1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
// Copyright 2019-2020 Parity Technologies (UK) Ltd.
// This file is part of Substrate.

// Substrate is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Substrate is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Substrate.  If not, see <http://www.gnu.org/licenses/>.

//! Schema for slots in the aux-db.

use codec::{Encode, Decode};
use sc_client_api::backend::AuxStore;
use sp_blockchain::{Result as ClientResult, Error as ClientError};
use sp_runtime::traits::Header;

const SLOT_HEADER_MAP_KEY: &[u8] = b"slot_header_map";
const SLOT_HEADER_START: &[u8] = b"slot_header_start";

/// We keep at least this number of slots in database.
pub const MAX_SLOT_CAPACITY: u64 = 1000;
/// We prune slots when they reach this number.
pub const PRUNING_BOUND: u64 = 2 * MAX_SLOT_CAPACITY;

fn load_decode<C, T>(backend: &C, key: &[u8]) -> ClientResult<Option<T>>
	where
		C: AuxStore,
		T: Decode,
{
	match backend.get_aux(key)? {
		None => Ok(None),
		Some(t) => T::decode(&mut &t[..])
			.map_err(
				|e| ClientError::Backend(format!("Slots DB is corrupted. Decode error: {}", e.what())),
			)
			.map(Some)
	}
}

/// Represents an equivocation proof.
#[derive(Debug, Clone)]
pub struct EquivocationProof<H> {
	slot: u64,
	fst_header: H,
	snd_header: H,
}

impl<H> EquivocationProof<H> {
	/// Get the slot number where the equivocation happened.
	pub fn slot(&self) -> u64 {
		self.slot
	}

	/// Get the first header involved in the equivocation.
	pub fn fst_header(&self) -> &H {
		&self.fst_header
	}

	/// Get the second header involved in the equivocation.
	pub fn snd_header(&self) -> &H {
		&self.snd_header
	}
}

/// Checks if the header is an equivocation and returns the proof in that case.
///
/// Note: it detects equivocations only when slot_now - slot <= MAX_SLOT_CAPACITY.
pub fn check_equivocation<C, H, P>(
	backend: &C,
	slot_now: u64,
	slot: u64,
	header: &H,
	signer: &P,
) -> ClientResult<Option<EquivocationProof<H>>>
	where
		H: Header,
		C: AuxStore,
		P: Clone + Encode + Decode + PartialEq,
{
	// We don't check equivocations for old headers out of our capacity.
	if slot_now.saturating_sub(slot) > MAX_SLOT_CAPACITY {
		return Ok(None);
	}

	// Key for this slot.
	let mut curr_slot_key = SLOT_HEADER_MAP_KEY.to_vec();
	slot.using_encoded(|s| curr_slot_key.extend(s));

	// Get headers of this slot.
	let mut headers_with_sig = load_decode::<_, Vec<(H, P)>>(backend, &curr_slot_key[..])?
		.unwrap_or_else(Vec::new);

	// Get first slot saved.
	let slot_header_start = SLOT_HEADER_START.to_vec();
	let first_saved_slot = load_decode::<_, u64>(backend, &slot_header_start[..])?
		.unwrap_or(slot);

	if slot_now < first_saved_slot {
		// The code below assumes that slots will be visited sequentially.
		return Ok(None);
	}

	for (prev_header, prev_signer) in headers_with_sig.iter() {
		// A proof of equivocation consists of two headers:
		// 1) signed by the same voter,
		if prev_signer == signer {
			// 2) with different hash
			if header.hash() != prev_header.hash() {
				return Ok(Some(EquivocationProof {
					slot, // 3) and mentioning the same slot.
					fst_header: prev_header.clone(),
					snd_header: header.clone(),
				}));
			} else {
				// We don't need to continue in case of duplicated header,
				// since it's already saved and a possible equivocation
				// would have been detected before.
				return Ok(None)
			}
		}
	}

	let mut keys_to_delete = vec![];
	let mut new_first_saved_slot = first_saved_slot;

	if slot_now - first_saved_slot >= PRUNING_BOUND {
		let prefix = SLOT_HEADER_MAP_KEY.to_vec();
		new_first_saved_slot = slot_now.saturating_sub(MAX_SLOT_CAPACITY);

		for s in first_saved_slot..new_first_saved_slot {
			let mut p = prefix.clone();
			s.using_encoded(|s| p.extend(s));
			keys_to_delete.push(p);
		}
	}

	headers_with_sig.push((header.clone(), signer.clone()));

	backend.insert_aux(
		&[
			(&curr_slot_key[..], headers_with_sig.encode().as_slice()),
			(&slot_header_start[..], new_first_saved_slot.encode().as_slice()),
		],
		&keys_to_delete.iter().map(|k| &k[..]).collect::<Vec<&[u8]>>()[..],
	)?;

	Ok(None)
}

#[cfg(test)]
mod test {
	use sp_core::{sr25519, Pair};
	use sp_core::hash::H256;
	use sp_runtime::testing::{Header as HeaderTest, Digest as DigestTest};
	use substrate_test_runtime_client;

	use super::{MAX_SLOT_CAPACITY, PRUNING_BOUND, check_equivocation};

	fn create_header(number: u64) -> HeaderTest {
		// so that different headers for the same number get different hashes
		let parent_hash = H256::random();

		let header = HeaderTest {
			parent_hash,
			number,
			state_root: Default::default(),
			extrinsics_root: Default::default(),
			digest: DigestTest { logs: vec![], },
		};

		header
	}

	#[test]
	fn check_equivocation_works() {
		let client = substrate_test_runtime_client::new();
		let (pair, _seed) = sr25519::Pair::generate();
		let public = pair.public();

		let header1 = create_header(1); // @ slot 2
		let header2 = create_header(2); // @ slot 2
		let header3 = create_header(2); // @ slot 4
		let header4 = create_header(3); // @ slot MAX_SLOT_CAPACITY + 4
		let header5 = create_header(4); // @ slot MAX_SLOT_CAPACITY + 4
		let header6 = create_header(3); // @ slot 4

		// It's ok to sign same headers.
		assert!(
			check_equivocation(
				&client,
				2,
				2,
				&header1,
				&public,
			).unwrap().is_none(),
		);

		assert!(
			check_equivocation(
				&client,
				3,
				2,
				&header1,
				&public,
			).unwrap().is_none(),
		);

		// But not two different headers at the same slot.
		assert!(
			check_equivocation(
				&client,
				4,
				2,
				&header2,
				&public,
			).unwrap().is_some(),
		);

		// Different slot is ok.
		assert!(
			check_equivocation(
				&client,
				5,
				4,
				&header3,
				&public,
			).unwrap().is_none(),
		);

		// Here we trigger pruning and save header 4.
		assert!(
			check_equivocation(
				&client,
				PRUNING_BOUND + 2,
				MAX_SLOT_CAPACITY + 4,
				&header4,
				&public,
			).unwrap().is_none(),
		);

		// This fails because header 5 is an equivocation of header 4.
		assert!(
			check_equivocation(
				&client,
				PRUNING_BOUND + 3,
				MAX_SLOT_CAPACITY + 4,
				&header5,
				&public,
			).unwrap().is_some(),
		);

		// This is ok because we pruned the corresponding header. Shows that we are pruning.
		assert!(
			check_equivocation(
				&client,
				PRUNING_BOUND + 4,
				4,
				&header6,
				&public,
			).unwrap().is_none(),
		);
	}
}