1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
//! ECSS PUS packet routing components.
//!
//! The routing components consist of two core components:
//!  1. [PusDistributor] component which dispatches received packets to a user-provided handler.
//!  2. [PusServiceProvider] trait which should be implemented by the user-provided PUS packet
//!     handler.
//!
//! The [PusDistributor] implements the [ReceivesEcssPusTc], [ReceivesCcsdsTc] and the
//! [ReceivesTcCore] trait which allows to pass raw packets, CCSDS packets and PUS TC packets into
//! it. Upon receiving a packet, it performs the following steps:
//!
//! 1. It tries to extract the [SpHeader] and [spacepackets::ecss::tc::PusTcReader] objects from
//!    the raw bytestream. If this process fails, a [PusDistribError::PusError] is returned to the
//!    user.
//! 2. If it was possible to extract both components, the packet will be passed to the
//!    [PusServiceProvider::handle_pus_tc_packet] method provided by the user.
//!
//! # Example
//!
//! ```rust
//! use spacepackets::ecss::SerializablePusPacket;
//! use satrs_core::tmtc::pus_distrib::{PusDistributor, PusServiceProvider};
//! use satrs_core::tmtc::{ReceivesTc, ReceivesTcCore};
//! use spacepackets::SpHeader;
//! use spacepackets::ecss::tc::{PusTcCreator, PusTcReader};
//! struct ConcretePusHandler {
//!     handler_call_count: u32
//! }
//!
//! // This is a very simple possible service provider. It increments an internal call count field,
//! // which is used to verify the handler was called
//! impl PusServiceProvider for ConcretePusHandler {
//!     type Error = ();
//!     fn handle_pus_tc_packet(&mut self, service: u8, header: &SpHeader, pus_tc: &PusTcReader) -> Result<(), Self::Error> {
//!         assert_eq!(service, 17);
//!         assert_eq!(pus_tc.len_packed(), 13);
//!         self.handler_call_count += 1;
//!         Ok(())
//!     }
//! }
//!
//! let service_handler = ConcretePusHandler {
//!     handler_call_count: 0
//! };
//! let mut pus_distributor = PusDistributor::new(Box::new(service_handler));
//!
//! // Create and pass PUS ping telecommand with a valid APID
//! let mut space_packet_header = SpHeader::tc_unseg(0x002, 0x34, 0).unwrap();
//! let mut pus_tc = PusTcCreator::new_simple(&mut space_packet_header, 17, 1, None, true);
//! let mut test_buf: [u8; 32] = [0; 32];
//! let mut size = pus_tc
//!     .write_to_bytes(test_buf.as_mut_slice())
//!     .expect("Error writing TC to buffer");
//! let tc_slice = &test_buf[0..size];
//!
//! pus_distributor.pass_tc(tc_slice).expect("Passing PUS telecommand failed");
//!
//! // User helper function to retrieve concrete class. We check the call count here to verify
//! // that the PUS ping telecommand was routed successfully.
//! let concrete_handler_ref: &ConcretePusHandler = pus_distributor
//!     .service_provider_ref()
//!     .expect("Casting back to concrete type failed");
//! assert_eq!(concrete_handler_ref.handler_call_count, 1);
//! ```
use crate::pus::ReceivesEcssPusTc;
use crate::tmtc::{ReceivesCcsdsTc, ReceivesTcCore};
use alloc::boxed::Box;
use core::fmt::{Display, Formatter};
use downcast_rs::Downcast;
use spacepackets::ecss::tc::PusTcReader;
use spacepackets::ecss::{PusError, PusPacket};
use spacepackets::SpHeader;
#[cfg(feature = "std")]
use std::error::Error;

pub trait PusServiceProvider: Downcast {
    type Error;
    fn handle_pus_tc_packet(
        &mut self,
        service: u8,
        header: &SpHeader,
        pus_tc: &PusTcReader,
    ) -> Result<(), Self::Error>;
}
downcast_rs::impl_downcast!(PusServiceProvider assoc Error);

pub trait SendablePusServiceProvider: PusServiceProvider + Send {}

impl<T: Send + PusServiceProvider> SendablePusServiceProvider for T {}

downcast_rs::impl_downcast!(SendablePusServiceProvider assoc Error);

/// Generic distributor object which dispatches received packets to a user provided handler.
///
/// This distributor expects the passed trait object to be [Send]able to allow more ergonomic
/// usage with threads.
pub struct PusDistributor<E> {
    pub service_provider: Box<dyn SendablePusServiceProvider<Error = E>>,
}

impl<E> PusDistributor<E> {
    pub fn new(service_provider: Box<dyn SendablePusServiceProvider<Error = E>>) -> Self {
        PusDistributor { service_provider }
    }
}

#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum PusDistribError<E> {
    CustomError(E),
    PusError(PusError),
}

impl<E: Display> Display for PusDistribError<E> {
    fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
        match self {
            PusDistribError::CustomError(e) => write!(f, "{e}"),
            PusDistribError::PusError(e) => write!(f, "{e}"),
        }
    }
}

#[cfg(feature = "std")]
impl<E: Error> Error for PusDistribError<E> {
    fn source(&self) -> Option<&(dyn Error + 'static)> {
        match self {
            Self::CustomError(e) => e.source(),
            Self::PusError(e) => e.source(),
        }
    }
}

impl<E: 'static> ReceivesTcCore for PusDistributor<E> {
    type Error = PusDistribError<E>;
    fn pass_tc(&mut self, tm_raw: &[u8]) -> Result<(), Self::Error> {
        // Convert to ccsds and call pass_ccsds
        let (sp_header, _) = SpHeader::from_be_bytes(tm_raw)
            .map_err(|e| PusDistribError::PusError(PusError::ByteConversion(e)))?;
        self.pass_ccsds(&sp_header, tm_raw)
    }
}

impl<E: 'static> ReceivesCcsdsTc for PusDistributor<E> {
    type Error = PusDistribError<E>;
    fn pass_ccsds(&mut self, header: &SpHeader, tm_raw: &[u8]) -> Result<(), Self::Error> {
        let (tc, _) = PusTcReader::new(tm_raw).map_err(|e| PusDistribError::PusError(e))?;
        self.pass_pus_tc(header, &tc)
    }
}

impl<E: 'static> ReceivesEcssPusTc for PusDistributor<E> {
    type Error = PusDistribError<E>;
    fn pass_pus_tc(&mut self, header: &SpHeader, pus_tc: &PusTcReader) -> Result<(), Self::Error> {
        self.service_provider
            .handle_pus_tc_packet(pus_tc.service(), header, pus_tc)
            .map_err(|e| PusDistribError::CustomError(e))
    }
}

impl<E: 'static> PusDistributor<E> {
    pub fn service_provider_ref<T: SendablePusServiceProvider<Error = E>>(&self) -> Option<&T> {
        self.service_provider.downcast_ref::<T>()
    }

    pub fn service_provider_mut<T: SendablePusServiceProvider<Error = E>>(
        &mut self,
    ) -> Option<&mut T> {
        self.service_provider.downcast_mut::<T>()
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::tmtc::ccsds_distrib::tests::{
        generate_ping_tc, BasicApidHandlerOwnedQueue, BasicApidHandlerSharedQueue,
    };
    use crate::tmtc::ccsds_distrib::{CcsdsDistributor, CcsdsPacketHandler};
    use alloc::vec::Vec;
    use spacepackets::ecss::PusError;
    use spacepackets::CcsdsPacket;
    #[cfg(feature = "std")]
    use std::collections::VecDeque;
    #[cfg(feature = "std")]
    use std::sync::{Arc, Mutex};

    fn is_send<T: Send>(_: &T) {}

    struct PusHandlerSharedQueue {
        pub pus_queue: Arc<Mutex<VecDeque<(u8, u16, Vec<u8>)>>>,
    }

    #[derive(Default)]
    struct PusHandlerOwnedQueue {
        pub pus_queue: VecDeque<(u8, u16, Vec<u8>)>,
    }

    impl PusServiceProvider for PusHandlerSharedQueue {
        type Error = PusError;
        fn handle_pus_tc_packet(
            &mut self,
            service: u8,
            sp_header: &SpHeader,
            pus_tc: &PusTcReader,
        ) -> Result<(), Self::Error> {
            let mut vec: Vec<u8> = Vec::new();
            vec.extend_from_slice(pus_tc.raw_data());
            Ok(self
                .pus_queue
                .lock()
                .expect("Mutex lock failed")
                .push_back((service, sp_header.apid(), vec)))
        }
    }

    impl PusServiceProvider for PusHandlerOwnedQueue {
        type Error = PusError;
        fn handle_pus_tc_packet(
            &mut self,
            service: u8,
            sp_header: &SpHeader,
            pus_tc: &PusTcReader,
        ) -> Result<(), Self::Error> {
            let mut vec: Vec<u8> = Vec::new();
            vec.extend_from_slice(pus_tc.raw_data());
            Ok(self.pus_queue.push_back((service, sp_header.apid(), vec)))
        }
    }

    struct ApidHandlerShared {
        pub pus_distrib: PusDistributor<PusError>,
        pub handler_base: BasicApidHandlerSharedQueue,
    }

    struct ApidHandlerOwned {
        pub pus_distrib: PusDistributor<PusError>,
        handler_base: BasicApidHandlerOwnedQueue,
    }

    macro_rules! apid_handler_impl {
        () => {
            type Error = PusError;

            fn valid_apids(&self) -> &'static [u16] {
                &[0x000, 0x002]
            }

            fn handle_known_apid(
                &mut self,
                sp_header: &SpHeader,
                tc_raw: &[u8],
            ) -> Result<(), Self::Error> {
                self.handler_base
                    .handle_known_apid(&sp_header, tc_raw)
                    .ok()
                    .expect("Unexpected error");
                match self.pus_distrib.pass_ccsds(&sp_header, tc_raw) {
                    Ok(_) => Ok(()),
                    Err(e) => match e {
                        PusDistribError::CustomError(_) => Ok(()),
                        PusDistribError::PusError(e) => Err(e),
                    },
                }
            }

            fn handle_unknown_apid(
                &mut self,
                sp_header: &SpHeader,
                tc_raw: &[u8],
            ) -> Result<(), Self::Error> {
                self.handler_base
                    .handle_unknown_apid(&sp_header, tc_raw)
                    .ok()
                    .expect("Unexpected error");
                Ok(())
            }
        };
    }

    impl CcsdsPacketHandler for ApidHandlerOwned {
        apid_handler_impl!();
    }

    impl CcsdsPacketHandler for ApidHandlerShared {
        apid_handler_impl!();
    }

    #[test]
    #[cfg(feature = "std")]
    fn test_pus_distribution() {
        let known_packet_queue = Arc::new(Mutex::default());
        let unknown_packet_queue = Arc::new(Mutex::default());
        let pus_queue = Arc::new(Mutex::default());
        let pus_handler = PusHandlerSharedQueue {
            pus_queue: pus_queue.clone(),
        };
        let handler_base = BasicApidHandlerSharedQueue {
            known_packet_queue: known_packet_queue.clone(),
            unknown_packet_queue: unknown_packet_queue.clone(),
        };

        let pus_distrib = PusDistributor {
            service_provider: Box::new(pus_handler),
        };
        is_send(&pus_distrib);
        let apid_handler = ApidHandlerShared {
            pus_distrib,
            handler_base,
        };
        let mut ccsds_distrib = CcsdsDistributor::new(Box::new(apid_handler));
        let mut test_buf: [u8; 32] = [0; 32];
        let tc_slice = generate_ping_tc(test_buf.as_mut_slice());

        // Pass packet to distributor
        ccsds_distrib
            .pass_tc(tc_slice)
            .expect("Passing TC slice failed");
        let recvd_ccsds = known_packet_queue.lock().unwrap().pop_front();
        assert!(unknown_packet_queue.lock().unwrap().is_empty());
        assert!(recvd_ccsds.is_some());
        let (apid, packet) = recvd_ccsds.unwrap();
        assert_eq!(apid, 0x002);
        assert_eq!(packet.as_slice(), tc_slice);
        let recvd_pus = pus_queue.lock().unwrap().pop_front();
        assert!(recvd_pus.is_some());
        let (service, apid, tc_raw) = recvd_pus.unwrap();
        assert_eq!(service, 17);
        assert_eq!(apid, 0x002);
        assert_eq!(tc_raw, tc_slice);
    }

    #[test]
    fn test_as_any_cast() {
        let pus_handler = PusHandlerOwnedQueue::default();
        let handler_base = BasicApidHandlerOwnedQueue::default();
        let pus_distrib = PusDistributor {
            service_provider: Box::new(pus_handler),
        };

        let apid_handler = ApidHandlerOwned {
            pus_distrib,
            handler_base,
        };
        let mut ccsds_distrib = CcsdsDistributor::new(Box::new(apid_handler));

        let mut test_buf: [u8; 32] = [0; 32];
        let tc_slice = generate_ping_tc(test_buf.as_mut_slice());

        ccsds_distrib
            .pass_tc(tc_slice)
            .expect("Passing TC slice failed");

        let apid_handler_casted_back: &mut ApidHandlerOwned = ccsds_distrib
            .apid_handler_mut()
            .expect("Cast to concrete type ApidHandler failed");
        assert!(!apid_handler_casted_back
            .handler_base
            .known_packet_queue
            .is_empty());
        let handler_casted_back: &mut PusHandlerOwnedQueue = apid_handler_casted_back
            .pus_distrib
            .service_provider_mut()
            .expect("Cast to concrete type PusHandlerOwnedQueue failed");
        assert!(!handler_casted_back.pus_queue.is_empty());
        let (service, apid, packet_raw) = handler_casted_back.pus_queue.pop_front().unwrap();
        assert_eq!(service, 17);
        assert_eq!(apid, 0x002);
        assert_eq!(packet_raw.as_slice(), tc_slice);
    }
}