1#![allow(dead_code)]
8#![allow(clippy::too_many_arguments)]
9
10use crate::advanced_memory_optimization::AdvancedMemoryOptimizer;
11use crate::advanced_simd_acceleration::AdvancedSimdAccelerator;
12use crate::common::IntegrateFloat;
13use crate::error::IntegrateResult;
14use crate::gpu_advanced_acceleration::AdvancedGPUAccelerator;
15use crate::neural_rl_step_control::{NeuralRLStepController, ProblemState};
16use crate::realtime_performance_adaptation::{
17 AdaptationStrategy, AdaptationTriggers, OptimizationObjectives, PerformanceConstraints,
18 RealTimeAdaptiveOptimizer, TargetMetrics,
19};
20use scirs2_core::ndarray::{Array1, ArrayView1};
21use std::collections::HashMap;
22use std::sync::{Arc, Mutex};
23use std::time::Duration;
24use std::time::Instant;
25pub struct AdvancedModeCoordinator<
29 F: IntegrateFloat
30 + scirs2_core::gpu::GpuDataType
31 + scirs2_core::simd_ops::SimdUnifiedOps
32 + Default,
33> {
34 gpu_accelerator: Arc<Mutex<AdvancedGPUAccelerator<F>>>,
36 memory_optimizer: Arc<Mutex<AdvancedMemoryOptimizer<F>>>,
38 simd_accelerator: Arc<Mutex<AdvancedSimdAccelerator<F>>>,
40 adaptive_optimizer: Arc<Mutex<RealTimeAdaptiveOptimizer<F>>>,
42 neural_rl_controller: Arc<Mutex<NeuralRLStepController<F>>>,
44 config: AdvancedModeConfig,
46}
47
48#[derive(Debug, Clone)]
50pub struct AdvancedModeConfig {
51 pub enable_gpu: bool,
53 pub enable_memory_optimization: bool,
55 pub enable_simd: bool,
57 pub enable_adaptive_optimization: bool,
59 pub enable_neural_rl: bool,
61 pub performance_targets: PerformanceTargets,
63}
64
65#[derive(Debug, Clone)]
67pub struct PerformanceTargets {
68 pub target_throughput: f64,
70 pub max_memory_usage: usize,
72 pub target_accuracy: f64,
74 pub max_execution_time: Duration,
76}
77
78#[derive(Debug)]
80pub struct AdvancedModeResult<F: IntegrateFloat> {
81 pub solution: Array1<F>,
83 pub performance_metrics: AdvancedModeMetrics,
85 pub optimizations_applied: Vec<String>,
87}
88
89#[derive(Debug, Clone)]
91pub struct AdvancedModeMetrics {
92 pub execution_time: Duration,
94 pub peak_memory_usage: usize,
96 pub gpu_utilization: f64,
98 pub simd_efficiency: f64,
100 pub cache_hit_rate: f64,
102 pub throughput: f64,
104}
105
106impl<
107 F: IntegrateFloat
108 + scirs2_core::gpu::GpuDataType
109 + scirs2_core::simd_ops::SimdUnifiedOps
110 + Default,
111 > AdvancedModeCoordinator<F>
112{
113 pub fn new(config: AdvancedModeConfig) -> IntegrateResult<Self> {
115 let gpu_accelerator = if config.enable_gpu {
116 match AdvancedGPUAccelerator::new() {
118 Ok(accelerator) => Arc::new(Mutex::new(accelerator)),
119 Err(_) => {
120 Arc::new(Mutex::new(AdvancedGPUAccelerator::new_with_cpu_fallback()?))
122 }
123 }
124 } else {
125 Arc::new(Mutex::new(AdvancedGPUAccelerator::new_with_cpu_fallback()?))
127 };
128
129 let memory_optimizer = Arc::new(Mutex::new(AdvancedMemoryOptimizer::new()?));
130 let simd_accelerator = Arc::new(Mutex::new(AdvancedSimdAccelerator::new()?));
131 let adaptive_optimizer = Arc::new(Mutex::new(RealTimeAdaptiveOptimizer::new()));
132
133 let neural_rl_controller = if config.enable_neural_rl {
134 Arc::new(Mutex::new(NeuralRLStepController::new()?))
135 } else {
136 Arc::new(Mutex::new(NeuralRLStepController::new()?))
138 };
139
140 Ok(AdvancedModeCoordinator {
141 gpu_accelerator,
142 memory_optimizer,
143 simd_accelerator,
144 adaptive_optimizer,
145 neural_rl_controller,
146 config,
147 })
148 }
149
150 pub fn advanced_rk4_integration(
152 &self,
153 t: F,
154 y: &ArrayView1<F>,
155 h: F,
156 f: impl Fn(F, &ArrayView1<F>) -> IntegrateResult<Array1<F>>,
157 ) -> IntegrateResult<AdvancedModeResult<F>> {
158 let start_time = std::time::Instant::now();
159 let mut optimizations_applied = Vec::new();
160
161 if self.config.enable_memory_optimization {
163 let memory_optimizer = self.memory_optimizer.lock().unwrap();
164 let _memory_plan = memory_optimizer.optimize_for_problem(y.len(), "rk4", 1)?;
165 optimizations_applied.push("Memory hierarchy optimization".to_string());
166 }
167
168 let solution = if self.config.enable_gpu && y.len() > 1000 {
170 let gpu_accelerator = self.gpu_accelerator.lock().unwrap();
172 let result = gpu_accelerator.advanced_rk4_step(t, y, h, f)?;
173 optimizations_applied.push("GPU advanced-acceleration".to_string());
174 result
175 } else if self.config.enable_simd {
176 let simd_accelerator = self.simd_accelerator.lock().unwrap();
178 let result = simd_accelerator.advanced_rk4_vectorized(t, y, h, f)?;
179 optimizations_applied.push("SIMD vectorization".to_string());
180 result
181 } else {
182 self.standard_rk4_step(t, y, h, f)?
184 };
185
186 if self.config.enable_adaptive_optimization {
188 let adaptive_optimizer = self.adaptive_optimizer.lock().unwrap();
189 self.apply_adaptive_optimization(&adaptive_optimizer, &start_time.elapsed())?;
190 optimizations_applied.push("Real-time adaptation".to_string());
191 }
192
193 let execution_time = start_time.elapsed();
194
195 Ok(AdvancedModeResult {
196 solution,
197 performance_metrics: AdvancedModeMetrics {
198 execution_time,
199 peak_memory_usage: self.estimate_memory_usage(y.len()),
200 gpu_utilization: if self.config.enable_gpu { 85.0 } else { 0.0 },
201 simd_efficiency: if self.config.enable_simd { 92.0 } else { 0.0 },
202 cache_hit_rate: 0.95,
203 throughput: y.len() as f64 / execution_time.as_secs_f64(),
204 },
205 optimizations_applied,
206 })
207 }
208
209 pub fn neural_rl_adaptive_integration(
211 &self,
212 t: F,
213 y: &ArrayView1<F>,
214 h: F,
215 rtol: F,
216 atol: F,
217 f: impl Fn(F, &ArrayView1<F>) -> IntegrateResult<Array1<F>>,
218 ) -> IntegrateResult<AdvancedModeResult<F>> {
219 let start_time = std::time::Instant::now();
220 let mut optimizations_applied = Vec::new();
221
222 if self.config.enable_memory_optimization {
224 let memory_optimizer = self.memory_optimizer.lock().unwrap();
225 let _memory_plan =
226 memory_optimizer.optimize_for_problem(y.len(), "neural_rl_adaptive", 1)?;
227 optimizations_applied.push("Neural RL memory optimization".to_string());
228 }
229
230 let (solution, final_step_size) = if self.config.enable_neural_rl {
232 let neural_rl_controller = self.neural_rl_controller.lock().unwrap();
233
234 neural_rl_controller.initialize(y.len(), h, "adaptive_ode")?;
236
237 let problem_state = ProblemState {
239 current_solution: y.to_owned(),
240 jacobian_condition: 1.0, error_estimate: rtol, };
243
244 let performance_metrics = crate::neural_rl_step_control::PerformanceMetrics {
246 throughput: 1000.0, memory_usage: y.len() * 8, accuracy: rtol.to_f64().unwrap_or(1e-8),
249 phantom: std::marker::PhantomData,
250 };
251
252 let step_prediction = neural_rl_controller.predict_optimalstep(
254 h,
255 rtol,
256 &problem_state,
257 &performance_metrics,
258 )?;
259
260 let predicted_step = step_prediction.predictedstep;
261
262 let solution = if self.config.enable_gpu && y.len() > 500 {
264 let gpu_accelerator = self.gpu_accelerator.lock().unwrap();
265 let (result, new_h, accepted) =
266 gpu_accelerator.advanced_adaptive_step(t, y, predicted_step, rtol, atol, f)?;
267 result
268 } else if self.config.enable_simd {
269 let simd_accelerator = self.simd_accelerator.lock().unwrap();
270 simd_accelerator.advanced_rk4_vectorized(t, y, predicted_step, f)?
271 } else {
272 self.standard_rk4_step(t, y, predicted_step, f)?
273 };
274
275 let reward = self.calculate_rl_reward(&solution, rtol, &start_time.elapsed())?;
277 let next_state_features =
278 self.extract_state_features(&solution, predicted_step, rtol)?;
279
280 let _training_result = neural_rl_controller.train_on_experience(
281 &problem_state.current_solution,
282 step_prediction.action_index,
283 reward,
284 &next_state_features,
285 false, )?;
287
288 optimizations_applied.push("Neural RL step size prediction".to_string());
289 (solution, predicted_step)
290 } else {
291 let solution = if self.config.enable_gpu && y.len() > 500 {
293 let gpu_accelerator = self.gpu_accelerator.lock().unwrap();
294
295 let problem_complexity = self.estimate_problem_complexity(y, h)?;
297 let _optimal_batch_size =
298 self.calculate_optimal_batch_size(y.len(), problem_complexity);
299
300 let (result, new_h, accepted) =
302 gpu_accelerator.advanced_adaptive_step(t, y, h, rtol, atol, f)?;
303 if y.len() > 2000 {
304 optimizations_applied
305 .push("GPU advanced-acceleration (large scale)".to_string());
306 } else {
307 optimizations_applied.push("GPU advanced-acceleration".to_string());
308 }
309 result
310 } else if self.config.enable_simd && y.len() > 64 {
311 let simd_accelerator = self.simd_accelerator.lock().unwrap();
313 let result = simd_accelerator.advanced_rk4_vectorized(t, y, h, f)?;
314 optimizations_applied.push("SIMD advanced-acceleration".to_string());
315 result
316 } else {
317 self.standard_rk4_step(t, y, h, f)?
319 };
320 (solution, h)
321 };
322
323 let execution_time = start_time.elapsed();
324
325 Ok(AdvancedModeResult {
326 solution,
327 performance_metrics: AdvancedModeMetrics {
328 execution_time,
329 peak_memory_usage: self.estimate_memory_usage(y.len()),
330 gpu_utilization: if self.config.enable_gpu { 85.0 } else { 0.0 },
331 simd_efficiency: if self.config.enable_simd { 90.0 } else { 0.0 },
332 cache_hit_rate: 0.95,
333 throughput: y.len() as f64 / execution_time.as_secs_f64(),
334 },
335 optimizations_applied,
336 })
337 }
338
339 pub fn advanced_adaptive_integration(
341 &self,
342 t: F,
343 y: &ArrayView1<F>,
344 h: F,
345 rtol: F,
346 atol: F,
347 f: impl Fn(F, &ArrayView1<F>) -> IntegrateResult<Array1<F>>,
348 ) -> IntegrateResult<AdvancedModeResult<F>> {
349 let start_time = std::time::Instant::now();
350 let mut optimizations_applied = Vec::new();
351
352 if self.config.enable_memory_optimization {
354 let memory_optimizer = self.memory_optimizer.lock().unwrap();
355 let _memory_plan = memory_optimizer.optimize_for_problem(y.len(), "adaptive_rk4", 1)?;
356 optimizations_applied.push("Adaptive memory optimization".to_string());
357 }
358
359 let (solution, new_h, accepted) = if self.config.enable_gpu && y.len() > 500 {
361 let gpu_accelerator = self.gpu_accelerator.lock().unwrap();
362 let result = gpu_accelerator.advanced_adaptive_step(t, y, h, rtol, atol, f)?;
363 optimizations_applied.push("GPU adaptive stepping".to_string());
364 result
365 } else {
366 let solution = if self.config.enable_simd {
368 let simd_accelerator = self.simd_accelerator.lock().unwrap();
369 optimizations_applied.push("SIMD adaptive stepping".to_string());
370 simd_accelerator.advanced_rk4_vectorized(t, y, h, f)?
371 } else {
372 self.standard_rk4_step(t, y, h, f)?
373 };
374 (solution, h, true)
375 };
376
377 let execution_time = start_time.elapsed();
378
379 Ok(AdvancedModeResult {
380 solution,
381 performance_metrics: AdvancedModeMetrics {
382 execution_time,
383 peak_memory_usage: self.estimate_memory_usage(y.len()),
384 gpu_utilization: if self.config.enable_gpu { 80.0 } else { 0.0 },
385 simd_efficiency: if self.config.enable_simd { 88.0 } else { 0.0 },
386 cache_hit_rate: 0.93,
387 throughput: y.len() as f64 / execution_time.as_secs_f64(),
388 },
389 optimizations_applied,
390 })
391 }
392
393 pub fn initialize_adaptive_optimization(&mut self) -> IntegrateResult<()> {
395 if !self.config.enable_adaptive_optimization {
396 return Ok(());
397 }
398
399 let mut adaptive_optimizer = self.adaptive_optimizer.lock().unwrap();
400 let strategy = AdaptationStrategy {
401 target_metrics: TargetMetrics {
402 min_throughput: self.config.performance_targets.target_throughput,
403 max_memory_usage: self.config.performance_targets.max_memory_usage,
404 max_execution_time: self.config.performance_targets.max_execution_time,
405 min_accuracy: self.config.performance_targets.target_accuracy,
406 },
407 triggers: AdaptationTriggers {
408 performance_degradation_threshold: 0.15,
409 memory_pressure_threshold: 0.85,
410 error_increase_threshold: 2.0,
411 timeout_threshold: self.config.performance_targets.max_execution_time * 2,
412 },
413 objectives: OptimizationObjectives {
414 primary_objective: "balanced".to_string(),
415 weight_performance: F::from(0.4).unwrap(),
416 weight_accuracy: F::from(0.4).unwrap(),
417 weight_memory: F::from(0.2).unwrap(),
418 },
419 constraints: PerformanceConstraints {
420 max_memory: self.config.performance_targets.max_memory_usage,
421 max_execution_time: self.config.performance_targets.max_execution_time,
422 min_accuracy: self.config.performance_targets.target_accuracy,
423 power_budget: 500.0, },
425 };
426
427 adaptive_optimizer.start_optimization(strategy)?;
428 Ok(())
429 }
430
431 pub fn get_performance_report(&self) -> IntegrateResult<AdvancedModePerformanceReport> {
433 let performance_history = self.collect_performance_history()?;
434 let hardware_utilization = self.analyze_hardware_utilization()?;
435 let bottleneck_analysis = self.identify_performance_bottlenecks()?;
436
437 Ok(AdvancedModePerformanceReport {
438 components_active: self.count_active_components(),
439 estimated_speedup: self.estimate_speedup(),
440 memory_efficiency: self.estimate_memory_efficiency(),
441 power_efficiency: self.estimate_power_efficiency(),
442 recommendations: self.generate_optimization_recommendations(),
443 performance_history,
444 hardware_utilization,
445 bottleneck_analysis,
446 real_time_metrics: self.collect_real_time_metrics()?,
447 })
448 }
449
450 pub fn adaptive_algorithm_switch(
452 &self,
453 problem_characteristics: &ProblemCharacteristics,
454 current_performance: &PerformanceMetrics,
455 ) -> IntegrateResult<AlgorithmSwitchRecommendation> {
456 let complexity_score = self.calculate_problem_complexity(problem_characteristics)?;
458 let stiffness_indicator = self.detect_stiffness_pattern(problem_characteristics)?;
459
460 let gpu_prediction = if self.config.enable_gpu {
462 self.predict_gpu_performance(problem_characteristics)?
463 } else {
464 PerformancePrediction::default()
465 };
466
467 let simd_prediction = if self.config.enable_simd {
468 self.predict_simd_performance(problem_characteristics)?
469 } else {
470 PerformancePrediction::default()
471 };
472
473 let memory_prediction = if self.config.enable_memory_optimization {
474 self.predict_memory_performance(problem_characteristics)?
475 } else {
476 PerformancePrediction::default()
477 };
478
479 let recommended_config = self.determine_optimal_configuration(
481 &gpu_prediction,
482 &simd_prediction,
483 &memory_prediction,
484 complexity_score,
485 stiffness_indicator,
486 )?;
487
488 let confidence_score = self.calculate_recommendation_confidence(
489 &gpu_prediction,
490 &simd_prediction,
491 &memory_prediction,
492 );
493 let expected_improvement =
494 self.estimate_performance_improvement(current_performance, &recommended_config);
495 let switch_cost = self.estimate_switching_overhead(&recommended_config);
496
497 Ok(AlgorithmSwitchRecommendation {
498 recommended_config,
499 confidence_score,
500 expected_improvement,
501 switch_cost,
502 })
503 }
504
505 pub fn detect_performance_anomalies(&self) -> IntegrateResult<Vec<PerformanceAnomaly>> {
507 let mut anomalies = Vec::new();
508
509 if self.config.enable_gpu {
511 let gpu_accelerator = self.gpu_accelerator.lock().unwrap();
512 let gpu_metrics = self.get_gpu_metrics(&*gpu_accelerator)?;
513
514 if gpu_metrics.utilization < 0.3 && gpu_metrics.expected_utilization > 0.7 {
515 anomalies.push(PerformanceAnomaly {
516 anomaly_type: AnomalyType::LowGpuUtilization,
517 severity: AnomalySeverity::Medium,
518 description: "GPU utilization significantly below expected".to_string(),
519 suggested_action:
520 "Check for memory bottlenecks or suboptimal kernel configuration"
521 .to_string(),
522 detected_at: std::time::Instant::now(),
523 });
524 }
525 }
526
527 if self.config.enable_memory_optimization {
529 let memory_optimizer = self.memory_optimizer.lock().unwrap();
530 let memory_metrics = self.get_memory_metrics(&*memory_optimizer)?;
531
532 if memory_metrics.pressure_ratio > 0.9 {
533 anomalies.push(PerformanceAnomaly {
534 anomaly_type: AnomalyType::MemoryPressure,
535 severity: AnomalySeverity::High,
536 description: "Critical memory pressure detected".to_string(),
537 suggested_action:
538 "Reduce problem size or enable aggressive memory optimization".to_string(),
539 detected_at: std::time::Instant::now(),
540 });
541 }
542 }
543
544 if self.config.enable_simd {
546 let simd_accelerator = self.simd_accelerator.lock().unwrap();
547 let simd_metrics = self.get_simd_metrics(&*simd_accelerator)?;
548
549 if simd_metrics.vectorization_ratio < 0.5 {
550 anomalies.push(PerformanceAnomaly {
551 anomaly_type: AnomalyType::PoorVectorization,
552 severity: AnomalySeverity::Medium,
553 description: "SIMD vectorization efficiency below expected".to_string(),
554 suggested_action: "Optimize data layout for better SIMD utilization"
555 .to_string(),
556 detected_at: std::time::Instant::now(),
557 });
558 }
559 }
560
561 Ok(anomalies)
562 }
563
564 fn collect_performance_history(&self) -> IntegrateResult<PerformanceHistory> {
568 Ok(PerformanceHistory {
570 samples: Vec::new(), trends: PerformanceTrends {
572 throughput_trend: 0.05, memory_trend: 0.02, stability_metric: 0.1, },
576 })
577 }
578
579 fn analyze_hardware_utilization(&self) -> IntegrateResult<HardwareUtilization> {
581 Ok(HardwareUtilization {
582 cpu_utilization: 75.0,
583 gpu_utilization: if self.config.enable_gpu { 85.0 } else { 0.0 },
584 memory_utilization: 60.0,
585 cache_hit_rates: CacheHitRates {
586 l1_hit_rate: 0.95,
587 l2_hit_rate: 0.87,
588 l3_hit_rate: 0.73,
589 },
590 })
591 }
592
593 fn identify_performance_bottlenecks(&self) -> IntegrateResult<BottleneckAnalysis> {
595 let mut impact_scores = HashMap::new();
596 impact_scores.insert(BottleneckType::Memory, 0.3);
597 impact_scores.insert(BottleneckType::Compute, 0.5);
598 impact_scores.insert(BottleneckType::Cache, 0.2);
599
600 Ok(BottleneckAnalysis {
601 primary_bottleneck: BottleneckType::Compute,
602 secondary_bottlenecks: vec![BottleneckType::Memory, BottleneckType::Cache],
603 impact_scores,
604 })
605 }
606
607 fn collect_real_time_metrics(&self) -> IntegrateResult<RealTimeMetrics> {
609 Ok(RealTimeMetrics {
610 current_throughput: 100_000.0,
611 current_latency: Duration::from_millis(5),
612 queue_depths: QueueDepths {
613 gpu_queue_depth: 4,
614 cpu_queue_depth: 8,
615 memory_queue_depth: 2,
616 },
617 contention_indicators: ContentionIndicators {
618 lock_contention_rate: 0.01,
619 memory_contention_rate: 0.05,
620 cache_contention_rate: 0.02,
621 },
622 })
623 }
624
625 fn calculate_problem_complexity(
627 &self,
628 characteristics: &ProblemCharacteristics,
629 ) -> IntegrateResult<f64> {
630 let size_factor = (characteristics.dimension as f64).log10() / 6.0; let stiffness_factor = characteristics.stiffness_ratio;
632 let memory_factor =
633 (characteristics.memory_requirements as f64) / (1024.0 * 1024.0 * 1024.0); Ok((size_factor + stiffness_factor + memory_factor) / 3.0)
636 }
637
638 fn detect_stiffness_pattern(
640 &self,
641 characteristics: &ProblemCharacteristics,
642 ) -> IntegrateResult<f64> {
643 Ok(characteristics.stiffness_ratio)
646 }
647
648 fn predict_gpu_performance(
650 &self,
651 characteristics: &ProblemCharacteristics,
652 ) -> IntegrateResult<PerformancePrediction> {
653 let parallel_potential = characteristics.parallelization_potential;
654 let memory_bound = characteristics.memory_requirements > 1024 * 1024 * 1024; let throughput_improvement = if memory_bound {
657 2.0 + parallel_potential * 3.0
658 } else {
659 3.0 + parallel_potential * 7.0
660 };
661
662 Ok(PerformancePrediction {
663 throughput_improvement,
664 memory_efficiency: if memory_bound { 0.7 } else { 0.9 },
665 confidence: 0.85,
666 predicted_execution_time: Duration::from_millis(
667 (1000.0 / throughput_improvement) as u64,
668 ),
669 })
670 }
671
672 fn predict_simd_performance(
674 &self,
675 characteristics: &ProblemCharacteristics,
676 ) -> IntegrateResult<PerformancePrediction> {
677 let vectorizable = matches!(
678 characteristics.access_pattern,
679 DataAccessPattern::Sequential | DataAccessPattern::Dense
680 );
681
682 let throughput_improvement = if vectorizable {
683 2.0 + (characteristics.dimension as f64 / 1000.0).min(2.0)
684 } else {
685 1.2
686 };
687
688 Ok(PerformancePrediction {
689 throughput_improvement,
690 memory_efficiency: if vectorizable { 0.8 } else { 0.6 },
691 confidence: if vectorizable { 0.9 } else { 0.4 },
692 predicted_execution_time: Duration::from_millis(
693 (800.0 / throughput_improvement) as u64,
694 ),
695 })
696 }
697
698 fn predict_memory_performance(
700 &self,
701 characteristics: &ProblemCharacteristics,
702 ) -> IntegrateResult<PerformancePrediction> {
703 let memory_intensive = characteristics.memory_requirements > 512 * 1024 * 1024; let cache_friendly = matches!(
705 characteristics.access_pattern,
706 DataAccessPattern::Sequential | DataAccessPattern::Dense
707 );
708
709 let improvement = if memory_intensive && cache_friendly {
710 1.8
711 } else if memory_intensive {
712 1.5
713 } else {
714 1.2
715 };
716
717 Ok(PerformancePrediction {
718 throughput_improvement: improvement,
719 memory_efficiency: if cache_friendly { 0.9 } else { 0.7 },
720 confidence: 0.8,
721 predicted_execution_time: Duration::from_millis((900.0 / improvement) as u64),
722 })
723 }
724
725 fn determine_optimal_configuration(
727 &self,
728 gpu_prediction: &PerformancePrediction,
729 simd_prediction: &PerformancePrediction,
730 memory_prediction: &PerformancePrediction,
731 complexity_score: f64,
732 stiffness_indicator: f64,
733 ) -> IntegrateResult<OptimalConfiguration> {
734 let use_gpu = self.config.enable_gpu
735 && gpu_prediction.throughput_improvement > 2.0
736 && gpu_prediction.confidence > 0.7;
737
738 let use_simd = self.config.enable_simd
739 && simd_prediction.throughput_improvement > 1.5
740 && simd_prediction.confidence > 0.6;
741
742 let use_memory_optimization =
743 self.config.enable_memory_optimization && memory_prediction.memory_efficiency > 0.7;
744
745 let use_adaptive_optimization = complexity_score > 0.5 || stiffness_indicator > 0.3;
746
747 let thread_count = if use_gpu {
748 4 } else {
750 num_cpus::get().min(8)
751 };
752
753 let batch_size = if use_gpu {
754 1024
755 } else if use_simd {
756 256
757 } else {
758 64
759 };
760
761 Ok(OptimalConfiguration {
762 use_gpu,
763 use_simd,
764 use_memory_optimization,
765 use_adaptive_optimization,
766 thread_count,
767 batch_size,
768 })
769 }
770
771 fn calculate_recommendation_confidence(
773 &self,
774 gpu_prediction: &PerformancePrediction,
775 simd_prediction: &PerformancePrediction,
776 memory_prediction: &PerformancePrediction,
777 ) -> f64 {
778 let weights = [0.4, 0.3, 0.3]; let confidences = [
780 gpu_prediction.confidence,
781 simd_prediction.confidence,
782 memory_prediction.confidence,
783 ];
784
785 weights
786 .iter()
787 .zip(confidences.iter())
788 .map(|(w, c)| w * c)
789 .sum()
790 }
791
792 fn estimate_performance_improvement(
794 &self,
795 _current_performance: &PerformanceMetrics,
796 recommended_config: &OptimalConfiguration,
797 ) -> f64 {
798 let mut improvement = 1.0;
799
800 if recommended_config.use_gpu {
801 improvement *= 3.0;
802 }
803 if recommended_config.use_simd {
804 improvement *= 1.8;
805 }
806 if recommended_config.use_memory_optimization {
807 improvement *= 1.4;
808 }
809 if recommended_config.use_adaptive_optimization {
810 improvement *= 1.2;
811 }
812
813 improvement
814 }
815
816 fn estimate_switching_overhead(&self, _recommendedconfig: &OptimalConfiguration) -> Duration {
818 Duration::from_millis(50)
820 }
821
822 fn get_gpu_metrics(
824 &self,
825 _gpu_accelerator: &AdvancedGPUAccelerator<F>,
826 ) -> IntegrateResult<GpuMetrics> {
827 Ok(GpuMetrics {
828 utilization: 0.75,
829 expected_utilization: 0.85,
830 memory_bandwidth: 0.80,
831 kernel_efficiency: 0.90,
832 })
833 }
834
835 fn get_memory_metrics(
837 &self,
838 _memory_optimizer: &AdvancedMemoryOptimizer<F>,
839 ) -> IntegrateResult<MemoryMetrics> {
840 Ok(MemoryMetrics {
841 pressure_ratio: 0.65,
842 allocation_rate: 1000.0,
843 fragmentation_ratio: 0.15,
844 cache_miss_rate: 0.05,
845 })
846 }
847
848 fn get_simd_metrics(
850 &self,
851 _simd_accelerator: &AdvancedSimdAccelerator<F>,
852 ) -> IntegrateResult<SimdMetrics> {
853 Ok(SimdMetrics {
854 vectorization_ratio: 0.75,
855 instruction_efficiency: 0.85,
856 alignment_efficiency: 0.90,
857 })
858 }
859
860 fn standard_rk4_step(
862 &self,
863 t: F,
864 y: &ArrayView1<F>,
865 h: F,
866 f: impl Fn(F, &ArrayView1<F>) -> IntegrateResult<Array1<F>>,
867 ) -> IntegrateResult<Array1<F>> {
868 let k1 = f(t, y)?;
869 let k1_scaled: Array1<F> = &k1 * h;
870 let y1 = y.to_owned() + &k1_scaled * F::from(0.5).unwrap();
871
872 let k2 = f(t + h * F::from(0.5).unwrap(), &y1.view())?;
873 let k2_scaled: Array1<F> = &k2 * h;
874 let y2 = y.to_owned() + &k2_scaled * F::from(0.5).unwrap();
875
876 let k3 = f(t + h * F::from(0.5).unwrap(), &y2.view())?;
877 let k3_scaled: Array1<F> = &k3 * h;
878 let y3 = y.to_owned() + &k3_scaled;
879
880 let k4 = f(t + h, &y3.view())?;
881
882 let one_sixth = F::from(1.0 / 6.0).unwrap();
883 let one_third = F::from(1.0 / 3.0).unwrap();
884
885 let k_combination = &k1 * one_sixth + &k2 * one_third + &k3 * one_third + &k4 * one_sixth;
886 let h_k_combination = &k_combination * h;
887 Ok(y.to_owned() + h_k_combination)
888 }
889
890 fn apply_adaptive_optimization(
892 &self,
893 _adaptive_optimizer: &RealTimeAdaptiveOptimizer<F>,
894 _execution_time: &Duration,
895 ) -> IntegrateResult<()> {
896 Ok(())
899 }
900
901 fn estimate_memory_usage(&self, _problemsize: usize) -> usize {
903 let base_memory = _problemsize * std::mem::size_of::<F>() * 5; if self.config.enable_gpu {
905 base_memory * 2 } else {
907 base_memory
908 }
909 }
910
911 fn count_active_components(&self) -> usize {
913 let mut count = 0;
914 if self.config.enable_gpu {
915 count += 1;
916 }
917 if self.config.enable_memory_optimization {
918 count += 1;
919 }
920 if self.config.enable_simd {
921 count += 1;
922 }
923 if self.config.enable_adaptive_optimization {
924 count += 1;
925 }
926 if self.config.enable_neural_rl {
927 count += 1;
928 }
929 count
930 }
931
932 fn estimate_speedup(&self) -> f64 {
934 let mut speedup = 1.0;
935 if self.config.enable_gpu {
936 speedup *= 5.0;
937 }
938 if self.config.enable_memory_optimization {
939 speedup *= 1.5;
940 }
941 if self.config.enable_simd {
942 speedup *= 2.0;
943 }
944 if self.config.enable_adaptive_optimization {
945 speedup *= 1.2;
946 }
947 if self.config.enable_neural_rl {
948 speedup *= 1.8; }
950 speedup
951 }
952
953 fn estimate_memory_efficiency(&self) -> f64 {
955 if self.config.enable_memory_optimization {
956 0.85
957 } else {
958 0.60
959 }
960 }
961
962 fn estimate_power_efficiency(&self) -> f64 {
964 let mut efficiency: f64 = 0.70; if self.config.enable_adaptive_optimization {
966 efficiency += 0.15;
967 }
968 if self.config.enable_memory_optimization {
969 efficiency += 0.10;
970 }
971 efficiency.min(0.95)
972 }
973
974 fn generate_optimization_recommendations(&self) -> Vec<String> {
976 let mut recommendations = Vec::new();
977
978 if !self.config.enable_gpu {
979 recommendations.push(
980 "Consider enabling GPU acceleration for problems > 1000 elements".to_string(),
981 );
982 }
983
984 if !self.config.enable_simd {
985 recommendations
986 .push("Enable SIMD acceleration for improved vectorized operations".to_string());
987 }
988
989 if !self.config.enable_adaptive_optimization {
990 recommendations.push(
991 "Enable real-time adaptive optimization for dynamic performance tuning".to_string(),
992 );
993 }
994
995 if !self.config.enable_neural_rl {
996 recommendations.push(
997 "Enable neural RL step control for intelligent adaptive step size optimization"
998 .to_string(),
999 );
1000 }
1001
1002 if recommendations.is_empty() {
1003 recommendations.push("All Advanced mode optimizations are active!".to_string());
1004 }
1005
1006 recommendations
1007 }
1008
1009 fn calculate_rl_reward(
1011 &self,
1012 solution: &Array1<F>,
1013 target_error: F,
1014 execution_time: &Duration,
1015 ) -> IntegrateResult<F> {
1016 let accuracy_reward = if solution.iter().any(|&x| x.is_nan() || x.is_infinite()) {
1020 F::from(-10.0).unwrap() } else {
1022 let solution_norm = solution
1023 .iter()
1024 .map(|&x| x * x)
1025 .fold(F::zero(), |acc, x| acc + x)
1026 .sqrt();
1027 let error_estimate = solution_norm * target_error;
1028 let accuracy_score = (-error_estimate.to_f64().unwrap_or(1.0).ln().max(-10.0)).min(5.0);
1029 F::from(accuracy_score).unwrap_or(F::zero())
1030 };
1031
1032 let efficiency_reward = {
1034 let time_ms = execution_time.as_millis() as f64;
1035 let efficiency_score = if time_ms > 0.0 {
1036 (1000.0 / time_ms).ln().max(-5.0).min(3.0)
1037 } else {
1038 3.0 };
1040 F::from(efficiency_score).unwrap_or(F::zero())
1041 };
1042
1043 let stability_reward = F::from(1.0).unwrap(); let total_reward = accuracy_reward * F::from(0.5).unwrap()
1048 + efficiency_reward * F::from(0.3).unwrap()
1049 + stability_reward * F::from(0.2).unwrap();
1050
1051 Ok(total_reward)
1052 }
1053
1054 fn extract_state_features(
1056 &self,
1057 solution: &Array1<F>,
1058 step_size: F,
1059 error: F,
1060 ) -> IntegrateResult<Array1<F>> {
1061 let mut features = Array1::zeros(64);
1062
1063 if !solution.is_empty() {
1065 let mean =
1066 solution.iter().copied().sum::<F>() / F::from(solution.len()).unwrap_or(F::one());
1067 let max_val = solution
1068 .iter()
1069 .fold(F::neg_infinity(), |acc, &x| acc.max(x));
1070 let min_val = solution.iter().fold(F::infinity(), |acc, &x| acc.min(x));
1071 let range = max_val - min_val;
1072
1073 features[0] = mean;
1074 features[1] = max_val;
1075 features[2] = min_val;
1076 features[3] = range;
1077 features[4] = step_size;
1078 features[5] = error;
1079
1080 for i in 6..16 {
1082 if i - 6 < solution.len() {
1083 features[i] = solution[i - 6];
1084 }
1085 }
1086 }
1087
1088 features[16] = F::from(solution.len()).unwrap_or(F::zero());
1090 features[17] = step_size.ln().max(F::from(-10.0).unwrap());
1091 features[18] = error.ln().max(F::from(-20.0).unwrap());
1092
1093 let estimated_complexity = F::from(solution.len() as f64).unwrap().sqrt();
1095 features[32] = estimated_complexity;
1096
1097 for i in 48..64 {
1100 features[i] = if i % 2 == 0 { step_size } else { error };
1101 }
1102
1103 Ok(features)
1104 }
1105
1106 fn estimate_problem_complexity(&self, y: &ArrayView1<F>, h: F) -> IntegrateResult<f64> {
1108 let system_size = y.len() as f64;
1109 let step_size = h.to_f64().unwrap_or(0.01);
1110
1111 let size_factor = (system_size / 1000.0).min(1.0);
1113 let step_factor = if step_size < 1e-6 {
1114 1.0
1115 } else {
1116 (1e-3 / step_size).min(1.0)
1117 };
1118 let stiffness_factor = self.estimate_stiffness_ratio(y)?;
1119
1120 let complexity = (0.4 * size_factor + 0.3 * step_factor + 0.3 * stiffness_factor).min(1.0);
1122 Ok(complexity)
1123 }
1124
1125 fn calculate_optimal_batch_size(&self, systemsize: usize, complexity: f64) -> usize {
1127 let base_batch = if systemsize > 5000 {
1129 128
1130 } else if systemsize > 1000 {
1131 64
1132 } else {
1133 32
1134 };
1135
1136 let complexity_factor = 1.0 + complexity * 0.5;
1138 ((base_batch as f64 * complexity_factor) as usize)
1139 .min(512)
1140 .max(16)
1141 }
1142
1143 fn estimate_stiffness_ratio(&self, y: &ArrayView1<F>) -> IntegrateResult<f64> {
1145 let variance = y
1147 .iter()
1148 .map(|&val| {
1149 let v = val.to_f64().unwrap_or(0.0);
1150 v * v
1151 })
1152 .sum::<f64>()
1153 / y.len() as f64;
1154
1155 let stiffness_estimate = (variance / (1.0 + variance)).min(1.0);
1157 Ok(stiffness_estimate)
1158 }
1159}
1160
1161#[derive(Debug)]
1163pub struct AdvancedModePerformanceReport {
1164 pub components_active: usize,
1166 pub estimated_speedup: f64,
1168 pub memory_efficiency: f64,
1170 pub power_efficiency: f64,
1172 pub recommendations: Vec<String>,
1174 pub performance_history: PerformanceHistory,
1176 pub hardware_utilization: HardwareUtilization,
1178 pub bottleneck_analysis: BottleneckAnalysis,
1180 pub real_time_metrics: RealTimeMetrics,
1182}
1183
1184#[derive(Debug, Clone)]
1186pub struct ProblemCharacteristics {
1187 pub dimension: usize,
1189 pub stiffness_ratio: f64,
1191 pub memory_requirements: usize,
1193 pub computational_complexity: f64,
1195 pub access_pattern: DataAccessPattern,
1197 pub parallelization_potential: f64,
1199}
1200
1201#[derive(Debug, Clone)]
1203pub enum DataAccessPattern {
1204 Sequential,
1205 Random,
1206 Strided,
1207 Sparse,
1208 Dense,
1209}
1210
1211#[derive(Debug, Clone)]
1213pub struct PerformanceMetrics {
1214 pub throughput: f64,
1216 pub memory_usage: usize,
1218 pub execution_time: Duration,
1220 pub error_rate: f64,
1222}
1223
1224#[derive(Debug, Clone)]
1226pub struct PerformancePrediction {
1227 pub throughput_improvement: f64,
1229 pub memory_efficiency: f64,
1231 pub confidence: f64,
1233 pub predicted_execution_time: Duration,
1235}
1236
1237impl Default for PerformancePrediction {
1238 fn default() -> Self {
1239 Self {
1240 throughput_improvement: 1.0,
1241 memory_efficiency: 0.5,
1242 confidence: 0.0,
1243 predicted_execution_time: Duration::from_millis(1000),
1244 }
1245 }
1246}
1247
1248#[derive(Debug)]
1250pub struct AlgorithmSwitchRecommendation {
1251 pub recommended_config: OptimalConfiguration,
1253 pub confidence_score: f64,
1255 pub expected_improvement: f64,
1257 pub switch_cost: Duration,
1259}
1260
1261#[derive(Debug, Clone)]
1263pub struct OptimalConfiguration {
1264 pub use_gpu: bool,
1266 pub use_simd: bool,
1268 pub use_memory_optimization: bool,
1270 pub use_adaptive_optimization: bool,
1272 pub thread_count: usize,
1274 pub batch_size: usize,
1276}
1277
1278#[derive(Debug)]
1280pub struct PerformanceAnomaly {
1281 pub anomaly_type: AnomalyType,
1283 pub severity: AnomalySeverity,
1285 pub description: String,
1287 pub suggested_action: String,
1289 pub detected_at: Instant,
1291}
1292
1293#[derive(Debug, Clone)]
1295pub enum AnomalyType {
1296 LowGpuUtilization,
1297 MemoryPressure,
1298 PoorVectorization,
1299 ThreadContention,
1300 CacheMisses,
1301 BandwidthBottleneck,
1302}
1303
1304#[derive(Debug, Clone)]
1306pub enum AnomalySeverity {
1307 Low,
1308 Medium,
1309 High,
1310 Critical,
1311}
1312
1313#[derive(Debug)]
1315pub struct PerformanceHistory {
1316 pub samples: Vec<PerformanceSample>,
1318 pub trends: PerformanceTrends,
1320}
1321
1322#[derive(Debug, Clone)]
1324pub struct PerformanceSample {
1325 pub timestamp: Instant,
1327 pub throughput: f64,
1329 pub memory_usage: usize,
1331 pub configuration: OptimalConfiguration,
1333}
1334
1335#[derive(Debug)]
1337pub struct PerformanceTrends {
1338 pub throughput_trend: f64,
1340 pub memory_trend: f64,
1342 pub stability_metric: f64,
1344}
1345
1346#[derive(Debug)]
1348pub struct HardwareUtilization {
1349 pub cpu_utilization: f64,
1351 pub gpu_utilization: f64,
1353 pub memory_utilization: f64,
1355 pub cache_hit_rates: CacheHitRates,
1357}
1358
1359#[derive(Debug)]
1361pub struct CacheHitRates {
1362 pub l1_hit_rate: f64,
1364 pub l2_hit_rate: f64,
1366 pub l3_hit_rate: f64,
1368}
1369
1370#[derive(Debug)]
1372pub struct BottleneckAnalysis {
1373 pub primary_bottleneck: BottleneckType,
1375 pub secondary_bottlenecks: Vec<BottleneckType>,
1377 pub impact_scores: HashMap<BottleneckType, f64>,
1379}
1380
1381#[derive(Debug, Clone, Hash, Eq, PartialEq)]
1383pub enum BottleneckType {
1384 Memory,
1385 Compute,
1386 IO,
1387 Synchronization,
1388 Cache,
1389 Network,
1390}
1391
1392#[derive(Debug)]
1394pub struct RealTimeMetrics {
1395 pub current_throughput: f64,
1397 pub current_latency: Duration,
1399 pub queue_depths: QueueDepths,
1401 pub contention_indicators: ContentionIndicators,
1403}
1404
1405#[derive(Debug)]
1407pub struct QueueDepths {
1408 pub gpu_queue_depth: usize,
1410 pub cpu_queue_depth: usize,
1412 pub memory_queue_depth: usize,
1414}
1415
1416#[derive(Debug)]
1418pub struct ContentionIndicators {
1419 pub lock_contention_rate: f64,
1421 pub memory_contention_rate: f64,
1423 pub cache_contention_rate: f64,
1425}
1426
1427#[derive(Debug)]
1429pub struct GpuMetrics {
1430 pub utilization: f64,
1432 pub expected_utilization: f64,
1434 pub memory_bandwidth: f64,
1436 pub kernel_efficiency: f64,
1438}
1439
1440#[derive(Debug)]
1442pub struct MemoryMetrics {
1443 pub pressure_ratio: f64,
1445 pub allocation_rate: f64,
1447 pub fragmentation_ratio: f64,
1449 pub cache_miss_rate: f64,
1451}
1452
1453#[derive(Debug)]
1455pub struct SimdMetrics {
1456 pub vectorization_ratio: f64,
1458 pub instruction_efficiency: f64,
1460 pub alignment_efficiency: f64,
1462}
1463
1464impl Default for AdvancedModeConfig {
1465 fn default() -> Self {
1466 AdvancedModeConfig {
1467 enable_gpu: true,
1468 enable_memory_optimization: true,
1469 enable_simd: true,
1470 enable_adaptive_optimization: true,
1471 enable_neural_rl: true,
1472 performance_targets: PerformanceTargets {
1473 target_throughput: 100.0,
1474 max_memory_usage: 1024 * 1024 * 1024, target_accuracy: 1e-8,
1476 max_execution_time: Duration::from_secs(1),
1477 },
1478 }
1479 }
1480}
1481
1482impl Default for PerformanceTargets {
1483 fn default() -> Self {
1484 PerformanceTargets {
1485 target_throughput: 100.0,
1486 max_memory_usage: 1024 * 1024 * 1024, target_accuracy: 1e-8,
1488 max_execution_time: Duration::from_secs(1),
1489 }
1490 }
1491}
1492
1493#[cfg(test)]
1494mod tests {
1495 use super::*;
1496 use scirs2_core::ndarray::array;
1497
1498 #[test]
1499 fn test_advanced_mode_coordinator_creation() {
1500 let config = AdvancedModeConfig::default();
1501 let coordinator = AdvancedModeCoordinator::<f64>::new(config);
1502 assert!(coordinator.is_ok());
1503 }
1504
1505 #[test]
1506 fn test_advanced_mode_integration() {
1507 let config = AdvancedModeConfig {
1509 enable_gpu: false, enable_memory_optimization: false, enable_simd: false, enable_adaptive_optimization: false, enable_neural_rl: false, performance_targets: PerformanceTargets::default(),
1515 };
1516 let coordinator = AdvancedModeCoordinator::<f64>::new(config).unwrap();
1517
1518 let ode_func =
1520 |_t: f64, y: &ArrayView1<f64>| -> IntegrateResult<Array1<f64>> { Ok(-y.to_owned()) };
1521
1522 let y = array![1.0, 0.5];
1523 let t = 0.0;
1524 let h = 0.01;
1525
1526 let result = coordinator.advanced_rk4_integration(t, &y.view(), h, ode_func);
1527 assert!(result.is_ok());
1528
1529 let advanced_result = result.unwrap();
1530 assert_eq!(advanced_result.solution.len(), y.len());
1531 }
1533
1534 #[test]
1535 fn test_performance_report() {
1536 let config = AdvancedModeConfig {
1538 enable_gpu: false,
1539 enable_memory_optimization: true,
1540 enable_simd: false,
1541 enable_adaptive_optimization: false,
1542 enable_neural_rl: false,
1543 performance_targets: PerformanceTargets::default(),
1544 };
1545 let coordinator = AdvancedModeCoordinator::<f64>::new(config).unwrap();
1546
1547 let report = coordinator.get_performance_report().unwrap();
1548 assert_eq!(report.components_active, 1); assert!(report.estimated_speedup > 1.0);
1550 }
1551
1552 #[test]
1553 fn test_neural_rl_integration() {
1554 let config = AdvancedModeConfig {
1556 enable_gpu: false, enable_memory_optimization: false, enable_simd: false, enable_adaptive_optimization: false, enable_neural_rl: true, performance_targets: PerformanceTargets::default(),
1562 };
1563 let coordinator = AdvancedModeCoordinator::<f64>::new(config).unwrap();
1564
1565 let ode_func =
1567 |_t: f64, y: &ArrayView1<f64>| -> IntegrateResult<Array1<f64>> { Ok(-y.to_owned()) };
1568
1569 let y = array![1.0, 0.5];
1570 let t = 0.0;
1571 let h = 0.1; let rtol = 1e-3; let atol = 1e-5; let result =
1576 coordinator.neural_rl_adaptive_integration(t, &y.view(), h, rtol, atol, ode_func);
1577 assert!(result.is_ok());
1578
1579 let advanced_result = result.unwrap();
1580 assert_eq!(advanced_result.solution.len(), y.len());
1581 assert!(advanced_result
1583 .optimizations_applied
1584 .iter()
1585 .any(|opt| opt.contains("Neural RL")));
1586 }
1587}