Expand description
Enhanced automatic differentiation for numerical integration
This module provides advanced automatic differentiation capabilities including:
- Forward mode AD for efficient gradient computation
- Reverse mode AD for efficient Jacobian computation
- Sparse Jacobian optimization
- Sensitivity analysis tools
Re-exports§
pub use dual::Dual;pub use dual::DualVector;pub use forward::forward_gradient;pub use forward::forward_jacobian;pub use forward::ForwardAD;pub use forward::ForwardODEJacobian;pub use forward::VectorizedForwardAD;pub use reverse::reverse_gradient;pub use reverse::reverse_jacobian;pub use reverse::CheckpointStrategy;pub use reverse::ReverseAD;pub use reverse::Tape;pub use reverse::TapeNode;pub use sensitivity::compute_sensitivities;pub use sensitivity::MorrisScreening;pub use sensitivity::ParameterSensitivity;pub use sensitivity::SensitivityAnalysis;pub use sensitivity::SobolSensitivity;pub use sensitivity::EFAST;pub use sparse::colored_jacobian;pub use sparse::compress_jacobian;pub use sparse::detect_sparsity;pub use sparse::detect_sparsity_adaptive;pub use sparse::BlockPattern;pub use sparse::CSCJacobian;pub use sparse::CSRJacobian;pub use sparse::ColGrouping;pub use sparse::HybridJacobian;pub use sparse::SparseJacobian;pub use sparse::SparseJacobianUpdater;pub use sparse::SparsePattern;
Modules§
- dual
- Dual number implementation for automatic differentiation
- forward
- Forward mode automatic differentiation
- reverse
- Reverse mode automatic differentiation (backpropagation)
- sensitivity
- Sensitivity analysis tools
- sparse
- Sparse Jacobian optimization