1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
/*!
A lightweight micro-benchmarking library which:

* uses linear regression to screen off constant error;
* handles benchmarks which mutate state;
* can measure simple polynomial or exponential scaling behavior
* is very easy to use!

`scaling` is designed to work with either slow or fast functions.
It's forked from [easybench], which is itself inspired by [criterion],
but doesn't do as much sophisticated
analysis (no outlier detection, no HTML output).

[easybench]: https://crates.io/crates/easybench
[criterion]: https://crates.io/crates/criterion

```
use scaling::{bench,bench_env,bench_scaling};

# fn fib(_: usize) -> usize { 0 }
#
// Simple benchmarks are performed with `bench` or `bench_scaling`.
println!("fib 200: {}", bench(|| fib(200) ));
println!("fib 500: {}", bench(|| fib(500) ));
println!("fib scaling: {}", bench_scaling(|n| fib(n), 0));

// If a function needs to mutate some state, use `bench_env`.
println!("reverse: {}", bench_env(vec![0;100], |xs| xs.reverse() ));
println!("sort:    {}", bench_env(vec![0;100], |xs| xs.sort()    ));
```

Running the above yields the following results:

```none
fib 200:        50ns (R²=0.995, 20435 iterations in 68 samples)
fib 500:       144ns (R²=0.999, 7235 iterations in 57 samples)
fib scaling:   0.30ns/N    (R²=0.999, 8645 iterations in 59 samples)
reverse:        46ns (R²=0.990, 30550 iterations in 72 samples)
sort:          137ns (R²=0.991, 187129 iterations in 91 samples)
```

Easy! However, please read the [caveats](#caveats) below before using.

# Benchmarking algorithm

An *iteration* is a single execution of your code. A *sample* is a measurement,
during which your code may be run many times. In other words: taking a sample
means performing some number of iterations and measuring the total time.

The first sample we take performs only 1 iteration, but as we continue
taking samples we increase the number of iterations with increasing
rapidity. We
stop either when a global time limit is reached (currently 10 seconds),
or when we have collected sufficient statistics (but have run for at
least a millisecond).

If a benchmark requires some state to run, `n` copies of the initial state are
prepared before the sample is taken.

Once we have the data, we perform OLS linear regression to find out how
the sample time varies with the number of iterations in the sample. The
gradient of the regression line tells us how long it takes to perform a
single iteration of the benchmark. The R² value is a measure of how much
noise there is in the data.

If the function is too slow (5 or 10 seconds), the linear regression is skipped,
and a simple average of timings is used.  For slow functions, any overhead will
be negligible.

# Caveats

## Caveat 1: Harness overhead

**TL;DR: Compile with `--release`; the overhead is likely to be within the
**noise of your
benchmark.**

Any work which `scaling` does once-per-sample is ignored (this is the purpose of the linear
regression technique described above). However, work which is done once-per-iteration *will* be
counted in the final times.

* In the case of [`bench()`] this amounts to incrementing the loop counter and
  [copying the return value](#bonus-caveat-black-box).
* In the case of [`bench_env`] and [`bench_gen_env`], we also do a lookup into a big vector in
  order to get the environment for that iteration.
* If you compile your program unoptimised, there may be additional overhead.

The cost of the above operations depend on the details of your benchmark;
namely: (1) how large is the return value? and (2) does the benchmark evict
the environment vector from the CPU cache? In practice, these criteria are only
satisfied by longer-running benchmarks, making these effects hard to measure.

## Caveat 2: Pure functions

**TL;DR: Return enough information to prevent the optimiser from eliminating
code from your benchmark.**

Benchmarking pure functions involves a nasty gotcha which users should be
aware of. Consider the following benchmarks:

```
# use scaling::{bench,bench_env};
#
# fn fib(_: usize) -> usize { 0 }
#
let fib_1 = bench(|| fib(500) );                     // fine
let fib_2 = bench(|| { fib(500); } );                // spoiler: NOT fine
let fib_3 = bench_env(0, |x| { *x = fib(500); } );   // also fine, but ugly
# let _ = (fib_1, fib_2, fib_3);
```

The results are a little surprising:

```none
fib_1:        110 ns   (R²=1.000, 9131585 iterations in 144 samples)
fib_2:          0 ns   (R²=1.000, 413289203 iterations in 184 samples)
fib_3:        109 ns   (R²=1.000, 9131585 iterations in 144 samples)
```

Oh, `fib_2`, why do you lie? The answer is: `fib(500)` is pure, and its
return value is immediately thrown away, so the optimiser replaces the call
with a no-op (which clocks in at 0 ns).

What about the other two? `fib_1` looks very similar, with one exception:
the closure which we're benchmarking returns the result of the `fib(500)`
call. When it runs your code, `scaling` takes the return value and tricks the
optimiser into thinking it's going to use it for something, before throwing
it away. This is why `fib_1` is safe from having code accidentally eliminated.

In the case of `fib_3`, we actually *do* use the return value: each
iteration we take the result of `fib(500)` and store it in the iteration's
environment. This has the desired effect, but looks a bit weird.

## Bonus caveat: Black box

The function which `scaling` uses to trick the optimiser (`black_box`)
is stolen from [bencher], which [states]:

[bencher]: https://docs.rs/bencher/
[states]: https://docs.rs/bencher/0.1.2/bencher/fn.black_box.html

> NOTE: We don't have a proper black box in stable Rust. This is a workaround
> implementation, that may have a too big performance overhead, depending on
> operation, or it may fail to properly avoid having code optimized out. It
> is good enough that it is used by default.
*/

use std::f64;
use std::fmt::{self, Display, Formatter};
use std::time::*;

// We try to spend at very most this many seconds (roughly) in total on
// each benchmark.
const BENCH_TIME_MAX_DESPERATION: Duration = Duration::from_secs(120);
// We try to spend at most this many seconds (roughly) in total on
// each benchmark.
const BENCH_TIME_MAX: Duration = Duration::from_secs(10);
// We try to spend at least this many seconds in total on each
// benchmark.
const BENCH_TIME_MIN: Duration = Duration::from_millis(1);

/// Statistics for a benchmark run.
#[derive(Debug, PartialEq, Clone)]
pub struct Stats {
    /// The time, in nanoseconds, per iteration. If the benchmark generated
    /// fewer than 2 samples in the allotted time then this will be NaN.
    pub ns_per_iter: f64,
    /// The coefficient of determination, R².
    ///
    /// This is an indication of how noisy the benchmark was, where 1 is
    /// good and 0 is bad. Be suspicious of values below 0.9.
    pub goodness_of_fit: f64,
    /// How many times the benchmarked code was actually run.
    pub iterations: usize,
    /// How many samples were taken (ie. how many times we allocated the
    /// environment and measured the time).
    pub samples: usize,
}

impl Display for Stats {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        if self.ns_per_iter.is_nan() {
            write!(
                f,
                "Only generated {} sample(s) - we can't fit a regression line to that! \
                 Try making your benchmark faster.",
                self.samples
            )
        } else {
            let per_iter = Duration::from_nanos(self.ns_per_iter as u64);
            let per_iter = format!("{:?}", per_iter);
            write!(
                f,
                "{:>11} (R²={:.3}, {} iterations in {} samples)",
                per_iter, self.goodness_of_fit, self.iterations, self.samples
            )
        }
    }
}

/// Run a benchmark.
///
/// The return value of `f` is not used, but we trick the optimiser into
/// thinking we're going to use it. Make sure to return enough information
/// to prevent the optimiser from eliminating code from your benchmark! (See
/// the module docs for more.)
pub fn bench<F, O>(mut f: F) -> Stats
where
    F: FnMut() -> O,
{
    bench_env((), |_| f())
}

/// Run a benchmark with an environment.
///
/// The value `env` is a clonable prototype for the "benchmark
/// environment". Each iteration receives a freshly-cloned mutable copy of
/// this environment. The time taken to clone the environment is not included
/// in the results.
///
/// Nb: it's very possible that we will end up allocating many (>10,000)
/// copies of `env` at the same time. Probably best to keep it small.
///
/// See `bench` and the module docs for more.
///
/// ## Overhead
///
/// Every iteration, `bench_env` performs a lookup into a big vector in
/// order to get the environment for that iteration. If your benchmark
/// is memory-intensive then this could, in the worst case, amount to a
/// systematic cache-miss (ie. this vector would have to be fetched from
/// DRAM at the start of every iteration). In this case the results could be
/// affected by a hundred nanoseconds. This is a worst-case scenario however,
/// and I haven't actually been able to trigger it in practice... but it's
/// good to be aware of the possibility.
pub fn bench_env<F, I, O>(env: I, f: F) -> Stats
where
    F: FnMut(&mut I) -> O,
    I: Clone,
{
    bench_gen_env(move || env.clone(), f)
}

/// Run a benchmark with a generated environment.
///
/// The function `gen_env` creates the "benchmark environment" for the
/// computation. Each iteration receives a freshly-created environment. The
/// time taken to create the environment is not included in the results.
///
/// Nb: it's very possible that we will end up generating many (>10,000)
/// copies of `env` at the same time. Probably best to keep it small.
///
/// See `bench` and the module docs for more.
///
/// ## Overhead
///
/// Every iteration, `bench_gen_env` performs a lookup into a big vector
/// in order to get the environment for that iteration. If your benchmark
/// is memory-intensive then this could, in the worst case, amount to a
/// systematic cache-miss (ie. this vector would have to be fetched from
/// DRAM at the start of every iteration). In this case the results could be
/// affected by a hundred nanoseconds. This is a worst-case scenario however,
/// and I haven't actually been able to trigger it in practice... but it's
/// good to be aware of the possibility.
pub fn bench_gen_env<G, F, I, O>(mut gen_env: G, mut f: F) -> Stats
where
    G: FnMut() -> I,
    F: FnMut(&mut I) -> O,
{
    let mut data = Vec::new();
    // The time we started the benchmark (not used in results)
    let bench_start = Instant::now();

    // Collect data until BENCH_TIME_MAX is reached.
    for iters in slow_fib(BENCH_SCALE_TIME) {
        // Prepare the environments - one per iteration
        let mut xs = std::iter::repeat_with(&mut gen_env)
            .take(iters)
            .collect::<Vec<I>>();
        // Start the clock
        let iter_start = Instant::now();
        // We iterate over `&mut xs` rather than draining it, because we
        // don't want to drop the env values until after the clock has stopped.
        for x in &mut xs {
            // Run the code and pretend to use the output
            pretend_to_use(f(x));
        }
        let time = iter_start.elapsed();
        data.push((iters, time));

        let elapsed = bench_start.elapsed();
        if elapsed > BENCH_TIME_MIN && data.len() > 3 {
            // If the first iter in a sample is consistently slow, that's fine -
            // that's why we do the linear regression. If the first sample is slower
            // than the rest, however, that's not fine.  Therefore, we discard the
            // first sample as a cache-warming exercise.

            // Compute some stats
            let (grad, r2) = regression(&data[1..]);
            let stats = Stats {
                ns_per_iter: grad,
                goodness_of_fit: r2,
                iterations: data[1..].iter().map(|&(x, _)| x).sum(),
                samples: data[1..].len(),
            };
            if elapsed > BENCH_TIME_MAX || r2 > 0.99 {
                return stats;
            }
        } else if elapsed > BENCH_TIME_MAX {
            let total_time: f64 = data.iter().map(|(_, t)| t.as_nanos() as f64).sum();
            let iterations = data.iter().map(|&(x, _)| x).sum();
            return Stats {
                ns_per_iter: total_time / iterations as f64,
                iterations,
                goodness_of_fit: 0.0,
                samples: data.len(),
            };
        }
    }
    unreachable!()
}

/// Statistics for a benchmark run determining the scaling of a function.
#[derive(Debug, PartialEq, Clone)]
pub struct ScalingStats {
    pub scaling: Scaling,
    pub goodness_of_fit: f64,
    /// How many times the benchmarked code was actually run.
    pub iterations: usize,
    /// How many samples were taken (ie. how many times we allocated the
    /// environment and measured the time).
    pub samples: usize,
}
/// The timing and scaling results (without statistics) for a benchmark.
#[derive(Debug, PartialEq, Clone)]
pub struct Scaling {
    /// The scaling power
    /// If this is 2, for instance, you have an O(N²) algorithm.
    pub power: usize,
    /// An exponetial behavior, i.e. 2ᴺ
    pub exponential: usize,
    /// The time, in nanoseconds, per scaled size of the problem. If
    /// the problem scales as O(N²) for instance, this is the number
    /// of nanoseconds per N².
    pub ns_per_scale: f64,
}

impl Display for ScalingStats {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        write!(
            f,
            "{} (R²={:.3}, {} iterations in {} samples)",
            self.scaling, self.goodness_of_fit, self.iterations, self.samples
        )
    }
}
impl Display for Scaling {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        let per_iter = Duration::from_nanos(self.ns_per_scale as u64);
        let per_iter = if self.ns_per_scale < 1.0 {
            format!("{:.2}ns", self.ns_per_scale)
        } else if self.ns_per_scale < 10.0 {
            format!("{:.1}ns", self.ns_per_scale)
        } else {
            format!("{:?}", per_iter)
        };
        if self.exponential == 1 {
            match self.power {
                0 => write!(f, "{:>8}/iter", per_iter),
                1 => write!(f, "{:>8}/N   ", per_iter),
                2 => write!(f, "{:>8}/N²  ", per_iter),
                3 => write!(f, "{:>8}/N³  ", per_iter),
                4 => write!(f, "{:>8}/N⁴  ", per_iter),
                5 => write!(f, "{:>8}/N⁵  ", per_iter),
                6 => write!(f, "{:>8}/N⁶  ", per_iter),
                7 => write!(f, "{:>8}/N⁷  ", per_iter),
                8 => write!(f, "{:>8}/N⁸  ", per_iter),
                9 => write!(f, "{:>8}/N⁹  ", per_iter),
                _ => write!(f, "{:>8}/N^{}", per_iter, self.power),
            }
        } else {
            match self.power {
                0 => write!(f, "{:>8}/{}ᴺ", per_iter, self.exponential),
                1 => write!(f, "{:>8}/(N{}ᴺ)   ", per_iter, self.exponential),
                2 => write!(f, "{:>8}/(N²{}ᴺ)  ", per_iter, self.exponential),
                3 => write!(f, "{:>8}/(N³{}ᴺ)  ", per_iter, self.exponential),
                4 => write!(f, "{:>8}/(N⁴{}ᴺ)  ", per_iter, self.exponential),
                5 => write!(f, "{:>8}/(N⁵{}ᴺ)  ", per_iter, self.exponential),
                6 => write!(f, "{:>8}/(N⁶{}ᴺ)  ", per_iter, self.exponential),
                7 => write!(f, "{:>8}/(N⁷{}ᴺ)  ", per_iter, self.exponential),
                8 => write!(f, "{:>8}/(N⁸{}ᴺ)  ", per_iter, self.exponential),
                9 => write!(f, "{:>8}/(N⁹{}ᴺ)  ", per_iter, self.exponential),
                _ => write!(f, "{:>8}/(N^{}{}ᴺ)", per_iter, self.power, self.exponential),
            }
        }
    }
}

/// Benchmark the power-law scaling of the function
///
/// This function assumes that the function scales as 𝑶(𝑁ᴾ𝐸ᴺ).
/// It conisders higher powers for faster functions, and tries to
/// keep the measuring time around 10s.  It measures the power ᴾ and exponential base 𝐸
/// based on n R² goodness of fit parameter.
pub fn bench_scaling<F, O>(f: F, nmin: usize) -> ScalingStats
where
    F: Fn(usize) -> O,
{
    let mut data = Vec::new();
    // The time we started the benchmark (not used in results)
    let bench_start = Instant::now();

    // Collect data until BENCH_TIME_MAX is reached.
    for iters in slow_fib(BENCH_SCALE_TIME) {
        // Prepare the environments - nmin per iteration
        let n = if nmin > 0 { iters * nmin } else { iters };
        // Generate a Vec holding n's to hopefully keep the optimizer
        // from lifting the function out of the loop, as it could if
        // we had `f(n)` in there, and `f` were inlined or `const`.
        let xs = vec![n; iters];
        // Start the clock
        let iter_start = Instant::now();
        for x in xs.into_iter() {
            // Run the code and pretend to use the output
            pretend_to_use(f(x));
        }
        let time = iter_start.elapsed();
        data.push((n, iters, time));

        let elapsed = bench_start.elapsed();
        if elapsed > BENCH_TIME_MIN {
            let stats = compute_scaling_gen(&data);
            if elapsed > BENCH_TIME_MAX_DESPERATION
                || (elapsed > BENCH_TIME_MAX && stats.goodness_of_fit > 0.0)
                || stats.goodness_of_fit > 0.99
            {
                return stats;
            }
        }
    }
    unreachable!()
}

/// Benchmark the power-law scaling of the function with generated input
///
/// This function is like [`bench_scaling`], but uses a generating function
/// to construct the input to your benchmarked function.
///
/// This function assumes that the function scales as 𝑶(𝑁ᴾ𝐸ᴺ).
/// It conisders higher powers for faster functions, and tries to
/// keep the measuring time around 10s.  It measures the power ᴾ and exponential base 𝐸
/// based on n R² goodness of fit parameter.
///
/// # Example
/// ```
/// use scaling::bench_scaling_gen;
///
/// let summation = bench_scaling_gen(|n| vec![3.0; n], |v| v.iter().cloned().sum::<f64>(),0);
/// println!("summation: {}", summation);
/// assert_eq!(1, summation.scaling.power); // summation must run in linear time.
/// ```
/// which gives output
/// ```none
/// summation:     43ns/N    (R²=0.996, 445 iterations in 29 samples)
/// ```
pub fn bench_scaling_gen<G, F, I, O>(mut gen_env: G, f: F, nmin: usize) -> ScalingStats
where
    G: FnMut(usize) -> I,
    F: Fn(&mut I) -> O,
{
    let mut data = Vec::new();
    // The time we started the benchmark (not used in results)
    let bench_start = Instant::now();

    let mut am_slow = false;
    // Collect data until BENCH_TIME_MAX is reached.
    for iters in slow_fib(BENCH_SCALE_TIME) {
        // Prepare the environments - nmin per iteration
        let n = if nmin > 0 { iters * nmin } else { iters };
        let iters = if am_slow { 1 + (iters & 1) } else { iters };
        let mut xs = std::iter::repeat_with(|| gen_env(n))
            .take(iters)
            .collect::<Vec<I>>();
        // Start the clock
        let iter_start = Instant::now();
        // We iterate over `&mut xs` rather than draining it, because we
        // don't want to drop the env values until after the clock has stopped.
        for x in &mut xs {
            // Run the code and pretend to use the output
            pretend_to_use(f(x));
        }
        let time = iter_start.elapsed();
        if !am_slow && iters == 1 && time > Duration::from_micros(1) {
            am_slow = true;
        }
        data.push((n, iters, time));

        let elapsed = bench_start.elapsed();
        if elapsed > BENCH_TIME_MIN {
            let stats = compute_scaling_gen(&data);
            if elapsed > BENCH_TIME_MAX_DESPERATION
                || (elapsed > BENCH_TIME_MAX && stats.goodness_of_fit > 0.0)
                || stats.goodness_of_fit > 0.99
            {
                return stats;
            }
        }
    }
    println!("how did I get here?!");
    unreachable!()
}

/// This function assumes that the function scales as 𝑶(𝑁ᴾ𝐸ᴺ).  It measures the scaling
/// based on n R² goodness of fit parameter, and returns the best fit.
/// If it believes itself clueless, the goodness_of_fit is set to zero.
fn compute_scaling_gen(data: &[(usize, usize, Duration)]) -> ScalingStats {
    let num_n = {
        let mut ns = data.iter().map(|(n, _, _)| *n).collect::<Vec<_>>();
        ns.dedup();
        ns.len()
    };

    // If the first iter in a sample is consistently slow, that's fine -
    // that's why we do the linear regression. If the first sample is slower
    // than the rest, however, that's not fine.  Therefore, we discard the
    // first sample as a cache-warming exercise.

    // Compute some stats for each of several different
    // powers, to see which seems most accurate.
    let mut stats = Vec::new();
    let mut best = 0;
    let mut second_best = 0;
    for i in 1..num_n / 2 + 2 {
        for power in 0..i {
            let exponential = i - power;
            let pdata: Vec<_> = data[1..]
                .iter()
                .map(|&(n, i, t)| {
                    (
                        (exponential as f64).powi(n as i32)
                            * (n as f64).powi(power as i32)
                            * (i as f64),
                        t,
                    )
                })
                .collect();
            let (grad, r2) = fregression(&pdata);
            stats.push(ScalingStats {
                scaling: Scaling {
                    power,
                    exponential,
                    ns_per_scale: grad,
                },
                goodness_of_fit: r2,
                iterations: data[1..].iter().map(|&(x, _, _)| x).sum(),
                samples: data[1..].len(),
            });
            if r2 > stats[best].goodness_of_fit || stats[best].goodness_of_fit.is_nan() {
                second_best = best;
                best = stats.len() - 1;
            }
        }
    }

    if num_n < 10 || stats[second_best].goodness_of_fit == stats[best].goodness_of_fit {
        stats[best].goodness_of_fit = 0.0;
    } else {
        // println!("finished...");
        // for s in stats.iter() {
        //     println!("  {}", s);
        // }
        // for d in data[data.len()-4..].iter() {
        //     println!("    {}, {} -> {} ns", d.0, d.1, d.2.as_nanos());
        // }
        // println!("best is {}", stats[best]);
    }
    stats[best].clone()
}

/// Compute the OLS linear regression line for the given data set, returning
/// the line's gradient and R². Requires at least 2 samples.
//
// Overflows:
//
// * sum(x * x): num_samples <= 0.5 * log_k (1 + 2 ^ 64 (FACTOR - 1))
fn regression(data: &[(usize, Duration)]) -> (f64, f64) {
    if data.len() < 2 {
        return (f64::NAN, f64::NAN);
    }
    // Do all the arithmetic using f64, because it can happen that the
    // squared numbers to overflow using integer arithmetic if the
    // tests are too fast (so we run too many iterations).
    let data: Vec<_> = data
        .iter()
        .map(|&(x, y)| (x as f64, y.as_nanos() as f64))
        .collect();
    let n = data.len() as f64;
    let nxbar = data.iter().map(|&(x, _)| x).sum::<f64>(); // iter_time > 5e-11 ns
    let nybar = data.iter().map(|&(_, y)| y).sum::<f64>(); // TIME_LIMIT < 2 ^ 64 ns
    let nxxbar = data.iter().map(|&(x, _)| x * x).sum::<f64>(); // num_iters < 13_000_000_000
    let nyybar = data.iter().map(|&(_, y)| y * y).sum::<f64>(); // TIME_LIMIT < 4.3 e9 ns
    let nxybar = data.iter().map(|&(x, y)| x * y).sum::<f64>();
    let ncovar = nxybar - ((nxbar * nybar) / n);
    let nxvar = nxxbar - ((nxbar * nxbar) / n);
    let nyvar = nyybar - ((nybar * nybar) / n);
    let gradient = ncovar / nxvar;
    let r2 = (ncovar * ncovar) / (nxvar * nyvar);
    assert!(r2.is_nan() || r2 <= 1.0);
    (gradient, r2)
}

/// Compute the OLS linear regression line for the given data set, returning
/// the line's gradient and R². Requires at least 2 samples.
//
// Overflows:
//
// * sum(x * x): num_samples <= 0.5 * log_k (1 + 2 ^ 64 (FACTOR - 1))
fn fregression(data: &[(f64, Duration)]) -> (f64, f64) {
    if data.len() < 2 {
        return (f64::NAN, f64::NAN);
    }
    // Do all the arithmetic using f64, because it can happen that the
    // squared numbers to overflow using integer arithmetic if the
    // tests are too fast (so we run too many iterations).
    let data: Vec<_> = data
        .iter()
        .map(|&(x, y)| (x as f64, y.as_nanos() as f64))
        .collect();
    let n = data.len() as f64;
    let xbar = data.iter().map(|&(x, _)| x).sum::<f64>() / n;
    let xvar = data.iter().map(|&(x, _)| (x - xbar).powi(2)).sum::<f64>() / n;
    let ybar = data.iter().map(|&(_, y)| y).sum::<f64>() / n;
    let yvar = data.iter().map(|&(_, y)| (y - ybar).powi(2)).sum::<f64>() / n;
    let covar = data
        .iter()
        .map(|&(x, y)| (x - xbar) * (y - ybar))
        .sum::<f64>()
        / n;
    let gradient = covar / xvar;
    let r2 = covar.powi(2) / (xvar * yvar);
    assert!(r2.is_nan() || r2 <= 1.0);
    (gradient, r2)
}

// Stolen from `bencher`, where it's known as `black_box`.
//
// NOTE: We don't have a proper black box in stable Rust. This is a workaround
// implementation, that may have a too big performance overhead, depending
// on operation, or it may fail to properly avoid having code optimized
// out. It is good enough that it is used by default.
//
// A function that is opaque to the optimizer, to allow benchmarks to pretend
// to use outputs to assist in avoiding dead-code elimination.
fn pretend_to_use<T>(dummy: T) -> T {
    unsafe {
        let ret = ::std::ptr::read_volatile(&dummy);
        ::std::mem::forget(dummy);
        ret
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::thread;
    use std::time::Duration;

    fn fib(n: usize) -> usize {
        let mut i = 0;
        let mut sum = 0;
        let mut last = 0;
        let mut curr = 1usize;
        while i < n - 1 {
            sum = curr.wrapping_add(last);
            last = curr;
            curr = sum;
            i += 1;
        }
        sum
    }

    // This is only here because doctests don't work with `--nocapture`.
    #[test]
    #[ignore]
    fn doctests_again() {
        println!();
        println!("fib 200: {}", bench(|| fib(200)));
        println!("fib 500: {}", bench(|| fib(500)));
        println!("fib scaling: {}", bench_scaling(|n| fib(n), 0));
        println!("reverse: {}", bench_env(vec![0; 100], |xs| xs.reverse()));
        println!("sort:    {}", bench_env(vec![0; 100], |xs| xs.sort()));

        // This is fine:
        println!("fib 1:   {}", bench(|| fib(500)));
        // This is NOT fine:
        println!(
            "fib 2:   {}",
            bench(|| {
                fib(500);
            })
        );
        // This is also fine, but a bit weird:
        println!(
            "fib 3:   {}",
            bench_env(0, |x| {
                *x = fib(500);
            })
        );
    }

    #[test]
    fn scales_o_one() {
        println!();
        let stats = bench_scaling(|_| thread::sleep(Duration::from_millis(10)), 1);
        println!("O(N): {}", stats);
        assert_eq!(stats.scaling.power, 0);
        println!("   error: {:e}", stats.scaling.ns_per_scale - 1e7);
        assert!((stats.scaling.ns_per_scale - 1e7).abs() < 1e6);
        assert!(format!("{}", stats).contains("samples"));
    }

    #[test]
    fn scales_o_n() {
        println!();
        let stats = bench_scaling(|n| thread::sleep(Duration::from_millis(10 * n as u64)), 1);
        println!("O(N): {}", stats);
        assert_eq!(stats.scaling.power, 1);
        println!("   error: {:e}", stats.scaling.ns_per_scale - 1e7);
        assert!((stats.scaling.ns_per_scale - 1e7).abs() < 1e5);

        println!("Summing integers");
        let stats = bench_scaling_gen(
            |n| (0..n as u64).collect::<Vec<_>>(),
            |v| v.iter().cloned().sum::<u64>(),
            1,
        );
        println!("O(N): {}", stats);
        println!("   error: {:e}", stats.scaling.ns_per_scale - 1e7);
        assert_eq!(stats.scaling.power, 1);
    }

    #[test]
    fn scales_o_n_log_n_looks_like_n() {
        println!("Sorting integers");
        let stats = bench_scaling_gen(
            |n| {
                (0..n as u64)
                    .map(|i| (i * 13 + 5) % 137)
                    .collect::<Vec<_>>()
            },
            |v| v.sort(),
            1,
        );
        println!("O(N log N): {}", stats);
        println!("   error: {:e}", stats.scaling.ns_per_scale - 1e7);
        assert_eq!(stats.scaling.power, 1);
    }

    #[test]
    fn scales_o_2_to_the_n() {
        println!();
        let stats = bench_scaling(|n| thread::sleep(Duration::from_nanos((1 << n) as u64)), 1);
        println!("O(2ᴺ): {}", stats);
        assert_eq!(stats.scaling.power, 0);
        assert_eq!(stats.scaling.exponential, 2);
        println!("   error: {:e}", stats.scaling.ns_per_scale - 1.0);
        assert!((stats.scaling.ns_per_scale - 1.0).abs() < 0.2);
    }

    #[test]
    fn scales_o_n_square() {
        println!();
        let stats = bench_scaling(
            |n| thread::sleep(Duration::from_millis(10 * (n * n) as u64)),
            1,
        );
        println!("O(N): {}", stats);
        assert_eq!(stats.scaling.power, 2);
        println!("   error: {:e}", stats.scaling.ns_per_scale - 1e7);
        assert!((stats.scaling.ns_per_scale - 1e7).abs() < 1e5);
    }

    #[test]
    fn very_quick() {
        println!();
        println!("very quick: {}", bench(|| {}));
    }

    #[test]
    fn very_slow() {
        println!();
        let stats = bench(|| thread::sleep(Duration::from_millis(400)));
        println!("very slow: {}", stats);
        assert!(stats.ns_per_iter > 399.0e6);
        assert_eq!(3, stats.samples);
    }

    #[test]
    fn painfully_slow() {
        println!();
        let stats = bench(|| thread::sleep(Duration::from_secs(11)));
        println!("painfully slow: {}", stats);
        println!("ns {}", stats.ns_per_iter);
        assert!(stats.ns_per_iter > 11.0e9);
        assert_eq!(1, stats.iterations);
    }

    #[test]
    fn sadly_slow() {
        println!();
        let stats = bench(|| thread::sleep(Duration::from_secs(6)));
        println!("sadly slow: {}", stats);
        println!("ns {}", stats.ns_per_iter);
        assert!(stats.ns_per_iter > 6.0e9);
        assert_eq!(2, stats.iterations);
    }

    #[test]
    fn test_sleep() {
        println!();
        println!(
            "sleep 1 ms: {}",
            bench(|| thread::sleep(Duration::from_millis(1)))
        );
    }

    #[test]
    fn noop() {
        println!();
        println!("noop base: {}", bench(|| {}));
        println!("noop 0:    {}", bench_env(vec![0u64; 0], |_| {}));
        println!("noop 16:   {}", bench_env(vec![0u64; 16], |_| {}));
        println!("noop 64:   {}", bench_env(vec![0u64; 64], |_| {}));
        println!("noop 256:  {}", bench_env(vec![0u64; 256], |_| {}));
        println!("noop 512:  {}", bench_env(vec![0u64; 512], |_| {}));
    }

    #[test]
    fn ret_value() {
        println!();
        println!(
            "no ret 32:    {}",
            bench_env(vec![0u64; 32], |x| { x.clone() })
        );
        println!("return 32:    {}", bench_env(vec![0u64; 32], |x| x.clone()));
        println!(
            "no ret 256:   {}",
            bench_env(vec![0u64; 256], |x| { x.clone() })
        );
        println!(
            "return 256:   {}",
            bench_env(vec![0u64; 256], |x| x.clone())
        );
        println!(
            "no ret 1024:  {}",
            bench_env(vec![0u64; 1024], |x| { x.clone() })
        );
        println!(
            "return 1024:  {}",
            bench_env(vec![0u64; 1024], |x| x.clone())
        );
        println!(
            "no ret 4096:  {}",
            bench_env(vec![0u64; 4096], |x| { x.clone() })
        );
        println!(
            "return 4096:  {}",
            bench_env(vec![0u64; 4096], |x| x.clone())
        );
        println!(
            "no ret 50000: {}",
            bench_env(vec![0u64; 50000], |x| { x.clone() })
        );
        println!(
            "return 50000: {}",
            bench_env(vec![0u64; 50000], |x| x.clone())
        );
    }
}

// Each time we take a sample we increase the number of iterations
// using a slow version of the Fibonacci sequence, which
// asymptotically grows exponentially, but also gives us a different
// value each time (except for repeating 1 twice, once for warmup).

// For our standard `bench_*` we use slow_fib(25), which was chosen to
// asymptotically match the prior behavior of the library, which grew
// by an exponential of 1.1.
const BENCH_SCALE_TIME: usize = 25;

fn slow_fib(scale_time: usize) -> impl Iterator<Item = usize> {
    #[derive(Debug)]
    struct SlowFib {
        which: usize,
        buffer: Vec<usize>,
    }
    impl Iterator for SlowFib {
        type Item = usize;
        fn next(&mut self) -> Option<usize> {
            // println!("!!! {:?}", self);
            let oldwhich = self.which;
            self.which = (self.which + 1) % self.buffer.len();
            self.buffer[self.which] = self.buffer[oldwhich] + self.buffer[self.which];
            Some(self.buffer[self.which])
        }
    }
    assert!(scale_time > 3);
    let mut buffer = vec![1; scale_time];
    // buffer needs just the two zeros to make it start with two 1
    // values.  The rest should be 1s.
    buffer[1] = 0;
    buffer[2] = 0;
    SlowFib { which: 0, buffer }
}

#[test]
fn test_fib() {
    // The following code was used to demonstrate that asymptotically
    // the SlowFib grows as the 1.1 power, just as the old code.  It
    // differs in that it increases linearly at the beginning, which
    // leads to larger numbers earlier in the sequence.  It also
    // differs in that it does not repeat any numbers in the sequence,
    // which hopefully leads to better linear regression, particularly
    // if we can only run a few iterations.
    let mut prev = 1;
    for x in slow_fib(25).take(200) {
        let rat = x as f64 / prev as f64;
        println!("ratio: {}/{} = {}", prev, x, rat);
        prev = x;
    }
    let five: Vec<_> = slow_fib(25).take(5).collect();
    assert_eq!(&five, &[1, 1, 2, 3, 4]);
    let more: Vec<_> = slow_fib(25).take(32).collect();
    assert_eq!(
        &more,
        &[
            1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
            24, 25, 26, 28, 31, 35, 40, 46,
        ]
    );
    let previous_sequence: Vec<_> = (0..32).map(|n| (1.1f64).powi(n).round() as usize).collect();
    assert_eq!(
        &previous_sequence,
        &[
            1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 9, 10, 11, 12, 13,
            14, 16, 17, 19,
        ]
    );
    let previous_sequence: Vec<_> = (20..40)
        .map(|n| (1.1f64).powi(n).round() as usize)
        .collect();
    assert_eq!(
        &previous_sequence,
        &[7, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 23, 26, 28, 31, 34, 37, 41,]
    );
}