Module autodiff

Module autodiff 

Source
Expand description

Enhanced automatic differentiation for numerical integration

This module provides advanced automatic differentiation capabilities including:

  • Forward mode AD for efficient gradient computation
  • Reverse mode AD for efficient Jacobian computation
  • Sparse Jacobian optimization
  • Sensitivity analysis tools

Re-exports§

pub use dual::Dual;
pub use dual::DualVector;
pub use forward::forward_gradient;
pub use forward::forward_jacobian;
pub use forward::ForwardAD;
pub use forward::ForwardODEJacobian;
pub use forward::VectorizedForwardAD;
pub use reverse::reverse_gradient;
pub use reverse::reverse_jacobian;
pub use reverse::CheckpointStrategy;
pub use reverse::ReverseAD;
pub use reverse::Tape;
pub use reverse::TapeNode;
pub use sensitivity::compute_sensitivities;
pub use sensitivity::MorrisScreening;
pub use sensitivity::ParameterSensitivity;
pub use sensitivity::SensitivityAnalysis;
pub use sensitivity::SobolSensitivity;
pub use sensitivity::EFAST;
pub use sparse::colored_jacobian;
pub use sparse::compress_jacobian;
pub use sparse::detect_sparsity;
pub use sparse::detect_sparsity_adaptive;
pub use sparse::BlockPattern;
pub use sparse::CSCJacobian;
pub use sparse::CSRJacobian;
pub use sparse::ColGrouping;
pub use sparse::HybridJacobian;
pub use sparse::SparseJacobian;
pub use sparse::SparseJacobianUpdater;
pub use sparse::SparsePattern;

Modules§

dual
Dual number implementation for automatic differentiation
forward
Forward mode automatic differentiation
reverse
Reverse mode automatic differentiation (backpropagation)
sensitivity
Sensitivity analysis tools
sparse
Sparse Jacobian optimization