Module forward

Module forward 

Source
Expand description

Forward mode automatic differentiation

Forward mode AD is efficient for computing gradients when the number of inputs is small compared to the number of outputs.

Structs§

ForwardAD
Forward mode automatic differentiation engine
ForwardODEJacobian
Forward mode AD for ODE right-hand side functions
VectorizedForwardAD
Vectorized forward mode AD for computing multiple directional derivatives

Functions§

example_rosenbrock_gradient
Example: Rosenbrock function gradient
forward_gradient
Compute gradient using forward mode AD (convenience function)
forward_jacobian
Compute Jacobian using forward mode AD (convenience function)