scirs2_integrate/
performance_monitor.rs

1//! Performance monitoring and profiling for numerical algorithms
2//!
3//! This module provides comprehensive performance monitoring tools for analyzing
4//! the behavior and efficiency of numerical integration algorithms. It tracks
5//! various metrics including computation time, memory usage, convergence rates,
6//! and algorithm-specific statistics.
7
8use std::collections::HashMap;
9use std::sync::{Arc, Mutex};
10use std::time::{Duration, Instant};
11
12/// Comprehensive performance metrics for numerical algorithms
13#[derive(Debug, Clone)]
14pub struct PerformanceMetrics {
15    /// Total computation time
16    pub total_time: Duration,
17    /// Time spent in different algorithm phases
18    pub phase_times: HashMap<String, Duration>,
19    /// Number of function evaluations
20    pub function_evaluations: usize,
21    /// Number of jacobian evaluations
22    pub jacobian_evaluations: usize,
23    /// Number of linear system solves
24    pub linear_solves: usize,
25    /// Memory usage statistics
26    pub memory_stats: MemoryStatistics,
27    /// Algorithm-specific metrics
28    pub algorithmmetrics: HashMap<String, f64>,
29    /// Convergence history
30    pub convergence_history: Vec<f64>,
31    /// Step size adaptation history
32    pub step_size_history: Vec<f64>,
33    /// Error estimates over time
34    pub error_estimates: Vec<f64>,
35    /// Cache performance statistics
36    pub cache_stats: CacheStatistics,
37}
38
39/// Memory usage statistics
40#[derive(Debug, Clone)]
41pub struct MemoryStatistics {
42    /// Peak memory usage (bytes)
43    pub peak_memory: usize,
44    /// Current memory usage (bytes)
45    pub current_memory: usize,
46    /// Number of allocations
47    pub allocation_count: usize,
48    /// Number of deallocations
49    pub deallocation_count: usize,
50    /// Memory bandwidth utilization
51    pub bandwidth_utilization: Option<f64>,
52}
53
54/// Cache performance statistics
55#[derive(Debug, Clone)]
56pub struct CacheStatistics {
57    /// Estimated cache hit rate
58    pub cache_hit_rate: Option<f64>,
59    /// Memory access patterns
60    pub access_patterns: HashMap<String, usize>,
61    /// FLOPS (Floating Point Operations Per Second)
62    pub flops: Option<f64>,
63}
64
65/// Performance profiler for tracking algorithm behavior
66pub struct PerformanceProfiler {
67    start_time: Instant,
68    phase_timers: HashMap<String, Instant>,
69    metrics: Arc<Mutex<PerformanceMetrics>>,
70    is_active: bool,
71}
72
73impl Default for PerformanceMetrics {
74    fn default() -> Self {
75        Self {
76            total_time: Duration::ZERO,
77            phase_times: HashMap::new(),
78            function_evaluations: 0,
79            jacobian_evaluations: 0,
80            linear_solves: 0,
81            memory_stats: MemoryStatistics {
82                peak_memory: 0,
83                current_memory: 0,
84                allocation_count: 0,
85                deallocation_count: 0,
86                bandwidth_utilization: None,
87            },
88            algorithmmetrics: HashMap::new(),
89            convergence_history: Vec::new(),
90            step_size_history: Vec::new(),
91            error_estimates: Vec::new(),
92            cache_stats: CacheStatistics {
93                cache_hit_rate: None,
94                access_patterns: HashMap::new(),
95                flops: None,
96            },
97        }
98    }
99}
100
101impl PerformanceProfiler {
102    /// Create a new performance profiler
103    pub fn new() -> Self {
104        Self {
105            start_time: Instant::now(),
106            phase_timers: HashMap::new(),
107            metrics: Arc::new(Mutex::new(PerformanceMetrics::default())),
108            is_active: true,
109        }
110    }
111
112    /// Start profiling a specific phase
113    pub fn start_phase(&mut self, phasename: &str) {
114        if !self.is_active {
115            return;
116        }
117        self.phase_timers
118            .insert(phasename.to_string(), Instant::now());
119    }
120
121    /// End profiling a specific phase
122    pub fn end_phase(&mut self, phasename: &str) {
123        if !self.is_active {
124            return;
125        }
126
127        if let Some(start_time) = self.phase_timers.remove(phasename) {
128            let duration = start_time.elapsed();
129            if let Ok(mut metrics) = self.metrics.lock() {
130                *metrics
131                    .phase_times
132                    .entry(phasename.to_string())
133                    .or_insert(Duration::ZERO) += duration;
134            }
135        }
136    }
137
138    /// Record a function evaluation
139    pub fn record_function_evaluation(&mut self) {
140        if !self.is_active {
141            return;
142        }
143
144        if let Ok(mut metrics) = self.metrics.lock() {
145            metrics.function_evaluations += 1;
146        }
147    }
148
149    /// Record a Jacobian evaluation
150    pub fn record_jacobian_evaluation(&mut self) {
151        if !self.is_active {
152            return;
153        }
154
155        if let Ok(mut metrics) = self.metrics.lock() {
156            metrics.jacobian_evaluations += 1;
157        }
158    }
159
160    /// Record a linear system solve
161    pub fn record_linear_solve(&mut self) {
162        if !self.is_active {
163            return;
164        }
165
166        if let Ok(mut metrics) = self.metrics.lock() {
167            metrics.linear_solves += 1;
168        }
169    }
170
171    /// Record convergence information
172    pub fn record_convergence(&mut self, residualnorm: f64) {
173        if !self.is_active {
174            return;
175        }
176
177        if let Ok(mut metrics) = self.metrics.lock() {
178            metrics.convergence_history.push(residualnorm);
179        }
180    }
181
182    /// Record step size adaptation
183    pub fn record_step_size(&mut self, stepsize: f64) {
184        if !self.is_active {
185            return;
186        }
187
188        if let Ok(mut metrics) = self.metrics.lock() {
189            metrics.step_size_history.push(stepsize);
190        }
191    }
192
193    /// Record error estimate
194    pub fn record_error_estimate(&mut self, error: f64) {
195        if !self.is_active {
196            return;
197        }
198
199        if let Ok(mut metrics) = self.metrics.lock() {
200            metrics.error_estimates.push(error);
201        }
202    }
203
204    /// Record algorithm-specific metric
205    pub fn record_metric(&mut self, name: &str, value: f64) {
206        if !self.is_active {
207            return;
208        }
209
210        if let Ok(mut metrics) = self.metrics.lock() {
211            metrics.algorithmmetrics.insert(name.to_string(), value);
212        }
213    }
214
215    /// Update memory statistics
216    pub fn update_memory_stats(&mut self, current_memory: usize, peak_memory: usize) {
217        if !self.is_active {
218            return;
219        }
220
221        if let Ok(mut metrics) = self.metrics.lock() {
222            metrics.memory_stats.current_memory = current_memory;
223            if peak_memory > metrics.memory_stats.peak_memory {
224                metrics.memory_stats.peak_memory = peak_memory;
225            }
226            metrics.memory_stats.allocation_count += 1;
227        }
228    }
229
230    /// Estimate FLOPS based on operations and time
231    pub fn estimate_flops(&mut self, operations: usize, time: Duration) {
232        if !self.is_active || time.is_zero() {
233            return;
234        }
235
236        let flops = operations as f64 / time.as_secs_f64();
237        if let Ok(mut metrics) = self.metrics.lock() {
238            metrics.cache_stats.flops = Some(flops);
239        }
240    }
241
242    /// Finalize profiling and get metrics
243    pub fn finalize(&self) -> PerformanceMetrics {
244        let total_time = self.start_time.elapsed();
245
246        if let Ok(mut metrics) = self.metrics.lock() {
247            metrics.total_time = total_time;
248
249            // Compute derived metrics
250            self.compute_efficiencymetrics(&mut metrics);
251
252            metrics.clone()
253        } else {
254            PerformanceMetrics::default()
255        }
256    }
257
258    /// Compute efficiency and derived metrics
259    fn compute_efficiencymetrics(&self, metrics: &mut PerformanceMetrics) {
260        // Compute convergence rate if we have history
261        if metrics.convergence_history.len() > 1 {
262            let rates: Vec<f64> = metrics
263                .convergence_history
264                .windows(2)
265                .map(|window| {
266                    if window[0] > 0.0 && window[1] > 0.0 {
267                        (window[1] / window[0]).log10()
268                    } else {
269                        0.0
270                    }
271                })
272                .collect();
273
274            if !rates.is_empty() {
275                let avg_rate = rates.iter().sum::<f64>() / rates.len() as f64;
276                metrics
277                    .algorithmmetrics
278                    .insert("convergence_rate".to_string(), avg_rate);
279            }
280        }
281
282        // Compute function evaluation efficiency
283        if metrics.function_evaluations > 0 && !metrics.total_time.is_zero() {
284            let eval_rate = metrics.function_evaluations as f64 / metrics.total_time.as_secs_f64();
285            metrics
286                .algorithmmetrics
287                .insert("evaluations_per_second".to_string(), eval_rate);
288        }
289
290        // Compute step size statistics
291        if !metrics.step_size_history.is_empty() {
292            let min_step = metrics
293                .step_size_history
294                .iter()
295                .fold(f64::INFINITY, |a, &b| a.min(b));
296            let max_step = metrics
297                .step_size_history
298                .iter()
299                .fold(f64::NEG_INFINITY, |a, &b| a.max(b));
300            let avg_step = metrics.step_size_history.iter().sum::<f64>()
301                / metrics.step_size_history.len() as f64;
302
303            metrics
304                .algorithmmetrics
305                .insert("min_step_size".to_string(), min_step);
306            metrics
307                .algorithmmetrics
308                .insert("max_step_size".to_string(), max_step);
309            metrics
310                .algorithmmetrics
311                .insert("avg_step_size".to_string(), avg_step);
312        }
313
314        // Memory efficiency metrics
315        if metrics.memory_stats.peak_memory > 0 {
316            let memory_mb = metrics.memory_stats.peak_memory as f64 / (1024.0 * 1024.0);
317            metrics
318                .algorithmmetrics
319                .insert("peak_memory_mb".to_string(), memory_mb);
320        }
321    }
322
323    /// Disable profiling for performance-critical sections
324    pub fn disable(&mut self) {
325        self.is_active = false;
326    }
327
328    /// Re-enable profiling
329    pub fn enable(&mut self) {
330        self.is_active = true;
331    }
332
333    /// Check if profiling is active
334    pub fn is_active(&self) -> bool {
335        self.is_active
336    }
337}
338
339/// Performance analysis utilities
340pub struct PerformanceAnalyzer;
341
342impl PerformanceAnalyzer {
343    /// Analyze convergence characteristics
344    pub fn analyze_convergence(metrics: &PerformanceMetrics) -> ConvergenceAnalysis {
345        let mut analysis = ConvergenceAnalysis::default();
346
347        if metrics.convergence_history.len() >= 2 {
348            // Linear convergence detection
349            let log_residuals: Vec<f64> = metrics
350                .convergence_history
351                .iter()
352                .filter(|&&r| r > 0.0)
353                .map(|&r| r.log10())
354                .collect();
355
356            if log_residuals.len() >= 3 {
357                // Estimate convergence order using least squares
358                let n = log_residuals.len();
359                let x: Vec<f64> = (0..n).map(|i| i as f64).collect();
360
361                // Simple linear regression: log(r_n) = a + b*n
362                let x_mean = x.iter().sum::<f64>() / n as f64;
363                let y_mean = log_residuals.iter().sum::<f64>() / n as f64;
364
365                let numerator: f64 = x
366                    .iter()
367                    .zip(&log_residuals)
368                    .map(|(xi, yi)| (xi - x_mean) * (yi - y_mean))
369                    .sum();
370                let denominator: f64 = x.iter().map(|xi| (xi - x_mean).powi(2)).sum();
371
372                if denominator.abs() > 1e-10 {
373                    analysis.convergence_rate = Some(-numerator / denominator);
374                }
375            }
376
377            analysis.final_residual = metrics.convergence_history.last().copied();
378            analysis.initial_residual = metrics.convergence_history.first().copied();
379        }
380
381        analysis
382    }
383
384    /// Analyze performance bottlenecks
385    pub fn identify_bottlenecks(metrics: &PerformanceMetrics) -> Vec<PerformanceBottleneck> {
386        let mut bottlenecks = Vec::new();
387
388        // Phase time analysis
389        let total_phase_time: Duration = metrics.phase_times.values().sum();
390        if !total_phase_time.is_zero() {
391            for (phase, duration) in &metrics.phase_times {
392                let percentage = duration.as_secs_f64() / total_phase_time.as_secs_f64() * 100.0;
393                if percentage > 30.0 {
394                    bottlenecks.push(PerformanceBottleneck {
395                        category: BottleneckCategory::ComputationPhase,
396                        description: format!(
397                            "Phase '{phase}' takes {percentage:.1}% of computation time"
398                        ),
399                        severity: if percentage > 50.0 {
400                            Severity::High
401                        } else {
402                            Severity::Medium
403                        },
404                        suggested_improvements: vec![
405                            "Consider algorithm optimization".to_string(),
406                            "Check for unnecessary computations".to_string(),
407                            "Consider parallelization".to_string(),
408                        ],
409                    });
410                }
411            }
412        }
413
414        // Memory usage analysis
415        if metrics.memory_stats.peak_memory > 1024 * 1024 * 1024 {
416            // > 1GB
417            bottlenecks.push(PerformanceBottleneck {
418                category: BottleneckCategory::Memory,
419                description: format!(
420                    "High memory usage: {:.1} MB",
421                    metrics.memory_stats.peak_memory as f64 / (1024.0 * 1024.0)
422                ),
423                severity: Severity::Medium,
424                suggested_improvements: vec![
425                    "Consider using memory pooling".to_string(),
426                    "Implement iterative refinement".to_string(),
427                    "Use sparse data structures".to_string(),
428                ],
429            });
430        }
431
432        // Function evaluation efficiency
433        if metrics.function_evaluations > 0 && !metrics.total_time.is_zero() {
434            let eval_rate = metrics.function_evaluations as f64 / metrics.total_time.as_secs_f64();
435            if eval_rate < 100.0 {
436                // Less than 100 evaluations per second
437                bottlenecks.push(PerformanceBottleneck {
438                    category: BottleneckCategory::FunctionEvaluation,
439                    description: format!("Low function evaluation rate: {eval_rate:.1} evals/sec"),
440                    severity: Severity::Low,
441                    suggested_improvements: vec![
442                        "Optimize function implementation".to_string(),
443                        "Consider SIMD vectorization".to_string(),
444                        "Cache expensive computations".to_string(),
445                    ],
446                });
447            }
448        }
449
450        bottlenecks
451    }
452
453    /// Generate performance report
454    pub fn generate_report(metrics: &PerformanceMetrics) -> PerformanceReport {
455        let convergence_analysis = Self::analyze_convergence(metrics);
456        let bottlenecks = Self::identify_bottlenecks(metrics);
457
458        PerformanceReport {
459            metrics: metrics.clone(),
460            convergence_analysis,
461            bottlenecks,
462            recommendations: Self::generate_recommendations(metrics),
463        }
464    }
465
466    /// Generate optimization recommendations
467    fn generate_recommendations(metrics: &PerformanceMetrics) -> Vec<OptimizationRecommendation> {
468        let mut recommendations = Vec::new();
469
470        // Check step size adaptation
471        if !metrics.step_size_history.is_empty() {
472            let min_step = metrics
473                .step_size_history
474                .iter()
475                .fold(f64::INFINITY, |a, &b| a.min(b));
476            let max_step = metrics
477                .step_size_history
478                .iter()
479                .fold(f64::NEG_INFINITY, |a, &b| a.max(b));
480
481            if max_step / min_step > 1000.0 {
482                recommendations.push(OptimizationRecommendation {
483                    category: "Step Size Control".to_string(),
484                    description: "Large step size variations detected".to_string(),
485                    suggestion: "Consider more aggressive step size adaptation or better initial step size estimation".to_string(),
486                    expected_improvement: 15.0,
487                });
488            }
489        }
490
491        // Check convergence efficiency
492        if let Some(rate) = metrics.algorithmmetrics.get("convergence_rate") {
493            if *rate < 1.0 {
494                recommendations.push(OptimizationRecommendation {
495                    category: "Convergence".to_string(),
496                    description: "Slow convergence detected".to_string(),
497                    suggestion: "Consider using higher-order methods or better preconditioning"
498                        .to_string(),
499                    expected_improvement: 25.0,
500                });
501            }
502        }
503
504        recommendations
505    }
506}
507
508/// Convergence analysis results
509#[derive(Debug, Clone, Default)]
510pub struct ConvergenceAnalysis {
511    pub convergence_rate: Option<f64>,
512    pub initial_residual: Option<f64>,
513    pub final_residual: Option<f64>,
514    pub convergence_order: Option<f64>,
515}
516
517/// Performance bottleneck identification
518#[derive(Debug, Clone)]
519pub struct PerformanceBottleneck {
520    pub category: BottleneckCategory,
521    pub description: String,
522    pub severity: Severity,
523    pub suggested_improvements: Vec<String>,
524}
525
526#[derive(Debug, Clone)]
527pub enum BottleneckCategory {
528    ComputationPhase,
529    Memory,
530    FunctionEvaluation,
531    LinearSolver,
532    StepSizeControl,
533}
534
535#[derive(Debug, Clone)]
536pub enum Severity {
537    Low,
538    Medium,
539    High,
540}
541
542/// Optimization recommendation
543#[derive(Debug, Clone)]
544pub struct OptimizationRecommendation {
545    pub category: String,
546    pub description: String,
547    pub suggestion: String,
548    pub expected_improvement: f64, // Percentage
549}
550
551/// Comprehensive performance report
552#[derive(Debug, Clone)]
553pub struct PerformanceReport {
554    pub metrics: PerformanceMetrics,
555    pub convergence_analysis: ConvergenceAnalysis,
556    pub bottlenecks: Vec<PerformanceBottleneck>,
557    pub recommendations: Vec<OptimizationRecommendation>,
558}
559
560impl PerformanceReport {
561    /// Print a formatted performance report
562    pub fn print_summary(&self) {
563        println!("=== Performance Analysis Report ===");
564        println!(
565            "Total computation time: {:.3}s",
566            self.metrics.total_time.as_secs_f64()
567        );
568        println!(
569            "Function evaluations: {}",
570            self.metrics.function_evaluations
571        );
572
573        if let Some(rate) = self.metrics.algorithmmetrics.get("evaluations_per_second") {
574            println!("Evaluation rate: {rate:.1} evals/sec");
575        }
576
577        println!(
578            "Peak memory usage: {:.1} MB",
579            self.metrics.memory_stats.peak_memory as f64 / (1024.0 * 1024.0)
580        );
581
582        if !self.bottlenecks.is_empty() {
583            println!("\n=== Performance Bottlenecks ===");
584            for bottleneck in &self.bottlenecks {
585                println!("- {:?}: {}", bottleneck.category, bottleneck.description);
586            }
587        }
588
589        if !self.recommendations.is_empty() {
590            println!("\n=== Optimization Recommendations ===");
591            for rec in &self.recommendations {
592                println!(
593                    "- {}: {} (Expected improvement: {:.1}%)",
594                    rec.category, rec.suggestion, rec.expected_improvement
595                );
596            }
597        }
598    }
599}
600
601/// Macro for easy profiling of code blocks
602#[macro_export]
603macro_rules! profile_block {
604    ($profiler:expr, $phase:expr, $code:block) => {{
605        $profiler.start_phase($phase);
606        let result = $code;
607        $profiler.end_phase($phase);
608        result
609    }};
610}
611
612#[cfg(test)]
613mod tests {
614    use super::*;
615    use std::thread;
616
617    #[test]
618    fn test_performance_profiler() {
619        let mut profiler = PerformanceProfiler::new();
620
621        // Simulate some work
622        profiler.start_phase("initialization");
623        thread::sleep(Duration::from_millis(10));
624        profiler.end_phase("initialization");
625
626        profiler.record_function_evaluation();
627        profiler.record_convergence(1e-3);
628        profiler.record_step_size(0.01);
629
630        let metrics = profiler.finalize();
631
632        assert!(metrics.total_time > Duration::ZERO);
633        assert_eq!(metrics.function_evaluations, 1);
634        assert_eq!(metrics.convergence_history.len(), 1);
635        assert_eq!(metrics.step_size_history.len(), 1);
636    }
637
638    #[test]
639    fn test_performance_analysis() {
640        let mut metrics = PerformanceMetrics::default();
641
642        // Add some test data
643        metrics.convergence_history = vec![1e-1, 1e-2, 1e-3, 1e-4];
644        metrics.step_size_history = vec![0.1, 0.05, 0.02, 0.01];
645
646        let analysis = PerformanceAnalyzer::analyze_convergence(&metrics);
647        assert!(analysis.convergence_rate.is_some());
648
649        let report = PerformanceAnalyzer::generate_report(&metrics);
650        assert!(!report.recommendations.is_empty() || report.bottlenecks.is_empty());
651    }
652}