scirs2_integrate/realtime_performance_adaptation/
predictor.rs1use super::types::*;
7use crate::common::IntegrateFloat;
8use crate::error::{IntegrateError, IntegrateResult};
9
10impl<F: IntegrateFloat> PerformancePredictor<F> {
11 pub fn new() -> Self {
13 Self {
14 model_registry: ModelRegistry::default(),
15 feature_engineering: FeatureEngineering::default(),
16 model_trainer: ModelTrainer::default(),
17 accuracy_tracker: PredictionAccuracyTracker::default(),
18 }
19 }
20
21 pub fn predict_performance(
23 &self,
24 _config: &AdaptationStrategy<F>,
25 ) -> IntegrateResult<PredictedPerformance> {
26 Ok(PredictedPerformance::default())
28 }
29
30 pub fn update_models(&mut self, metrics: &PerformanceMetrics) -> IntegrateResult<()> {
32 Ok(())
34 }
35}
36
37impl<F: IntegrateFloat + Default> MachineLearningOptimizer<F> {
38 pub fn new() -> Self {
40 Self {
41 rl_agent: ReinforcementLearningAgent::default(),
42 bayesian_optimizer: BayesianOptimizer::default(),
43 nas_engine: NeuralArchitectureSearch::default(),
44 hyperopt_engine: HyperparameterOptimizer::default(),
45 }
46 }
47
48 pub fn optimize_parameters(
50 &mut self,
51 _metrics: &PerformanceMetrics,
52 ) -> IntegrateResult<OptimizationResult<F>> {
53 Ok(OptimizationResult::default())
55 }
56}
57
58impl<F: IntegrateFloat + Default> Default for PerformancePredictor<F> {
59 fn default() -> Self {
60 Self::new()
61 }
62}
63
64impl<F: IntegrateFloat + Default> Default for MachineLearningOptimizer<F> {
65 fn default() -> Self {
66 Self::new()
67 }
68}