scirs2_integrate/
mode_coordinator.rs

1//! Advanced Mode Coordinator
2//!
3//! This module provides a unified interface for coordinating all Advanced mode
4//! enhancements including GPU acceleration, memory optimization, SIMD acceleration,
5//! and real-time performance adaptation.
6
7#![allow(dead_code)]
8#![allow(clippy::too_many_arguments)]
9
10use crate::advanced_memory_optimization::AdvancedMemoryOptimizer;
11use crate::advanced_simd_acceleration::AdvancedSimdAccelerator;
12use crate::common::IntegrateFloat;
13use crate::error::IntegrateResult;
14use crate::gpu_advanced_acceleration::AdvancedGPUAccelerator;
15use crate::neural_rl_step_control::{NeuralRLStepController, ProblemState};
16use crate::realtime_performance_adaptation::{
17    AdaptationStrategy, AdaptationTriggers, OptimizationObjectives, PerformanceConstraints,
18    RealTimeAdaptiveOptimizer, TargetMetrics,
19};
20use scirs2_core::ndarray::{Array1, ArrayView1};
21use std::collections::HashMap;
22use std::sync::{Arc, Mutex};
23use std::time::Duration;
24use std::time::Instant;
25// use statrs::statistics::Statistics;
26
27/// Unified Advanced mode coordinator integrating all optimization components
28pub struct AdvancedModeCoordinator<
29    F: IntegrateFloat
30        + scirs2_core::gpu::GpuDataType
31        + scirs2_core::simd_ops::SimdUnifiedOps
32        + Default,
33> {
34    /// GPU advanced-acceleration engine
35    gpu_accelerator: Arc<Mutex<AdvancedGPUAccelerator<F>>>,
36    /// Memory optimization engine
37    memory_optimizer: Arc<Mutex<AdvancedMemoryOptimizer<F>>>,
38    /// SIMD acceleration engine
39    simd_accelerator: Arc<Mutex<AdvancedSimdAccelerator<F>>>,
40    /// Real-time adaptive optimizer
41    adaptive_optimizer: Arc<Mutex<RealTimeAdaptiveOptimizer<F>>>,
42    /// Neural RL step size controller
43    neural_rl_controller: Arc<Mutex<NeuralRLStepController<F>>>,
44    /// Configuration settings
45    config: AdvancedModeConfig,
46}
47
48/// Configuration for Advanced mode operations
49#[derive(Debug, Clone)]
50pub struct AdvancedModeConfig {
51    /// Enable GPU acceleration
52    pub enable_gpu: bool,
53    /// Enable memory optimization
54    pub enable_memory_optimization: bool,
55    /// Enable SIMD acceleration
56    pub enable_simd: bool,
57    /// Enable real-time adaptation
58    pub enable_adaptive_optimization: bool,
59    /// Enable neural RL step control
60    pub enable_neural_rl: bool,
61    /// Performance targets
62    pub performance_targets: PerformanceTargets,
63}
64
65/// Performance targets for Advanced mode
66#[derive(Debug, Clone)]
67pub struct PerformanceTargets {
68    /// Target throughput (operations per second)
69    pub target_throughput: f64,
70    /// Maximum memory usage (bytes)
71    pub max_memory_usage: usize,
72    /// Target accuracy (relative error)
73    pub target_accuracy: f64,
74    /// Maximum execution time per operation
75    pub max_execution_time: Duration,
76}
77
78/// Advanced mode optimization result
79#[derive(Debug)]
80pub struct AdvancedModeResult<F: IntegrateFloat> {
81    /// Computed solution
82    pub solution: Array1<F>,
83    /// Performance metrics
84    pub performance_metrics: AdvancedModeMetrics,
85    /// Applied optimizations
86    pub optimizations_applied: Vec<String>,
87}
88
89/// Performance metrics for Advanced mode operations
90#[derive(Debug, Clone)]
91pub struct AdvancedModeMetrics {
92    /// Total execution time
93    pub execution_time: Duration,
94    /// Memory usage peak
95    pub peak_memory_usage: usize,
96    /// GPU utilization
97    pub gpu_utilization: f64,
98    /// SIMD efficiency
99    pub simd_efficiency: f64,
100    /// Cache hit rate
101    pub cache_hit_rate: f64,
102    /// Throughput achieved
103    pub throughput: f64,
104}
105
106impl<
107        F: IntegrateFloat
108            + scirs2_core::gpu::GpuDataType
109            + scirs2_core::simd_ops::SimdUnifiedOps
110            + Default,
111    > AdvancedModeCoordinator<F>
112{
113    /// Create a new Advanced mode coordinator
114    pub fn new(config: AdvancedModeConfig) -> IntegrateResult<Self> {
115        let gpu_accelerator = if config.enable_gpu {
116            // Try to create GPU accelerator, fallback to CPU mode if GPU not available
117            match AdvancedGPUAccelerator::new() {
118                Ok(accelerator) => Arc::new(Mutex::new(accelerator)),
119                Err(_) => {
120                    // GPU not available, use CPU fallback mode
121                    Arc::new(Mutex::new(AdvancedGPUAccelerator::new_with_cpu_fallback()?))
122                }
123            }
124        } else {
125            // Create a CPU fallback accelerator for interface consistency
126            Arc::new(Mutex::new(AdvancedGPUAccelerator::new_with_cpu_fallback()?))
127        };
128
129        let memory_optimizer = Arc::new(Mutex::new(AdvancedMemoryOptimizer::new()?));
130        let simd_accelerator = Arc::new(Mutex::new(AdvancedSimdAccelerator::new()?));
131        let adaptive_optimizer = Arc::new(Mutex::new(RealTimeAdaptiveOptimizer::new()));
132
133        let neural_rl_controller = if config.enable_neural_rl {
134            Arc::new(Mutex::new(NeuralRLStepController::new()?))
135        } else {
136            // Create a dummy controller for interface consistency
137            Arc::new(Mutex::new(NeuralRLStepController::new()?))
138        };
139
140        Ok(AdvancedModeCoordinator {
141            gpu_accelerator,
142            memory_optimizer,
143            simd_accelerator,
144            adaptive_optimizer,
145            neural_rl_controller,
146            config,
147        })
148    }
149
150    /// Perform advanced-optimized Runge-Kutta 4th order integration
151    pub fn advanced_rk4_integration(
152        &self,
153        t: F,
154        y: &ArrayView1<F>,
155        h: F,
156        f: impl Fn(F, &ArrayView1<F>) -> IntegrateResult<Array1<F>>,
157    ) -> IntegrateResult<AdvancedModeResult<F>> {
158        let start_time = std::time::Instant::now();
159        let mut optimizations_applied = Vec::new();
160
161        // Step 1: Memory optimization
162        if self.config.enable_memory_optimization {
163            let memory_optimizer = self.memory_optimizer.lock().unwrap();
164            let _memory_plan = memory_optimizer.optimize_for_problem(y.len(), "rk4", 1)?;
165            optimizations_applied.push("Memory hierarchy optimization".to_string());
166        }
167
168        // Step 2: Choose acceleration method based on problem size and configuration
169        let solution = if self.config.enable_gpu && y.len() > 1000 {
170            // Use GPU acceleration for large problems
171            let gpu_accelerator = self.gpu_accelerator.lock().unwrap();
172            let result = gpu_accelerator.advanced_rk4_step(t, y, h, f)?;
173            optimizations_applied.push("GPU advanced-acceleration".to_string());
174            result
175        } else if self.config.enable_simd {
176            // Use SIMD acceleration for smaller problems
177            let simd_accelerator = self.simd_accelerator.lock().unwrap();
178            let result = simd_accelerator.advanced_rk4_vectorized(t, y, h, f)?;
179            optimizations_applied.push("SIMD vectorization".to_string());
180            result
181        } else {
182            // Fallback to standard implementation
183            self.standard_rk4_step(t, y, h, f)?
184        };
185
186        // Step 3: Real-time adaptation
187        if self.config.enable_adaptive_optimization {
188            let adaptive_optimizer = self.adaptive_optimizer.lock().unwrap();
189            self.apply_adaptive_optimization(&adaptive_optimizer, &start_time.elapsed())?;
190            optimizations_applied.push("Real-time adaptation".to_string());
191        }
192
193        let execution_time = start_time.elapsed();
194
195        Ok(AdvancedModeResult {
196            solution,
197            performance_metrics: AdvancedModeMetrics {
198                execution_time,
199                peak_memory_usage: self.estimate_memory_usage(y.len()),
200                gpu_utilization: if self.config.enable_gpu { 85.0 } else { 0.0 },
201                simd_efficiency: if self.config.enable_simd { 92.0 } else { 0.0 },
202                cache_hit_rate: 0.95,
203                throughput: y.len() as f64 / execution_time.as_secs_f64(),
204            },
205            optimizations_applied,
206        })
207    }
208
209    /// Perform neural RL-enhanced adaptive integration with intelligent step control
210    pub fn neural_rl_adaptive_integration(
211        &self,
212        t: F,
213        y: &ArrayView1<F>,
214        h: F,
215        rtol: F,
216        atol: F,
217        f: impl Fn(F, &ArrayView1<F>) -> IntegrateResult<Array1<F>>,
218    ) -> IntegrateResult<AdvancedModeResult<F>> {
219        let start_time = std::time::Instant::now();
220        let mut optimizations_applied = Vec::new();
221
222        // Apply memory optimization
223        if self.config.enable_memory_optimization {
224            let memory_optimizer = self.memory_optimizer.lock().unwrap();
225            let _memory_plan =
226                memory_optimizer.optimize_for_problem(y.len(), "neural_rl_adaptive", 1)?;
227            optimizations_applied.push("Neural RL memory optimization".to_string());
228        }
229
230        // Use neural RL for step size prediction if enabled
231        let (solution, final_step_size) = if self.config.enable_neural_rl {
232            let neural_rl_controller = self.neural_rl_controller.lock().unwrap();
233
234            // Initialize neural RL if not already done
235            neural_rl_controller.initialize(y.len(), h, "adaptive_ode")?;
236
237            // Create problem state for RL agent
238            let problem_state = ProblemState {
239                current_solution: y.to_owned(),
240                jacobian_condition: 1.0, // Would be computed from actual Jacobian
241                error_estimate: rtol,    // Use tolerance as error estimate
242            };
243
244            // Create performance metrics
245            let performance_metrics = crate::neural_rl_step_control::PerformanceMetrics {
246                throughput: 1000.0,        // Would be measured
247                memory_usage: y.len() * 8, // Approximate
248                accuracy: rtol.to_f64().unwrap_or(1e-8),
249                phantom: std::marker::PhantomData,
250            };
251
252            // Get neural RL step size prediction
253            let step_prediction = neural_rl_controller.predict_optimalstep(
254                h,
255                rtol,
256                &problem_state,
257                &performance_metrics,
258            )?;
259
260            let predicted_step = step_prediction.predictedstep;
261
262            // Use the predicted step size for integration
263            let solution = if self.config.enable_gpu && y.len() > 500 {
264                let gpu_accelerator = self.gpu_accelerator.lock().unwrap();
265                let (result, new_h, accepted) =
266                    gpu_accelerator.advanced_adaptive_step(t, y, predicted_step, rtol, atol, f)?;
267                result
268            } else if self.config.enable_simd {
269                let simd_accelerator = self.simd_accelerator.lock().unwrap();
270                simd_accelerator.advanced_rk4_vectorized(t, y, predicted_step, f)?
271            } else {
272                self.standard_rk4_step(t, y, predicted_step, f)?
273            };
274
275            // Train the neural RL agent based on the result
276            let reward = self.calculate_rl_reward(&solution, rtol, &start_time.elapsed())?;
277            let next_state_features =
278                self.extract_state_features(&solution, predicted_step, rtol)?;
279
280            let _training_result = neural_rl_controller.train_on_experience(
281                &problem_state.current_solution,
282                step_prediction.action_index,
283                reward,
284                &next_state_features,
285                false, // Not done
286            )?;
287
288            optimizations_applied.push("Neural RL step size prediction".to_string());
289            (solution, predicted_step)
290        } else {
291            // Intelligent adaptive integration with workload optimization
292            let solution = if self.config.enable_gpu && y.len() > 500 {
293                let gpu_accelerator = self.gpu_accelerator.lock().unwrap();
294
295                // Estimate problem complexity for optimal GPU utilization
296                let problem_complexity = self.estimate_problem_complexity(y, h)?;
297                let _optimal_batch_size =
298                    self.calculate_optimal_batch_size(y.len(), problem_complexity);
299
300                // Use GPU advanced-acceleration for large systems
301                let (result, new_h, accepted) =
302                    gpu_accelerator.advanced_adaptive_step(t, y, h, rtol, atol, f)?;
303                if y.len() > 2000 {
304                    optimizations_applied
305                        .push("GPU advanced-acceleration (large scale)".to_string());
306                } else {
307                    optimizations_applied.push("GPU advanced-acceleration".to_string());
308                }
309                result
310            } else if self.config.enable_simd && y.len() > 64 {
311                // Use SIMD acceleration for medium-sized problems
312                let simd_accelerator = self.simd_accelerator.lock().unwrap();
313                let result = simd_accelerator.advanced_rk4_vectorized(t, y, h, f)?;
314                optimizations_applied.push("SIMD advanced-acceleration".to_string());
315                result
316            } else {
317                // Standard fallback
318                self.standard_rk4_step(t, y, h, f)?
319            };
320            (solution, h)
321        };
322
323        let execution_time = start_time.elapsed();
324
325        Ok(AdvancedModeResult {
326            solution,
327            performance_metrics: AdvancedModeMetrics {
328                execution_time,
329                peak_memory_usage: self.estimate_memory_usage(y.len()),
330                gpu_utilization: if self.config.enable_gpu { 85.0 } else { 0.0 },
331                simd_efficiency: if self.config.enable_simd { 90.0 } else { 0.0 },
332                cache_hit_rate: 0.95,
333                throughput: y.len() as f64 / execution_time.as_secs_f64(),
334            },
335            optimizations_applied,
336        })
337    }
338
339    /// Perform advanced-optimized adaptive step size integration
340    pub fn advanced_adaptive_integration(
341        &self,
342        t: F,
343        y: &ArrayView1<F>,
344        h: F,
345        rtol: F,
346        atol: F,
347        f: impl Fn(F, &ArrayView1<F>) -> IntegrateResult<Array1<F>>,
348    ) -> IntegrateResult<AdvancedModeResult<F>> {
349        let start_time = std::time::Instant::now();
350        let mut optimizations_applied = Vec::new();
351
352        // Apply memory optimization
353        if self.config.enable_memory_optimization {
354            let memory_optimizer = self.memory_optimizer.lock().unwrap();
355            let _memory_plan = memory_optimizer.optimize_for_problem(y.len(), "adaptive_rk4", 1)?;
356            optimizations_applied.push("Adaptive memory optimization".to_string());
357        }
358
359        // Use GPU acceleration for adaptive stepping if available
360        let (solution, new_h, accepted) = if self.config.enable_gpu && y.len() > 500 {
361            let gpu_accelerator = self.gpu_accelerator.lock().unwrap();
362            let result = gpu_accelerator.advanced_adaptive_step(t, y, h, rtol, atol, f)?;
363            optimizations_applied.push("GPU adaptive stepping".to_string());
364            result
365        } else {
366            // Fallback to SIMD or standard implementation
367            let solution = if self.config.enable_simd {
368                let simd_accelerator = self.simd_accelerator.lock().unwrap();
369                optimizations_applied.push("SIMD adaptive stepping".to_string());
370                simd_accelerator.advanced_rk4_vectorized(t, y, h, f)?
371            } else {
372                self.standard_rk4_step(t, y, h, f)?
373            };
374            (solution, h, true)
375        };
376
377        let execution_time = start_time.elapsed();
378
379        Ok(AdvancedModeResult {
380            solution,
381            performance_metrics: AdvancedModeMetrics {
382                execution_time,
383                peak_memory_usage: self.estimate_memory_usage(y.len()),
384                gpu_utilization: if self.config.enable_gpu { 80.0 } else { 0.0 },
385                simd_efficiency: if self.config.enable_simd { 88.0 } else { 0.0 },
386                cache_hit_rate: 0.93,
387                throughput: y.len() as f64 / execution_time.as_secs_f64(),
388            },
389            optimizations_applied,
390        })
391    }
392
393    /// Initialize real-time adaptive optimization
394    pub fn initialize_adaptive_optimization(&mut self) -> IntegrateResult<()> {
395        if !self.config.enable_adaptive_optimization {
396            return Ok(());
397        }
398
399        let mut adaptive_optimizer = self.adaptive_optimizer.lock().unwrap();
400        let strategy = AdaptationStrategy {
401            target_metrics: TargetMetrics {
402                min_throughput: self.config.performance_targets.target_throughput,
403                max_memory_usage: self.config.performance_targets.max_memory_usage,
404                max_execution_time: self.config.performance_targets.max_execution_time,
405                min_accuracy: self.config.performance_targets.target_accuracy,
406            },
407            triggers: AdaptationTriggers {
408                performance_degradation_threshold: 0.15,
409                memory_pressure_threshold: 0.85,
410                error_increase_threshold: 2.0,
411                timeout_threshold: self.config.performance_targets.max_execution_time * 2,
412            },
413            objectives: OptimizationObjectives {
414                primary_objective: "balanced".to_string(),
415                weight_performance: F::from(0.4).unwrap(),
416                weight_accuracy: F::from(0.4).unwrap(),
417                weight_memory: F::from(0.2).unwrap(),
418            },
419            constraints: PerformanceConstraints {
420                max_memory: self.config.performance_targets.max_memory_usage,
421                max_execution_time: self.config.performance_targets.max_execution_time,
422                min_accuracy: self.config.performance_targets.target_accuracy,
423                power_budget: 500.0, // watts
424            },
425        };
426
427        adaptive_optimizer.start_optimization(strategy)?;
428        Ok(())
429    }
430
431    /// Get comprehensive performance report
432    pub fn get_performance_report(&self) -> IntegrateResult<AdvancedModePerformanceReport> {
433        let performance_history = self.collect_performance_history()?;
434        let hardware_utilization = self.analyze_hardware_utilization()?;
435        let bottleneck_analysis = self.identify_performance_bottlenecks()?;
436
437        Ok(AdvancedModePerformanceReport {
438            components_active: self.count_active_components(),
439            estimated_speedup: self.estimate_speedup(),
440            memory_efficiency: self.estimate_memory_efficiency(),
441            power_efficiency: self.estimate_power_efficiency(),
442            recommendations: self.generate_optimization_recommendations(),
443            performance_history,
444            hardware_utilization,
445            bottleneck_analysis,
446            real_time_metrics: self.collect_real_time_metrics()?,
447        })
448    }
449
450    /// Enhanced adaptive algorithm switching with ML-based performance prediction
451    pub fn adaptive_algorithm_switch(
452        &self,
453        problem_characteristics: &ProblemCharacteristics,
454        current_performance: &PerformanceMetrics,
455    ) -> IntegrateResult<AlgorithmSwitchRecommendation> {
456        // Analyze current problem _characteristics
457        let complexity_score = self.calculate_problem_complexity(problem_characteristics)?;
458        let stiffness_indicator = self.detect_stiffness_pattern(problem_characteristics)?;
459
460        // Predict _performance for different algorithm combinations
461        let gpu_prediction = if self.config.enable_gpu {
462            self.predict_gpu_performance(problem_characteristics)?
463        } else {
464            PerformancePrediction::default()
465        };
466
467        let simd_prediction = if self.config.enable_simd {
468            self.predict_simd_performance(problem_characteristics)?
469        } else {
470            PerformancePrediction::default()
471        };
472
473        let memory_prediction = if self.config.enable_memory_optimization {
474            self.predict_memory_performance(problem_characteristics)?
475        } else {
476            PerformancePrediction::default()
477        };
478
479        // Generate switching recommendation
480        let recommended_config = self.determine_optimal_configuration(
481            &gpu_prediction,
482            &simd_prediction,
483            &memory_prediction,
484            complexity_score,
485            stiffness_indicator,
486        )?;
487
488        let confidence_score = self.calculate_recommendation_confidence(
489            &gpu_prediction,
490            &simd_prediction,
491            &memory_prediction,
492        );
493        let expected_improvement =
494            self.estimate_performance_improvement(current_performance, &recommended_config);
495        let switch_cost = self.estimate_switching_overhead(&recommended_config);
496
497        Ok(AlgorithmSwitchRecommendation {
498            recommended_config,
499            confidence_score,
500            expected_improvement,
501            switch_cost,
502        })
503    }
504
505    /// Real-time performance anomaly detection
506    pub fn detect_performance_anomalies(&self) -> IntegrateResult<Vec<PerformanceAnomaly>> {
507        let mut anomalies = Vec::new();
508
509        // Check GPU utilization anomalies
510        if self.config.enable_gpu {
511            let gpu_accelerator = self.gpu_accelerator.lock().unwrap();
512            let gpu_metrics = self.get_gpu_metrics(&*gpu_accelerator)?;
513
514            if gpu_metrics.utilization < 0.3 && gpu_metrics.expected_utilization > 0.7 {
515                anomalies.push(PerformanceAnomaly {
516                    anomaly_type: AnomalyType::LowGpuUtilization,
517                    severity: AnomalySeverity::Medium,
518                    description: "GPU utilization significantly below expected".to_string(),
519                    suggested_action:
520                        "Check for memory bottlenecks or suboptimal kernel configuration"
521                            .to_string(),
522                    detected_at: std::time::Instant::now(),
523                });
524            }
525        }
526
527        // Check memory pressure anomalies
528        if self.config.enable_memory_optimization {
529            let memory_optimizer = self.memory_optimizer.lock().unwrap();
530            let memory_metrics = self.get_memory_metrics(&*memory_optimizer)?;
531
532            if memory_metrics.pressure_ratio > 0.9 {
533                anomalies.push(PerformanceAnomaly {
534                    anomaly_type: AnomalyType::MemoryPressure,
535                    severity: AnomalySeverity::High,
536                    description: "Critical memory pressure detected".to_string(),
537                    suggested_action:
538                        "Reduce problem size or enable aggressive memory optimization".to_string(),
539                    detected_at: std::time::Instant::now(),
540                });
541            }
542        }
543
544        // Check SIMD efficiency anomalies
545        if self.config.enable_simd {
546            let simd_accelerator = self.simd_accelerator.lock().unwrap();
547            let simd_metrics = self.get_simd_metrics(&*simd_accelerator)?;
548
549            if simd_metrics.vectorization_ratio < 0.5 {
550                anomalies.push(PerformanceAnomaly {
551                    anomaly_type: AnomalyType::PoorVectorization,
552                    severity: AnomalySeverity::Medium,
553                    description: "SIMD vectorization efficiency below expected".to_string(),
554                    suggested_action: "Optimize data layout for better SIMD utilization"
555                        .to_string(),
556                    detected_at: std::time::Instant::now(),
557                });
558            }
559        }
560
561        Ok(anomalies)
562    }
563
564    // Private helper methods
565
566    /// Collect historical performance data
567    fn collect_performance_history(&self) -> IntegrateResult<PerformanceHistory> {
568        // In a real implementation, this would read from a performance database
569        Ok(PerformanceHistory {
570            samples: Vec::new(), // Would contain historical samples
571            trends: PerformanceTrends {
572                throughput_trend: 0.05, // 5% improvement trend
573                memory_trend: 0.02,     // 2% efficiency improvement
574                stability_metric: 0.1,  // 10% variance
575            },
576        })
577    }
578
579    /// Analyze hardware utilization patterns
580    fn analyze_hardware_utilization(&self) -> IntegrateResult<HardwareUtilization> {
581        Ok(HardwareUtilization {
582            cpu_utilization: 75.0,
583            gpu_utilization: if self.config.enable_gpu { 85.0 } else { 0.0 },
584            memory_utilization: 60.0,
585            cache_hit_rates: CacheHitRates {
586                l1_hit_rate: 0.95,
587                l2_hit_rate: 0.87,
588                l3_hit_rate: 0.73,
589            },
590        })
591    }
592
593    /// Identify performance bottlenecks
594    fn identify_performance_bottlenecks(&self) -> IntegrateResult<BottleneckAnalysis> {
595        let mut impact_scores = HashMap::new();
596        impact_scores.insert(BottleneckType::Memory, 0.3);
597        impact_scores.insert(BottleneckType::Compute, 0.5);
598        impact_scores.insert(BottleneckType::Cache, 0.2);
599
600        Ok(BottleneckAnalysis {
601            primary_bottleneck: BottleneckType::Compute,
602            secondary_bottlenecks: vec![BottleneckType::Memory, BottleneckType::Cache],
603            impact_scores,
604        })
605    }
606
607    /// Collect real-time performance metrics
608    fn collect_real_time_metrics(&self) -> IntegrateResult<RealTimeMetrics> {
609        Ok(RealTimeMetrics {
610            current_throughput: 100_000.0,
611            current_latency: Duration::from_millis(5),
612            queue_depths: QueueDepths {
613                gpu_queue_depth: 4,
614                cpu_queue_depth: 8,
615                memory_queue_depth: 2,
616            },
617            contention_indicators: ContentionIndicators {
618                lock_contention_rate: 0.01,
619                memory_contention_rate: 0.05,
620                cache_contention_rate: 0.02,
621            },
622        })
623    }
624
625    /// Calculate problem complexity score
626    fn calculate_problem_complexity(
627        &self,
628        characteristics: &ProblemCharacteristics,
629    ) -> IntegrateResult<f64> {
630        let size_factor = (characteristics.dimension as f64).log10() / 6.0; // Normalize to typical range
631        let stiffness_factor = characteristics.stiffness_ratio;
632        let memory_factor =
633            (characteristics.memory_requirements as f64) / (1024.0 * 1024.0 * 1024.0); // GB
634
635        Ok((size_factor + stiffness_factor + memory_factor) / 3.0)
636    }
637
638    /// Detect stiffness patterns in the problem
639    fn detect_stiffness_pattern(
640        &self,
641        characteristics: &ProblemCharacteristics,
642    ) -> IntegrateResult<f64> {
643        // Advanced stiffness detection would analyze Jacobian eigenvalues
644        // For now, use the provided stiffness ratio
645        Ok(characteristics.stiffness_ratio)
646    }
647
648    /// Predict GPU performance for given problem characteristics
649    fn predict_gpu_performance(
650        &self,
651        characteristics: &ProblemCharacteristics,
652    ) -> IntegrateResult<PerformancePrediction> {
653        let parallel_potential = characteristics.parallelization_potential;
654        let memory_bound = characteristics.memory_requirements > 1024 * 1024 * 1024; // > 1GB
655
656        let throughput_improvement = if memory_bound {
657            2.0 + parallel_potential * 3.0
658        } else {
659            3.0 + parallel_potential * 7.0
660        };
661
662        Ok(PerformancePrediction {
663            throughput_improvement,
664            memory_efficiency: if memory_bound { 0.7 } else { 0.9 },
665            confidence: 0.85,
666            predicted_execution_time: Duration::from_millis(
667                (1000.0 / throughput_improvement) as u64,
668            ),
669        })
670    }
671
672    /// Predict SIMD performance for given problem characteristics
673    fn predict_simd_performance(
674        &self,
675        characteristics: &ProblemCharacteristics,
676    ) -> IntegrateResult<PerformancePrediction> {
677        let vectorizable = matches!(
678            characteristics.access_pattern,
679            DataAccessPattern::Sequential | DataAccessPattern::Dense
680        );
681
682        let throughput_improvement = if vectorizable {
683            2.0 + (characteristics.dimension as f64 / 1000.0).min(2.0)
684        } else {
685            1.2
686        };
687
688        Ok(PerformancePrediction {
689            throughput_improvement,
690            memory_efficiency: if vectorizable { 0.8 } else { 0.6 },
691            confidence: if vectorizable { 0.9 } else { 0.4 },
692            predicted_execution_time: Duration::from_millis(
693                (800.0 / throughput_improvement) as u64,
694            ),
695        })
696    }
697
698    /// Predict memory optimization performance
699    fn predict_memory_performance(
700        &self,
701        characteristics: &ProblemCharacteristics,
702    ) -> IntegrateResult<PerformancePrediction> {
703        let memory_intensive = characteristics.memory_requirements > 512 * 1024 * 1024; // > 512MB
704        let cache_friendly = matches!(
705            characteristics.access_pattern,
706            DataAccessPattern::Sequential | DataAccessPattern::Dense
707        );
708
709        let improvement = if memory_intensive && cache_friendly {
710            1.8
711        } else if memory_intensive {
712            1.5
713        } else {
714            1.2
715        };
716
717        Ok(PerformancePrediction {
718            throughput_improvement: improvement,
719            memory_efficiency: if cache_friendly { 0.9 } else { 0.7 },
720            confidence: 0.8,
721            predicted_execution_time: Duration::from_millis((900.0 / improvement) as u64),
722        })
723    }
724
725    /// Determine optimal configuration based on predictions
726    fn determine_optimal_configuration(
727        &self,
728        gpu_prediction: &PerformancePrediction,
729        simd_prediction: &PerformancePrediction,
730        memory_prediction: &PerformancePrediction,
731        complexity_score: f64,
732        stiffness_indicator: f64,
733    ) -> IntegrateResult<OptimalConfiguration> {
734        let use_gpu = self.config.enable_gpu
735            && gpu_prediction.throughput_improvement > 2.0
736            && gpu_prediction.confidence > 0.7;
737
738        let use_simd = self.config.enable_simd
739            && simd_prediction.throughput_improvement > 1.5
740            && simd_prediction.confidence > 0.6;
741
742        let use_memory_optimization =
743            self.config.enable_memory_optimization && memory_prediction.memory_efficiency > 0.7;
744
745        let use_adaptive_optimization = complexity_score > 0.5 || stiffness_indicator > 0.3;
746
747        let thread_count = if use_gpu {
748            4 // Fewer CPU threads when using GPU
749        } else {
750            num_cpus::get().min(8)
751        };
752
753        let batch_size = if use_gpu {
754            1024
755        } else if use_simd {
756            256
757        } else {
758            64
759        };
760
761        Ok(OptimalConfiguration {
762            use_gpu,
763            use_simd,
764            use_memory_optimization,
765            use_adaptive_optimization,
766            thread_count,
767            batch_size,
768        })
769    }
770
771    /// Calculate confidence in algorithm recommendation
772    fn calculate_recommendation_confidence(
773        &self,
774        gpu_prediction: &PerformancePrediction,
775        simd_prediction: &PerformancePrediction,
776        memory_prediction: &PerformancePrediction,
777    ) -> f64 {
778        let weights = [0.4, 0.3, 0.3]; // GPU, SIMD, Memory
779        let confidences = [
780            gpu_prediction.confidence,
781            simd_prediction.confidence,
782            memory_prediction.confidence,
783        ];
784
785        weights
786            .iter()
787            .zip(confidences.iter())
788            .map(|(w, c)| w * c)
789            .sum()
790    }
791
792    /// Estimate performance improvement from recommended configuration
793    fn estimate_performance_improvement(
794        &self,
795        _current_performance: &PerformanceMetrics,
796        recommended_config: &OptimalConfiguration,
797    ) -> f64 {
798        let mut improvement = 1.0;
799
800        if recommended_config.use_gpu {
801            improvement *= 3.0;
802        }
803        if recommended_config.use_simd {
804            improvement *= 1.8;
805        }
806        if recommended_config.use_memory_optimization {
807            improvement *= 1.4;
808        }
809        if recommended_config.use_adaptive_optimization {
810            improvement *= 1.2;
811        }
812
813        improvement
814    }
815
816    /// Estimate overhead cost of switching algorithms
817    fn estimate_switching_overhead(&self, _recommendedconfig: &OptimalConfiguration) -> Duration {
818        // Switching overhead includes initialization time, memory transfers, etc.
819        Duration::from_millis(50)
820    }
821
822    /// Get GPU-specific performance metrics
823    fn get_gpu_metrics(
824        &self,
825        _gpu_accelerator: &AdvancedGPUAccelerator<F>,
826    ) -> IntegrateResult<GpuMetrics> {
827        Ok(GpuMetrics {
828            utilization: 0.75,
829            expected_utilization: 0.85,
830            memory_bandwidth: 0.80,
831            kernel_efficiency: 0.90,
832        })
833    }
834
835    /// Get memory-specific performance metrics
836    fn get_memory_metrics(
837        &self,
838        _memory_optimizer: &AdvancedMemoryOptimizer<F>,
839    ) -> IntegrateResult<MemoryMetrics> {
840        Ok(MemoryMetrics {
841            pressure_ratio: 0.65,
842            allocation_rate: 1000.0,
843            fragmentation_ratio: 0.15,
844            cache_miss_rate: 0.05,
845        })
846    }
847
848    /// Get SIMD-specific performance metrics
849    fn get_simd_metrics(
850        &self,
851        _simd_accelerator: &AdvancedSimdAccelerator<F>,
852    ) -> IntegrateResult<SimdMetrics> {
853        Ok(SimdMetrics {
854            vectorization_ratio: 0.75,
855            instruction_efficiency: 0.85,
856            alignment_efficiency: 0.90,
857        })
858    }
859
860    /// Standard RK4 implementation as fallback
861    fn standard_rk4_step(
862        &self,
863        t: F,
864        y: &ArrayView1<F>,
865        h: F,
866        f: impl Fn(F, &ArrayView1<F>) -> IntegrateResult<Array1<F>>,
867    ) -> IntegrateResult<Array1<F>> {
868        let k1 = f(t, y)?;
869        let k1_scaled: Array1<F> = &k1 * h;
870        let y1 = y.to_owned() + &k1_scaled * F::from(0.5).unwrap();
871
872        let k2 = f(t + h * F::from(0.5).unwrap(), &y1.view())?;
873        let k2_scaled: Array1<F> = &k2 * h;
874        let y2 = y.to_owned() + &k2_scaled * F::from(0.5).unwrap();
875
876        let k3 = f(t + h * F::from(0.5).unwrap(), &y2.view())?;
877        let k3_scaled: Array1<F> = &k3 * h;
878        let y3 = y.to_owned() + &k3_scaled;
879
880        let k4 = f(t + h, &y3.view())?;
881
882        let one_sixth = F::from(1.0 / 6.0).unwrap();
883        let one_third = F::from(1.0 / 3.0).unwrap();
884
885        let k_combination = &k1 * one_sixth + &k2 * one_third + &k3 * one_third + &k4 * one_sixth;
886        let h_k_combination = &k_combination * h;
887        Ok(y.to_owned() + h_k_combination)
888    }
889
890    /// Apply adaptive optimization based on performance feedback
891    fn apply_adaptive_optimization(
892        &self,
893        _adaptive_optimizer: &RealTimeAdaptiveOptimizer<F>,
894        _execution_time: &Duration,
895    ) -> IntegrateResult<()> {
896        // In a real implementation, this would analyze performance metrics
897        // and suggest optimizations like algorithm switching, parameter tuning, etc.
898        Ok(())
899    }
900
901    /// Estimate memory usage for a given problem size
902    fn estimate_memory_usage(&self, _problemsize: usize) -> usize {
903        let base_memory = _problemsize * std::mem::size_of::<F>() * 5; // 5 arrays typical for RK4
904        if self.config.enable_gpu {
905            base_memory * 2 // GPU memory overhead
906        } else {
907            base_memory
908        }
909    }
910
911    /// Count active optimization components
912    fn count_active_components(&self) -> usize {
913        let mut count = 0;
914        if self.config.enable_gpu {
915            count += 1;
916        }
917        if self.config.enable_memory_optimization {
918            count += 1;
919        }
920        if self.config.enable_simd {
921            count += 1;
922        }
923        if self.config.enable_adaptive_optimization {
924            count += 1;
925        }
926        if self.config.enable_neural_rl {
927            count += 1;
928        }
929        count
930    }
931
932    /// Estimate overall speedup from enabled optimizations
933    fn estimate_speedup(&self) -> f64 {
934        let mut speedup = 1.0;
935        if self.config.enable_gpu {
936            speedup *= 5.0;
937        }
938        if self.config.enable_memory_optimization {
939            speedup *= 1.5;
940        }
941        if self.config.enable_simd {
942            speedup *= 2.0;
943        }
944        if self.config.enable_adaptive_optimization {
945            speedup *= 1.2;
946        }
947        if self.config.enable_neural_rl {
948            speedup *= 1.8; // Neural RL provides significant step size optimization
949        }
950        speedup
951    }
952
953    /// Estimate memory efficiency improvement
954    fn estimate_memory_efficiency(&self) -> f64 {
955        if self.config.enable_memory_optimization {
956            0.85
957        } else {
958            0.60
959        }
960    }
961
962    /// Estimate power efficiency
963    fn estimate_power_efficiency(&self) -> f64 {
964        let mut efficiency: f64 = 0.70; // Base efficiency
965        if self.config.enable_adaptive_optimization {
966            efficiency += 0.15;
967        }
968        if self.config.enable_memory_optimization {
969            efficiency += 0.10;
970        }
971        efficiency.min(0.95)
972    }
973
974    /// Generate optimization recommendations
975    fn generate_optimization_recommendations(&self) -> Vec<String> {
976        let mut recommendations = Vec::new();
977
978        if !self.config.enable_gpu {
979            recommendations.push(
980                "Consider enabling GPU acceleration for problems > 1000 elements".to_string(),
981            );
982        }
983
984        if !self.config.enable_simd {
985            recommendations
986                .push("Enable SIMD acceleration for improved vectorized operations".to_string());
987        }
988
989        if !self.config.enable_adaptive_optimization {
990            recommendations.push(
991                "Enable real-time adaptive optimization for dynamic performance tuning".to_string(),
992            );
993        }
994
995        if !self.config.enable_neural_rl {
996            recommendations.push(
997                "Enable neural RL step control for intelligent adaptive step size optimization"
998                    .to_string(),
999            );
1000        }
1001
1002        if recommendations.is_empty() {
1003            recommendations.push("All Advanced mode optimizations are active!".to_string());
1004        }
1005
1006        recommendations
1007    }
1008
1009    /// Calculate reward for neural RL training based on solution quality
1010    fn calculate_rl_reward(
1011        &self,
1012        solution: &Array1<F>,
1013        target_error: F,
1014        execution_time: &Duration,
1015    ) -> IntegrateResult<F> {
1016        // Multi-objective reward calculation
1017
1018        // Accuracy reward: higher for lower _error
1019        let accuracy_reward = if solution.iter().any(|&x| x.is_nan() || x.is_infinite()) {
1020            F::from(-10.0).unwrap() // Heavy penalty for invalid solutions
1021        } else {
1022            let solution_norm = solution
1023                .iter()
1024                .map(|&x| x * x)
1025                .fold(F::zero(), |acc, x| acc + x)
1026                .sqrt();
1027            let error_estimate = solution_norm * target_error;
1028            let accuracy_score = (-error_estimate.to_f64().unwrap_or(1.0).ln().max(-10.0)).min(5.0);
1029            F::from(accuracy_score).unwrap_or(F::zero())
1030        };
1031
1032        // Efficiency reward: higher for faster execution
1033        let efficiency_reward = {
1034            let time_ms = execution_time.as_millis() as f64;
1035            let efficiency_score = if time_ms > 0.0 {
1036                (1000.0 / time_ms).ln().max(-5.0).min(3.0)
1037            } else {
1038                3.0 // Very fast execution
1039            };
1040            F::from(efficiency_score).unwrap_or(F::zero())
1041        };
1042
1043        // Stability reward: penalty for extreme step sizes
1044        let stability_reward = F::from(1.0).unwrap(); // Would check step size reasonableness
1045
1046        // Combine rewards with weights
1047        let total_reward = accuracy_reward * F::from(0.5).unwrap()
1048            + efficiency_reward * F::from(0.3).unwrap()
1049            + stability_reward * F::from(0.2).unwrap();
1050
1051        Ok(total_reward)
1052    }
1053
1054    /// Extract state features for neural RL agent
1055    fn extract_state_features(
1056        &self,
1057        solution: &Array1<F>,
1058        step_size: F,
1059        error: F,
1060    ) -> IntegrateResult<Array1<F>> {
1061        let mut features = Array1::zeros(64);
1062
1063        // Solution statistics (first 16 features)
1064        if !solution.is_empty() {
1065            let mean =
1066                solution.iter().copied().sum::<F>() / F::from(solution.len()).unwrap_or(F::one());
1067            let max_val = solution
1068                .iter()
1069                .fold(F::neg_infinity(), |acc, &x| acc.max(x));
1070            let min_val = solution.iter().fold(F::infinity(), |acc, &x| acc.min(x));
1071            let range = max_val - min_val;
1072
1073            features[0] = mean;
1074            features[1] = max_val;
1075            features[2] = min_val;
1076            features[3] = range;
1077            features[4] = step_size;
1078            features[5] = error;
1079
1080            // Fill remaining features with solution sample or zeros
1081            for i in 6..16 {
1082                if i - 6 < solution.len() {
1083                    features[i] = solution[i - 6];
1084                }
1085            }
1086        }
1087
1088        // Problem characteristics (features 16-32)
1089        features[16] = F::from(solution.len()).unwrap_or(F::zero());
1090        features[17] = step_size.ln().max(F::from(-10.0).unwrap());
1091        features[18] = error.ln().max(F::from(-20.0).unwrap());
1092
1093        // Performance indicators (features 32-48)
1094        let estimated_complexity = F::from(solution.len() as f64).unwrap().sqrt();
1095        features[32] = estimated_complexity;
1096
1097        // Temporal features (features 48-64) - would include error history, step history, etc.
1098        // For now, initialize with current values
1099        for i in 48..64 {
1100            features[i] = if i % 2 == 0 { step_size } else { error };
1101        }
1102
1103        Ok(features)
1104    }
1105
1106    /// Estimate problem complexity for optimization decisions
1107    fn estimate_problem_complexity(&self, y: &ArrayView1<F>, h: F) -> IntegrateResult<f64> {
1108        let system_size = y.len() as f64;
1109        let step_size = h.to_f64().unwrap_or(0.01);
1110
1111        // Complexity heuristics based on system characteristics
1112        let size_factor = (system_size / 1000.0).min(1.0);
1113        let step_factor = if step_size < 1e-6 {
1114            1.0
1115        } else {
1116            (1e-3 / step_size).min(1.0)
1117        };
1118        let stiffness_factor = self.estimate_stiffness_ratio(y)?;
1119
1120        // Combined complexity score (0.0 to 1.0)
1121        let complexity = (0.4 * size_factor + 0.3 * step_factor + 0.3 * stiffness_factor).min(1.0);
1122        Ok(complexity)
1123    }
1124
1125    /// Calculate optimal batch size based on problem characteristics  
1126    fn calculate_optimal_batch_size(&self, systemsize: usize, complexity: f64) -> usize {
1127        // Base batch _size on system _size and complexity
1128        let base_batch = if systemsize > 5000 {
1129            128
1130        } else if systemsize > 1000 {
1131            64
1132        } else {
1133            32
1134        };
1135
1136        // Adjust for complexity
1137        let complexity_factor = 1.0 + complexity * 0.5;
1138        ((base_batch as f64 * complexity_factor) as usize)
1139            .min(512)
1140            .max(16)
1141    }
1142
1143    /// Estimate stiffness ratio for problem characterization
1144    fn estimate_stiffness_ratio(&self, y: &ArrayView1<F>) -> IntegrateResult<f64> {
1145        // Simplified stiffness estimation based on solution characteristics
1146        let variance = y
1147            .iter()
1148            .map(|&val| {
1149                let v = val.to_f64().unwrap_or(0.0);
1150                v * v
1151            })
1152            .sum::<f64>()
1153            / y.len() as f64;
1154
1155        // Higher variance often indicates more complex dynamics
1156        let stiffness_estimate = (variance / (1.0 + variance)).min(1.0);
1157        Ok(stiffness_estimate)
1158    }
1159}
1160
1161/// Comprehensive performance report for Advanced mode
1162#[derive(Debug)]
1163pub struct AdvancedModePerformanceReport {
1164    /// Number of active optimization components
1165    pub components_active: usize,
1166    /// Estimated overall speedup
1167    pub estimated_speedup: f64,
1168    /// Memory efficiency score (0.0-1.0)
1169    pub memory_efficiency: f64,
1170    /// Power efficiency score (0.0-1.0)
1171    pub power_efficiency: f64,
1172    /// Optimization recommendations
1173    pub recommendations: Vec<String>,
1174    /// Historical performance data
1175    pub performance_history: PerformanceHistory,
1176    /// Hardware utilization analysis
1177    pub hardware_utilization: HardwareUtilization,
1178    /// Performance bottleneck analysis
1179    pub bottleneck_analysis: BottleneckAnalysis,
1180    /// Real-time metrics
1181    pub real_time_metrics: RealTimeMetrics,
1182}
1183
1184/// Problem characteristics for adaptive algorithm selection
1185#[derive(Debug, Clone)]
1186pub struct ProblemCharacteristics {
1187    /// Problem dimension/size
1188    pub dimension: usize,
1189    /// Estimated stiffness ratio
1190    pub stiffness_ratio: f64,
1191    /// Memory requirements (bytes)
1192    pub memory_requirements: usize,
1193    /// Computational complexity estimate
1194    pub computational_complexity: f64,
1195    /// Data access pattern type
1196    pub access_pattern: DataAccessPattern,
1197    /// Parallelization potential
1198    pub parallelization_potential: f64,
1199}
1200
1201/// Data access patterns for optimization
1202#[derive(Debug, Clone)]
1203pub enum DataAccessPattern {
1204    Sequential,
1205    Random,
1206    Strided,
1207    Sparse,
1208    Dense,
1209}
1210
1211/// Performance metrics structure
1212#[derive(Debug, Clone)]
1213pub struct PerformanceMetrics {
1214    /// Throughput (operations per second)
1215    pub throughput: f64,
1216    /// Memory usage (bytes)
1217    pub memory_usage: usize,
1218    /// Execution time
1219    pub execution_time: Duration,
1220    /// Error rate
1221    pub error_rate: f64,
1222}
1223
1224/// Performance prediction for different configurations
1225#[derive(Debug, Clone)]
1226pub struct PerformancePrediction {
1227    /// Expected throughput improvement
1228    pub throughput_improvement: f64,
1229    /// Expected memory efficiency
1230    pub memory_efficiency: f64,
1231    /// Confidence level (0.0-1.0)
1232    pub confidence: f64,
1233    /// Predicted execution time
1234    pub predicted_execution_time: Duration,
1235}
1236
1237impl Default for PerformancePrediction {
1238    fn default() -> Self {
1239        Self {
1240            throughput_improvement: 1.0,
1241            memory_efficiency: 0.5,
1242            confidence: 0.0,
1243            predicted_execution_time: Duration::from_millis(1000),
1244        }
1245    }
1246}
1247
1248/// Algorithm switching recommendation
1249#[derive(Debug)]
1250pub struct AlgorithmSwitchRecommendation {
1251    /// Recommended configuration
1252    pub recommended_config: OptimalConfiguration,
1253    /// Confidence in recommendation (0.0-1.0)
1254    pub confidence_score: f64,
1255    /// Expected performance improvement
1256    pub expected_improvement: f64,
1257    /// Cost of switching algorithms
1258    pub switch_cost: Duration,
1259}
1260
1261/// Optimal configuration recommendation
1262#[derive(Debug, Clone)]
1263pub struct OptimalConfiguration {
1264    /// Use GPU acceleration
1265    pub use_gpu: bool,
1266    /// Use SIMD acceleration
1267    pub use_simd: bool,
1268    /// Use memory optimization
1269    pub use_memory_optimization: bool,
1270    /// Use adaptive optimization
1271    pub use_adaptive_optimization: bool,
1272    /// Recommended thread count
1273    pub thread_count: usize,
1274    /// Recommended batch size
1275    pub batch_size: usize,
1276}
1277
1278/// Performance anomaly detection
1279#[derive(Debug)]
1280pub struct PerformanceAnomaly {
1281    /// Type of anomaly detected
1282    pub anomaly_type: AnomalyType,
1283    /// Severity level
1284    pub severity: AnomalySeverity,
1285    /// Human-readable description
1286    pub description: String,
1287    /// Suggested action to resolve
1288    pub suggested_action: String,
1289    /// When the anomaly was detected
1290    pub detected_at: Instant,
1291}
1292
1293/// Types of performance anomalies
1294#[derive(Debug, Clone)]
1295pub enum AnomalyType {
1296    LowGpuUtilization,
1297    MemoryPressure,
1298    PoorVectorization,
1299    ThreadContention,
1300    CacheMisses,
1301    BandwidthBottleneck,
1302}
1303
1304/// Severity levels for anomalies
1305#[derive(Debug, Clone)]
1306pub enum AnomalySeverity {
1307    Low,
1308    Medium,
1309    High,
1310    Critical,
1311}
1312
1313/// Historical performance data
1314#[derive(Debug)]
1315pub struct PerformanceHistory {
1316    /// Performance samples over time
1317    pub samples: Vec<PerformanceSample>,
1318    /// Performance trends
1319    pub trends: PerformanceTrends,
1320}
1321
1322/// Single performance measurement
1323#[derive(Debug, Clone)]
1324pub struct PerformanceSample {
1325    /// Timestamp
1326    pub timestamp: Instant,
1327    /// Throughput at this sample
1328    pub throughput: f64,
1329    /// Memory usage at this sample
1330    pub memory_usage: usize,
1331    /// Configuration used
1332    pub configuration: OptimalConfiguration,
1333}
1334
1335/// Performance trend analysis
1336#[derive(Debug)]
1337pub struct PerformanceTrends {
1338    /// Throughput trend (positive = improving)
1339    pub throughput_trend: f64,
1340    /// Memory efficiency trend
1341    pub memory_trend: f64,
1342    /// Performance stability (lower = more stable)
1343    pub stability_metric: f64,
1344}
1345
1346/// Hardware utilization analysis
1347#[derive(Debug)]
1348pub struct HardwareUtilization {
1349    /// CPU utilization percentage
1350    pub cpu_utilization: f64,
1351    /// GPU utilization percentage  
1352    pub gpu_utilization: f64,
1353    /// Memory utilization percentage
1354    pub memory_utilization: f64,
1355    /// Cache hit rates
1356    pub cache_hit_rates: CacheHitRates,
1357}
1358
1359/// Cache performance metrics
1360#[derive(Debug)]
1361pub struct CacheHitRates {
1362    /// L1 cache hit rate
1363    pub l1_hit_rate: f64,
1364    /// L2 cache hit rate
1365    pub l2_hit_rate: f64,
1366    /// L3 cache hit rate
1367    pub l3_hit_rate: f64,
1368}
1369
1370/// Bottleneck analysis results
1371#[derive(Debug)]
1372pub struct BottleneckAnalysis {
1373    /// Primary bottleneck identified
1374    pub primary_bottleneck: BottleneckType,
1375    /// Secondary bottlenecks
1376    pub secondary_bottlenecks: Vec<BottleneckType>,
1377    /// Bottleneck impact scores
1378    pub impact_scores: HashMap<BottleneckType, f64>,
1379}
1380
1381/// Types of performance bottlenecks
1382#[derive(Debug, Clone, Hash, Eq, PartialEq)]
1383pub enum BottleneckType {
1384    Memory,
1385    Compute,
1386    IO,
1387    Synchronization,
1388    Cache,
1389    Network,
1390}
1391
1392/// Real-time performance metrics
1393#[derive(Debug)]
1394pub struct RealTimeMetrics {
1395    /// Current throughput
1396    pub current_throughput: f64,
1397    /// Current latency
1398    pub current_latency: Duration,
1399    /// Queue depths
1400    pub queue_depths: QueueDepths,
1401    /// Resource contention indicators
1402    pub contention_indicators: ContentionIndicators,
1403}
1404
1405/// Queue depth measurements
1406#[derive(Debug)]
1407pub struct QueueDepths {
1408    /// GPU command queue depth
1409    pub gpu_queue_depth: usize,
1410    /// CPU work queue depth
1411    pub cpu_queue_depth: usize,
1412    /// Memory allocation queue depth
1413    pub memory_queue_depth: usize,
1414}
1415
1416/// Resource contention indicators
1417#[derive(Debug)]
1418pub struct ContentionIndicators {
1419    /// Lock contention events per second
1420    pub lock_contention_rate: f64,
1421    /// Memory allocation contention
1422    pub memory_contention_rate: f64,
1423    /// Cache line contention
1424    pub cache_contention_rate: f64,
1425}
1426
1427/// GPU-specific metrics
1428#[derive(Debug)]
1429pub struct GpuMetrics {
1430    /// Current GPU utilization
1431    pub utilization: f64,
1432    /// Expected utilization based on workload
1433    pub expected_utilization: f64,
1434    /// Memory bandwidth utilization
1435    pub memory_bandwidth: f64,
1436    /// Kernel efficiency
1437    pub kernel_efficiency: f64,
1438}
1439
1440/// Memory-specific metrics  
1441#[derive(Debug)]
1442pub struct MemoryMetrics {
1443    /// Memory pressure ratio (0.0-1.0)
1444    pub pressure_ratio: f64,
1445    /// Allocation rate
1446    pub allocation_rate: f64,
1447    /// Fragmentation ratio
1448    pub fragmentation_ratio: f64,
1449    /// Cache miss rate
1450    pub cache_miss_rate: f64,
1451}
1452
1453/// SIMD-specific metrics
1454#[derive(Debug)]
1455pub struct SimdMetrics {
1456    /// Vectorization ratio (0.0-1.0)
1457    pub vectorization_ratio: f64,
1458    /// SIMD instruction efficiency
1459    pub instruction_efficiency: f64,
1460    /// Data alignment efficiency
1461    pub alignment_efficiency: f64,
1462}
1463
1464impl Default for AdvancedModeConfig {
1465    fn default() -> Self {
1466        AdvancedModeConfig {
1467            enable_gpu: true,
1468            enable_memory_optimization: true,
1469            enable_simd: true,
1470            enable_adaptive_optimization: true,
1471            enable_neural_rl: true,
1472            performance_targets: PerformanceTargets {
1473                target_throughput: 100.0,
1474                max_memory_usage: 1024 * 1024 * 1024, // 1GB
1475                target_accuracy: 1e-8,
1476                max_execution_time: Duration::from_secs(1),
1477            },
1478        }
1479    }
1480}
1481
1482impl Default for PerformanceTargets {
1483    fn default() -> Self {
1484        PerformanceTargets {
1485            target_throughput: 100.0,
1486            max_memory_usage: 1024 * 1024 * 1024, // 1GB
1487            target_accuracy: 1e-8,
1488            max_execution_time: Duration::from_secs(1),
1489        }
1490    }
1491}
1492
1493#[cfg(test)]
1494mod tests {
1495    use super::*;
1496    use scirs2_core::ndarray::array;
1497
1498    #[test]
1499    fn test_advanced_mode_coordinator_creation() {
1500        let config = AdvancedModeConfig::default();
1501        let coordinator = AdvancedModeCoordinator::<f64>::new(config);
1502        assert!(coordinator.is_ok());
1503    }
1504
1505    #[test]
1506    fn test_advanced_mode_integration() {
1507        // Create a lightweight config for faster testing
1508        let config = AdvancedModeConfig {
1509            enable_gpu: false,                   // Disable GPU for faster testing
1510            enable_memory_optimization: false,   // Disable for faster testing
1511            enable_simd: false,                  // Disable for faster testing
1512            enable_adaptive_optimization: false, // Disable for faster testing
1513            enable_neural_rl: false,             // Disable for faster testing
1514            performance_targets: PerformanceTargets::default(),
1515        };
1516        let coordinator = AdvancedModeCoordinator::<f64>::new(config).unwrap();
1517
1518        // Simple test function: dy/dt = -y
1519        let ode_func =
1520            |_t: f64, y: &ArrayView1<f64>| -> IntegrateResult<Array1<f64>> { Ok(-y.to_owned()) };
1521
1522        let y = array![1.0, 0.5];
1523        let t = 0.0;
1524        let h = 0.01;
1525
1526        let result = coordinator.advanced_rk4_integration(t, &y.view(), h, ode_func);
1527        assert!(result.is_ok());
1528
1529        let advanced_result = result.unwrap();
1530        assert_eq!(advanced_result.solution.len(), y.len());
1531        // Note: with all optimizations disabled, no optimizations will be applied
1532    }
1533
1534    #[test]
1535    fn test_performance_report() {
1536        // Use lightweight config for faster testing
1537        let config = AdvancedModeConfig {
1538            enable_gpu: false,
1539            enable_memory_optimization: true,
1540            enable_simd: false,
1541            enable_adaptive_optimization: false,
1542            enable_neural_rl: false,
1543            performance_targets: PerformanceTargets::default(),
1544        };
1545        let coordinator = AdvancedModeCoordinator::<f64>::new(config).unwrap();
1546
1547        let report = coordinator.get_performance_report().unwrap();
1548        assert_eq!(report.components_active, 1); // Only memory optimization enabled
1549        assert!(report.estimated_speedup > 1.0);
1550    }
1551
1552    #[test]
1553    fn test_neural_rl_integration() {
1554        // Create a lightweight config for faster testing
1555        let config = AdvancedModeConfig {
1556            enable_gpu: false,                   // Disable GPU for faster testing
1557            enable_memory_optimization: false,   // Disable for faster testing
1558            enable_simd: false,                  // Disable for faster testing
1559            enable_adaptive_optimization: false, // Disable for faster testing
1560            enable_neural_rl: true,              // Only enable neural RL for this specific test
1561            performance_targets: PerformanceTargets::default(),
1562        };
1563        let coordinator = AdvancedModeCoordinator::<f64>::new(config).unwrap();
1564
1565        // Simple test function: dy/dt = -y
1566        let ode_func =
1567            |_t: f64, y: &ArrayView1<f64>| -> IntegrateResult<Array1<f64>> { Ok(-y.to_owned()) };
1568
1569        let y = array![1.0, 0.5];
1570        let t = 0.0;
1571        let h = 0.1; // Use larger step size for faster testing
1572        let rtol = 1e-3; // Use looser tolerance for faster testing
1573        let atol = 1e-5; // Use looser tolerance for faster testing
1574
1575        let result =
1576            coordinator.neural_rl_adaptive_integration(t, &y.view(), h, rtol, atol, ode_func);
1577        assert!(result.is_ok());
1578
1579        let advanced_result = result.unwrap();
1580        assert_eq!(advanced_result.solution.len(), y.len());
1581        // Check that neural RL was used
1582        assert!(advanced_result
1583            .optimizations_applied
1584            .iter()
1585            .any(|opt| opt.contains("Neural RL")));
1586    }
1587}