Expand description
Forward mode automatic differentiation
Forward mode AD is efficient for computing gradients when the number of inputs is small compared to the number of outputs.
Structs§
- ForwardAD
- Forward mode automatic differentiation engine
- ForwardODE
Jacobian - Forward mode AD for ODE right-hand side functions
- Vectorized
ForwardAD - Vectorized forward mode AD for computing multiple directional derivatives
Functions§
- example_
rosenbrock_ gradient - Example: Rosenbrock function gradient
- forward_
gradient - Compute gradient using forward mode AD (convenience function)
- forward_
jacobian - Compute Jacobian using forward mode AD (convenience function)