
10/// Subgrid-scale models for LES
11#[derive(Debug, Clone, Copy, PartialEq, Eq)]
12pub enum SGSModel {
13    /// Smagorinsky model
14    Smagorinsky,
15    /// Dynamic Smagorinsky model
16    DynamicSmagorinsky,
17    /// Wall-Adapting Local Eddy-viscosity (WALE) model
18    WALE,
19    /// Vreman model
20    Vreman,
21}
22
23/// Large Eddy Simulation solver
24#[derive(Debug, Clone)]
25pub struct LESolver {
26    /// Grid dimensions
27    pub nx: usize,
28    pub ny: usize,
29    pub nz: usize,
30    /// Grid spacing
31    pub dx: f64,
32    pub dy: f64,
33    pub dz: f64,
34    /// Subgrid-scale model
35    pub sgs_model: SGSModel,
36    /// Filter width ratio
37    pub filter_ratio: f64,
38    /// Smagorinsky constant
39    pub cs: f64,
40}
41
42/// 3D fluid state for LES
43#[derive(Debug, Clone)]
44pub struct FluidState3D {
45    /// Velocity components [u, v, w]
46    pub velocity: Vec<Array3<f64>>,
47    /// Pressure field
48    pub pressure: Array3<f64>,
49    /// Grid spacing
50    pub dx: f64,
51    pub dy: f64,
52    pub dz: f64,
53}
54
55impl LESolver {
56    /// Create a new LES solver
57    pub fn new(
58        nx: usize,
59        ny: usize,
60        nz: usize,
61        dx: f64,
62        dy: f64,
63        dz: f64,
64        sgs_model: SGSModel,
65    ) -> Self {
66        Self {
67            nx,
68            ny,
69            nz,
70            dx,
71            dy,
72            dz,
73            sgs_model,
74            filter_ratio: 2.0,
75            cs: 0.1, // Typical Smagorinsky constant
76        }
77    }
78
79    /// Solve 3D LES equations
80    pub fn solve_3d(
81        &self,
82        initial_state: FluidState3D,
83        final_time: f64,
84        n_steps: usize,
85    ) -> IntegrateResult<Vec<FluidState3D>> {
86        let dt = final_time / n_steps as f64;
87        let mut state = initial_state;
88        let mut results = Vec::with_capacity(n_steps + 1);
89        results.push(state.clone());
90
91        for _step in 0..n_steps {
92            // Compute SGS stress tensor
93            let sgs_stress = self.compute_sgs_stress(&state)?;
94
95            // Update velocity using filtered Navier-Stokes equations
96            state = self.update_velocity_3d(&state, &sgs_stress, dt)?;
97
98            // Apply boundary conditions
99            state = Self::apply_boundary_conditions_3d(state)?;
100
101            // Store result
102            results.push(state.clone());
103        }
104
105        Ok(results)
106    }
107
108    /// Compute subgrid-scale stress tensor
109    pub fn compute_sgs_stress(&self, state: &FluidState3D) -> IntegrateResult<Array4<f64>> {
110        let mut sgs_stress = Array4::zeros((3, 3, self.nx, self.ny));
111
112        match self.sgs_model {
113            SGSModel::Smagorinsky => {
114                self.compute_smagorinsky_stress(&mut sgs_stress, state)?;
115            }
116            SGSModel::DynamicSmagorinsky => {
117                self.compute_dynamic_smagorinsky_stress(&mut sgs_stress, state)?;
118            }
119            SGSModel::WALE => {
120                self.compute_wale_stress(&mut sgs_stress, state)?;
121            }
122            SGSModel::Vreman => {
123                self.compute_vreman_stress(&mut sgs_stress, state)?;
124            }
125        }
126
127        Ok(sgs_stress)
128    }
129
130    /// Compute Smagorinsky SGS stress
131    fn compute_smagorinsky_stress(
132        &self,
133        sgs_stress: &mut Array4<f64>,
134        state: &FluidState3D,
135    ) -> IntegrateResult<()> {
136        let delta = (self.dx * self.dy * self.dz).powf(1.0 / 3.0); // Filter width
137
138        // Compute strain rate tensor
139        let strain_rate = self.compute_strain_rate_tensor_3d(state)?;
140
141        for i in 0..self.nx {
142            for j in 0..self.ny {
143                for k in 0..self.nz {
144                    // Compute magnitude of strain rate
145                    let mut s_mag: f64 = 0.0;
146                    for ii in 0..3 {
147                        for jj in 0..3 {
148                            s_mag +=
149                                strain_rate[[ii, jj, i, j, k]] * strain_rate[[ii, jj, i, j, k]];
150                        }
151                    }
152                    s_mag = (2.0 * s_mag).sqrt();
153
154                    // Compute eddy viscosity
155                    let nu_sgs = (self.cs * delta).powi(2) * s_mag;
156
157                    // Compute SGS stress tensor
158                    for ii in 0..3 {
159                        for jj in 0..3 {
160                            sgs_stress[[ii, jj, i, j]] =
161                                -2.0 * nu_sgs * strain_rate[[ii, jj, i, j, k]];
162                        }
163                    }
164                }
165            }
166        }
167
168        Ok(())
169    }
170
171    /// Compute dynamic Smagorinsky SGS stress
172    fn compute_dynamic_smagorinsky_stress(
173        &self,
174        sgs_stress: &mut Array4<f64>,
175        state: &FluidState3D,
176    ) -> IntegrateResult<()> {
177        // Dynamic procedure to compute Smagorinsky coefficient
178        let test_filter_ratio = 2.0;
179        let delta = (self.dx * self.dy * self.dz).powf(1.0 / 3.0);
180        let delta_test = test_filter_ratio * delta;
181
182        // Apply test filter to velocity field
183        let filtered_velocity = self.apply_test_filter_3d(&state.velocity)?;
184
185        // Compute Leonard stress (resolved stress)
186        let leonard_stress = self.compute_leonard_stress_3d(state, &filtered_velocity)?;
187
188        // Compute strain rate for filtered field
189        let filtered_state = FluidState3D {
190            velocity: filtered_velocity,
191            pressure: state.pressure.clone(),
192            dx: state.dx,
193            dy: state.dy,
194            dz: state.dz,
195        };
196        let filtered_strain = self.compute_strain_rate_tensor_3d(&filtered_state)?;
197
198        // Original strain rate
199        let strain_rate = self.compute_strain_rate_tensor_3d(state)?;
200
201        for i in 0..self.nx {
202            for j in 0..self.ny {
203                for k in 0..self.nz {
204                    // Compute dynamic coefficient using least-squares
205                    let cs_dynamic = self.compute_dynamic_coefficient(
206                        &leonard_stress,
207                        &strain_rate,
208                        &filtered_strain,
209                        i,
210                        j,
211                        k,
212                        delta,
213                        delta_test,
214                    )?;
215
216                    // Compute magnitude of strain rate
217                    let mut s_mag: f64 = 0.0;
218                    for ii in 0..3 {
219                        for jj in 0..3 {
220                            s_mag +=
221                                strain_rate[[ii, jj, i, j, k]] * strain_rate[[ii, jj, i, j, k]];
222                        }
223                    }
224                    s_mag = (2.0 * s_mag).sqrt();
225
226                    // Compute eddy viscosity with dynamic coefficient
227                    let nu_sgs = (cs_dynamic * delta).powi(2) * s_mag;
228
229                    // Compute SGS stress tensor
230                    for ii in 0..3 {
231                        for jj in 0..3 {
232                            sgs_stress[[ii, jj, i, j]] =
233                                -2.0 * nu_sgs * strain_rate[[ii, jj, i, j, k]];
234                        }
235                    }
236                }
237            }
238        }
239
240        Ok(())
241    }
242
243    /// Compute WALE SGS stress
244    fn compute_wale_stress(
245        &self,
246        sgs_stress: &mut Array4<f64>,
247        state: &FluidState3D,
248    ) -> IntegrateResult<()> {
249        let delta = (self.dx * self.dy * self.dz).powf(1.0 / 3.0);
250        let cw = 0.5; // WALE constant
251
252        // Compute velocity gradient tensor
253        let grad_u = self.compute_velocity_gradient_3d(state)?;
254
255        for i in 0..self.nx {
256            for j in 0..self.ny {
257                for k in 0..self.nz {
258                    // Compute symmetric and antisymmetric parts
259                    let mut s_d = Array2::zeros((3, 3)); // Traceless symmetric part
260                    let mut omega = Array2::zeros((3, 3)); // Antisymmetric part
261
262                    for ii in 0..3 {
263                        for jj in 0..3 {
264                            let grad_ij = grad_u[[ii, jj, i, j, k]];
265                            let grad_ji = grad_u[[jj, ii, i, j, k]];
266
267                            omega[[ii, jj]] = 0.5 * (grad_ij - grad_ji);
268                            s_d[[ii, jj]] = 0.5 * (grad_ij + grad_ji);
269                        }
270                    }
271
272                    // Remove trace from s_d
273                    let trace = (s_d[[0, 0]] + s_d[[1, 1]] + s_d[[2, 2]]) / 3.0;
274                    for ii in 0..3 {
275                        s_d[[ii, ii]] -= trace;
276                    }
277
278                    // Compute invariants
279                    let mut s_d_mag_sq: f64 = 0.0;
280                    let mut omega_mag_sq: f64 = 0.0;
281
282                    for ii in 0..3 {
283                        for jj in 0..3 {
284                            s_d_mag_sq += s_d[[ii, jj]] * s_d[[ii, jj]];
285                            omega_mag_sq += omega[[ii, jj]] * omega[[ii, jj]];
286                        }
287                    }
288
289                    // WALE eddy viscosity
290                    let numerator = s_d_mag_sq.powf(1.5);
291                    let denominator = (s_d_mag_sq.powf(2.5) + omega_mag_sq.powf(1.25)).max(1e-12);
292                    let nu_sgs = (cw * delta).powi(2) * numerator / denominator;
293
294                    // Compute SGS stress tensor
295                    for ii in 0..3 {
296                        for jj in 0..3 {
297                            sgs_stress[[ii, jj, i, j]] = -2.0 * nu_sgs * s_d[[ii, jj]];
298                        }
299                    }
300                }
301            }
302        }
303
304        Ok(())
305    }
306
307    /// Compute Vreman SGS stress
308    fn compute_vreman_stress(
309        &self,
310        sgs_stress: &mut Array4<f64>,
311        state: &FluidState3D,
312    ) -> IntegrateResult<()> {
313        let delta = (self.dx * self.dy * self.dz).powf(1.0 / 3.0);
314        let cv: f64 = 0.07; // Vreman constant
315
316        // Compute velocity gradient tensor
317        let grad_u = self.compute_velocity_gradient_3d(state)?;
318
319        for i in 0..self.nx {
320            for j in 0..self.ny {
321                for k in 0..self.nz {
322                    // Compute α and β tensors
323                    let mut alpha = Array2::zeros((3, 3));
324                    let mut beta: Array2<f64> = Array2::zeros((3, 3));
325
326                    for ii in 0..3 {
327                        for jj in 0..3 {
328                            alpha[[ii, jj]] = grad_u[[ii, jj, i, j, k]];
329
330                            for kk in 0..3 {
331                                beta[[ii, jj]] +=
332                                    grad_u[[ii, kk, i, j, k]] * grad_u[[jj, kk, i, j, k]];
333                            }
334                        }
335                    }
336
337                    // Compute Vreman invariants
338                    let alpha_norm_sq = alpha.iter().map(|&x| x * x).sum::<f64>();
339
340                    let b_beta = beta[[0, 0]] * beta[[1, 1]]
341                        + beta[[1, 1]] * beta[[2, 2]]
342                        + beta[[0, 0]] * beta[[2, 2]]
343                        - beta[[0, 1]].powi(2)
344                        - beta[[1, 2]].powi(2)
345                        - beta[[0, 2]].powi(2);
346
347                    // Vreman eddy viscosity
348                    let nu_sgs = if alpha_norm_sq > 1e-12 {
349                        cv.powi(2) * delta.powi(2) * (b_beta / alpha_norm_sq).sqrt()
350                    } else {
351                        0.0
352                    };
353
354                    // Compute strain rate tensor
355                    for ii in 0..3 {
356                        for jj in 0..3 {
357                            let strain =
358                                0.5 * (grad_u[[ii, jj, i, j, k]] + grad_u[[jj, ii, i, j, k]]);
359                            sgs_stress[[ii, jj, i, j]] = -2.0 * nu_sgs * strain;
360                        }
361                    }
362                }
363            }
364        }
365
366        Ok(())
367    }
368
369    /// Compute strain rate tensor for 3D case
370    fn compute_strain_rate_tensor_3d(
371        &self,
372        state: &FluidState3D,
373    ) -> IntegrateResult<scirs2_core::ndarray::Array5<f64>> {
374        let mut strain_rate =
375            scirs2_core::ndarray::Array5::zeros((3, 3, self.nx, self.ny, self.nz));
376
377        // Compute derivatives using central differences
378        for i in 1..(self.nx - 1) {
379            for j in 1..(self.ny - 1) {
380                for k in 1..(self.nz - 1) {
381                    // Velocity gradients
382                    let dudx = (state.velocity[0][[i + 1, j, k]]
383                        - state.velocity[0][[i - 1, j, k]])
384                        / (2.0 * self.dx);
385                    let dudy = (state.velocity[0][[i, j + 1, k]]
386                        - state.velocity[0][[i, j - 1, k]])
387                        / (2.0 * self.dy);
388                    let dudz = (state.velocity[0][[i, j, k + 1]]
389                        - state.velocity[0][[i, j, k - 1]])
390                        / (2.0 * self.dz);
391
392                    let dvdx = (state.velocity[1][[i + 1, j, k]]
393                        - state.velocity[1][[i - 1, j, k]])
394                        / (2.0 * self.dx);
395                    let dvdy = (state.velocity[1][[i, j + 1, k]]
396                        - state.velocity[1][[i, j - 1, k]])
397                        / (2.0 * self.dy);
398                    let dvdz = (state.velocity[1][[i, j, k + 1]]
399                        - state.velocity[1][[i, j, k - 1]])
400                        / (2.0 * self.dz);
401
402                    let dwdx = (state.velocity[2][[i + 1, j, k]]
403                        - state.velocity[2][[i - 1, j, k]])
404                        / (2.0 * self.dx);
405                    let dwdy = (state.velocity[2][[i, j + 1, k]]
406                        - state.velocity[2][[i, j - 1, k]])
407                        / (2.0 * self.dy);
408                    let dwdz = (state.velocity[2][[i, j, k + 1]]
409                        - state.velocity[2][[i, j, k - 1]])
410                        / (2.0 * self.dz);
411
412                    // Strain rate tensor components: S_ij = 0.5(∂u_i/∂x_j + ∂u_j/∂x_i)
413                    strain_rate[[0, 0, i, j, k]] = dudx;
414                    strain_rate[[1, 1, i, j, k]] = dvdy;
415                    strain_rate[[2, 2, i, j, k]] = dwdz;
416
417                    strain_rate[[0, 1, i, j, k]] = 0.5 * (dudy + dvdx);
418                    strain_rate[[1, 0, i, j, k]] = strain_rate[[0, 1, i, j, k]];
419
420                    strain_rate[[0, 2, i, j, k]] = 0.5 * (dudz + dwdx);
421                    strain_rate[[2, 0, i, j, k]] = strain_rate[[0, 2, i, j, k]];
422
423                    strain_rate[[1, 2, i, j, k]] = 0.5 * (dvdz + dwdy);
424                    strain_rate[[2, 1, i, j, k]] = strain_rate[[1, 2, i, j, k]];
425                }
426            }
427        }
428
429        Ok(strain_rate)
430    }
431
432    /// Compute velocity gradient tensor
433    fn compute_velocity_gradient_3d(
434        &self,
435        state: &FluidState3D,
436    ) -> IntegrateResult<scirs2_core::ndarray::Array5<f64>> {
437        let mut grad_u = scirs2_core::ndarray::Array5::zeros((3, 3, self.nx, self.ny, self.nz));
438
439        // Compute derivatives using central differences
440        for i in 1..(self.nx - 1) {
441            for j in 1..(self.ny - 1) {
442                for k in 1..(self.nz - 1) {
443                    // Velocity gradients
444                    grad_u[[0, 0, i, j, k]] = (state.velocity[0][[i + 1, j, k]]
445                        - state.velocity[0][[i - 1, j, k]])
446                        / (2.0 * self.dx);
447                    grad_u[[0, 1, i, j, k]] = (state.velocity[0][[i, j + 1, k]]
448                        - state.velocity[0][[i, j - 1, k]])
449                        / (2.0 * self.dy);
450                    grad_u[[0, 2, i, j, k]] = (state.velocity[0][[i, j, k + 1]]
451                        - state.velocity[0][[i, j, k - 1]])
452                        / (2.0 * self.dz);
453
454                    grad_u[[1, 0, i, j, k]] = (state.velocity[1][[i + 1, j, k]]
455                        - state.velocity[1][[i - 1, j, k]])
456                        / (2.0 * self.dx);
457                    grad_u[[1, 1, i, j, k]] = (state.velocity[1][[i, j + 1, k]]
458                        - state.velocity[1][[i, j - 1, k]])
459                        / (2.0 * self.dy);
460                    grad_u[[1, 2, i, j, k]] = (state.velocity[1][[i, j, k + 1]]
461                        - state.velocity[1][[i, j, k - 1]])
462                        / (2.0 * self.dz);
463
464                    grad_u[[2, 0, i, j, k]] = (state.velocity[2][[i + 1, j, k]]
465                        - state.velocity[2][[i - 1, j, k]])
466                        / (2.0 * self.dx);
467                    grad_u[[2, 1, i, j, k]] = (state.velocity[2][[i, j + 1, k]]
468                        - state.velocity[2][[i, j - 1, k]])
469                        / (2.0 * self.dy);
470                    grad_u[[2, 2, i, j, k]] = (state.velocity[2][[i, j, k + 1]]
471                        - state.velocity[2][[i, j, k - 1]])
472                        / (2.0 * self.dz);
473                }
474            }
475        }
476
477        Ok(grad_u)
478    }
479
480    /// Apply test filter to velocity field
481    fn apply_test_filter_3d(&self, velocity: &[Array3<f64>]) -> IntegrateResult<Vec<Array3<f64>>> {
482        let mut filtered = vec![Array3::zeros((self.nx, self.ny, self.nz)); 3];
483
484        // Simple box filter
485        let filter_width = 2;
486        let filter_weight = 1.0 / (filter_width * filter_width * filter_width) as f64;
487
488        for comp in 0..3 {
489            for i in filter_width..(self.nx - filter_width) {
490                for j in filter_width..(self.ny - filter_width) {
491                    for k in filter_width..(self.nz - filter_width) {
492                        let mut sum: f64 = 0.0;
493                        for di in 0..filter_width {
494                            for dj in 0..filter_width {
495                                for dk in 0..filter_width {
496                                    sum += velocity[comp][[
497                                        i - filter_width / 2 + di,
498                                        j - filter_width / 2 + dj,
499                                        k - filter_width / 2 + dk,
500                                    ]];
501                                }
502                            }
503                        }
504                        filtered[comp][[i, j, k]] = sum * filter_weight;
505                    }
506                }
507            }
508        }
509
510        Ok(filtered)
511    }
512
513    /// Compute Leonard stress tensor
514    fn compute_leonard_stress_3d(
515        &self,
516        state: &FluidState3D,
517        filtered_velocity: &[Array3<f64>],
518    ) -> IntegrateResult<Array4<f64>> {
519        let mut leonard = Array4::zeros((3, 3, self.nx, self.ny));
520
521        // Compute Leonard stress: L_ij = u_i * u_j - filtered(u_i) * filtered(u_j)
522        for i in 0..self.nx {
523            for j in 0..self.ny {
524                for k in 0..self.nz {
525                    for ii in 0..3 {
526                        for jj in 0..3 {
527                            let unfiltered_product =
528                                state.velocity[ii][[i, j, k]] * state.velocity[jj][[i, j, k]];
529                            let filtered_product =
530                                filtered_velocity[ii][[i, j, k]] * filtered_velocity[jj][[i, j, k]];
531                            leonard[[ii, jj, i, j]] = unfiltered_product - filtered_product;
532                        }
533                    }
534                }
535            }
536        }
537
538        Ok(leonard)
539    }
540
541    /// Compute dynamic coefficient
542    fn compute_dynamic_coefficient(
543        &self,
544        leonard: &Array4<f64>,
545        strain_rate: &scirs2_core::ndarray::Array5<f64>,
546        filtered_strain: &scirs2_core::ndarray::Array5<f64>,
547        i: usize,
548        j: usize,
549        k: usize,
550        delta: f64,
551        delta_test: f64,
552    ) -> IntegrateResult<f64> {
553        // Simplified dynamic coefficient computation
554        // In practice, this would involve spatial averaging and least-squares
555        let mut numerator = 0.0;
556        let mut denominator = 0.0;
557
558        for ii in 0..3 {
559            for jj in 0..3 {
560                let l_ij = leonard[[ii, jj, i, j]];
561                let s_ij = strain_rate[[ii, jj, i, j, k]];
562                let s_test_ij = filtered_strain[[ii, jj, i, j, k]];
563
564                let m_ij = delta.powi(2) * s_ij.abs() * s_ij
565                    - delta_test.powi(2) * s_test_ij.abs() * s_test_ij;
566
567                numerator += l_ij * m_ij;
568                denominator += m_ij * m_ij;
569            }
570        }
571
572        if denominator > 1e-12 {
573            Ok((numerator / denominator).max(0.0).min(0.5)) // Clamp coefficient
574        } else {
575            Ok(self.cs) // Fall back to constant Smagorinsky
576        }
577    }
578
579    /// Update velocity using LES equations
580    fn update_velocity_3d(
581        &self,
582        state: &FluidState3D,
583        sgs_stress: &Array4<f64>,
584        dt: f64,
585    ) -> IntegrateResult<FluidState3D> {
586        let mut new_velocity = state.velocity.clone();
587
588        // Simplified velocity update (in practice, would involve full Navier-Stokes discretization)
589        for comp in 0..3 {
590            for i in 1..self.nx - 1 {
591                for j in 1..self.ny - 1 {
592                    for k in 1..self.nz - 1 {
593                        // Add SGS stress divergence term (simplified)
594                        let mut sgs_divergence = 0.0;
595                        for jj in 0..3 {
596                            if jj == 0 && i > 0 && i < self.nx - 1 {
597                                sgs_divergence += (sgs_stress[[comp, jj, i + 1, j]]
598                                    - sgs_stress[[comp, jj, i - 1, j]])
599                                    / (2.0 * self.dx);
600                            }
601                            if jj == 1 && j > 0 && j < self.ny - 1 {
602                                sgs_divergence += (sgs_stress[[comp, jj, i, j + 1]]
603                                    - sgs_stress[[comp, jj, i, j - 1]])
604                                    / (2.0 * self.dy);
605                            }
606                        }
607
608                        new_velocity[comp][[i, j, k]] += dt * sgs_divergence;
609                    }
610                }
611            }
612        }
613
614        Ok(FluidState3D {
615            velocity: new_velocity,
616            pressure: state.pressure.clone(),
617            dx: state.dx,
618            dy: state.dy,
619            dz: state.dz,
620        })
621    }
622
623    /// Apply boundary conditions for 3D LES
624    fn apply_boundary_conditions_3d(mut state: FluidState3D) -> IntegrateResult<FluidState3D> {
625        let (nx, ny, nz) = state.velocity[0].dim();
626
627        // No-slip boundary conditions on walls
628        for comp in 0..3 {
629            // x-boundaries
630            for j in 0..ny {
631                for k in 0..nz {
632                    state.velocity[comp][[0, j, k]] = 0.0;
633                    state.velocity[comp][[nx - 1, j, k]] = 0.0;
634                }
635            }
636
637            // y-boundaries
638            for i in 0..nx {
639                for k in 0..nz {
640                    state.velocity[comp][[i, 0, k]] = 0.0;
641                    state.velocity[comp][[i, ny - 1, k]] = 0.0;
642                }
643            }
644
645            // z-boundaries
646            for i in 0..nx {
647                for j in 0..ny {
648                    state.velocity[comp][[i, j, 0]] = 0.0;
649                    state.velocity[comp][[i, j, nz - 1]] = 0.0;
650                }
651            }
652        }
653
654        Ok(state)
655    }
656}
657
658impl SGSModelTrait for LESolver {
659    fn compute_sgs_viscosity(
660        &self,
661        velocity: &[Array3<f64>],
662        filter_width: f64,
663        dx: f64,
664        dy: f64,
665        dz: f64,
666    ) -> IntegrateResult<Array3<f64>> {
667        let (nx, ny, nz) = velocity[0].dim();
668        let mut nu_sgs = Array3::zeros((nx, ny, nz));
669
670        // Create temporary state for strain rate computation
671        let state = FluidState3D {
672            velocity: velocity.to_vec(),
673            pressure: Array3::zeros((nx, ny, nz)),
674            dx,
675            dy,
676            dz,
677        };
678
679        match self.sgs_model {
680            SGSModel::Smagorinsky => {
681                let strain_rate = self.compute_strain_rate_tensor_3d(&state)?;
682
683                for i in 0..nx {
684                    for j in 0..ny {
685                        for k in 0..nz {
686                            let mut s_mag: f64 = 0.0;
687                            for ii in 0..3 {
688                                for jj in 0..3 {
689                                    s_mag += strain_rate[[ii, jj, i, j, k]]
690                                        * strain_rate[[ii, jj, i, j, k]];
691                                }
692                            }
693                            s_mag = (2.0 * s_mag).sqrt();
694                            nu_sgs[[i, j, k]] = (self.cs * filter_width).powi(2) * s_mag;
695                        }
696                    }
697                }
698            }
699            _ => {
700                // For other models, use a simplified implementation
701                nu_sgs.fill(0.1 * filter_width.powi(2));
702            }
703        }
704
705        Ok(nu_sgs)
706    }
707
708    fn compute_sgs_stress(
709        &self,
710        velocity: &[Array3<f64>],
711        filter_width: f64,
712        dx: f64,
713        dy: f64,
714        dz: f64,
715    ) -> IntegrateResult<Array3<[[f64; 3]; 3]>> {
716        let (nx, ny, nz) = velocity[0].dim();
717        let mut sgs_stress = Array3::from_elem((nx, ny, nz), [[0.0; 3]; 3]);
718
719        let state = FluidState3D {
720            velocity: velocity.to_vec(),
721            pressure: Array3::zeros((nx, ny, nz)),
722            dx,
723            dy,
724            dz,
725        };
726
727        let stress_tensor = self.compute_sgs_stress(&state)?;
728
729        for i in 0..nx {
730            for j in 0..ny {
731                for ii in 0..3 {
732                    for jj in 0..3 {
733                        sgs_stress[[i, j, 0]][ii][jj] = stress_tensor[[ii, jj, i, j]];
734                    }
735                }
736            }
737        }
738
739        Ok(sgs_stress)
740    }
741}
742
743#[cfg(test)]
744mod tests {
745    use super::*;
746
747    #[test]
748    fn test_les_solver_creation() {
749        let solver = LESolver::new(8, 8, 8, 0.1, 0.1, 0.1, SGSModel::Smagorinsky);
750        assert_eq!(solver.nx, 8);
751        assert_eq!(solver.sgs_model, SGSModel::Smagorinsky);
752        assert_eq!(solver.cs, 0.1);
753    }
754
755    #[test]
756    fn test_fluid_state_3d_creation() {
757        let velocity = vec![
758            Array3::zeros((4, 4, 4)),
759            Array3::zeros((4, 4, 4)),
760            Array3::zeros((4, 4, 4)),
761        ];
762        let state = FluidState3D {
763            velocity,
764            pressure: Array3::zeros((4, 4, 4)),
765            dx: 0.1,
766            dy: 0.1,
767            dz: 0.1,
768        };
769
770        assert_eq!(state.velocity.len(), 3);
771        assert_eq!(state.velocity[0].dim(), (4, 4, 4));
772    }
773
774    #[test]
775    fn test_sgs_model_enum() {
776        assert_eq!(SGSModel::Smagorinsky, SGSModel::Smagorinsky);
777        assert_ne!(SGSModel::Smagorinsky, SGSModel::WALE);
778    }
779
780    #[test]
781    fn test_sgs_viscosity_computation() {
782        let solver = LESolver::new(4, 4, 4, 0.1, 0.1, 0.1, SGSModel::Smagorinsky);
783        let velocity = vec![
784            Array3::ones((4, 4, 4)),
785            Array3::zeros((4, 4, 4)),
786            Array3::zeros((4, 4, 4)),
787        ];
788
789        let nu_sgs = solver.compute_sgs_viscosity(&velocity, 0.2, 0.1, 0.1, 0.1);
790        assert!(nu_sgs.is_ok());
791        let viscosity = nu_sgs.unwrap();
792        assert_eq!(viscosity.dim(), (4, 4, 4));
793    }
794}