1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
//! A grid that stores it's internal data in a `BTreeMap`. Elements don't take up any memory until
//! they're inserted, and can be removed as needed, but iteration and access speed will be slower
//! than a [crate::grid::Grid] for large full grids.
//!
//! Elements can be inserted and accessed via their 1d index or 2d index, or
//! read/modified via iterators.
//!
//! # Example
//!
//! ```rust
//! use sark_grids::sparse_grid::SparseGrid;
//!
//! let mut grid = SparseGrid::new([10,10]);
//!
//! grid[4] = 'i';
//! grid[[3,0]]= 'h';
//!
//! assert_eq!(2, grid.len());
//!
//! let hi: String = grid.iter_values().collect();
//! assert_eq!("hi", hi);
//!
//! grid.insert_row_at([3,0], "ih".chars());
//! let ih: String = grid.iter_values().collect();
//!
//! assert_eq!("ih", ih);
//! ```
use std::{
collections::BTreeMap,
ops::{Index, IndexMut},
};
use glam::IVec2;
use crate::{geometry::GridRect, grid::Side, point::*};
/// A sparse grid that stores elements in a [BTreeMap].
#[derive(Default, Debug, Clone)]
pub struct SparseGrid<T> {
data: BTreeMap<usize, T>,
size: IVec2,
}
impl<T: Clone> SparseGrid<T> {
/// Creates a new [SparseGrid<T>].
pub fn new(size: impl GridPoint) -> Self {
Self {
data: BTreeMap::new(),
size: size.as_ivec2(),
}
}
/// An iterator over all elements in the grid.
///
/// Yields `(&usize,&mut T)` where `usize` is the 1d position of the element in the grid.
#[inline]
pub fn iter(&self) -> impl Iterator<Item = (&usize, &T)> {
self.data.iter()
}
/// An iterator over just the values in the grid.
///
/// Yields `&T`.
pub fn iter_values(&self) -> impl Iterator<Item = &T> {
self.data.values()
}
/// A mutable iterator over just the values in the grid.
///
/// Yields `&mut T`.
pub fn iter_values_mut(&mut self) -> impl Iterator<Item = &mut T> {
self.data.values_mut()
}
/// A mutable iterator over all elements in the grid.
///
/// Yields `(&usize,&mut T)` where `usize` is the 1d position of the element in the grid.
#[inline]
pub fn iter_mut(&mut self) -> impl Iterator<Item = (&usize, &mut T)> {
self.data.iter_mut()
}
/// A 2d iterator over all elements in the grid.
///
/// Yields `(IVec2,&mut T)` where `IVec2` is the 2d position of the element in the grid.
#[inline]
pub fn iter_2d(&self) -> impl Iterator<Item = (IVec2, &T)> {
let w = self.width();
self.data.iter().map(move |(i, v)| {
let x = i % w;
let y = i / w;
(IVec2::new(x as i32, y as i32), v)
})
}
/// A mutable iterator over all elements in the grid.
///
/// Yields `(IVec,&mut T)` where `IVec2` is the 2d position of the element in the grid.
#[inline]
pub fn iter_mut_2d(&mut self) -> impl Iterator<Item = (IVec2, &mut T)> {
let w = self.width();
self.data.iter_mut().map(move |(i, v)| {
let x = i % w;
let y = i / w;
(IVec2::new(x as i32, y as i32), v)
})
}
/// Insert into a row of the grid using an iterator.
///
/// Will insert up to the length of a row.
pub fn insert_row(&mut self, y: usize, row: impl IntoIterator<Item = T> + Iterator<Item = T>) {
self.insert_row_at([0, y as i32], row);
}
/// Insert into a row of the grid using an iterator.
///
/// Will insert up to the length of a row.
pub fn insert_row_at(
&mut self,
xy: impl GridPoint,
row: impl IntoIterator<Item = T> + Iterator<Item = T>,
) {
let start = self.transform_lti(xy);
let max = self.width() - 1 - xy.x() as usize;
for (x, v) in row.take(max).enumerate() {
self.data.insert(start + x, v);
}
}
/// Insert into a column of the grid using an iterator.
///
/// Will insert up to the height of a column.
pub fn insert_column(
&mut self,
x: usize,
column: impl IntoIterator<Item = T> + Iterator<Item = T>,
) {
self.insert_column_at([x as i32, 0], column);
}
/// Insert into a column of the grid starting from some point using an iterator.
///
/// Will insert up to the height of a column.
pub fn insert_column_at(
&mut self,
xy: impl GridPoint,
column: impl IntoIterator<Item = T> + Iterator<Item = T>,
) {
let start = self.transform_lti(xy);
let max = self.height() - 1 - xy.y() as usize;
for (y, v) in column.take(max).enumerate() {
let i = start + (y * self.width());
self.data.insert(i, v);
}
}
/// Remove the element/tile at the given position.
///
/// Returns the removed element if one was present.
pub fn remove(&mut self, pos: impl GridPoint) -> Option<T> {
let i = self.transform_lti(pos);
self.data.remove(&i)
}
/// Remove the element/tile at the given 1d index.
///
/// Returns the removed element if one was present.
pub fn remove_index(&mut self, index: usize) -> Option<T> {
let index = index;
self.data.remove(&index)
}
/// Clears the grid, removing all elements.
pub fn clear(&mut self) {
self.data.clear();
}
pub fn width(&self) -> usize {
self.size.x as usize
}
pub fn height(&self) -> usize {
self.size.y as usize
}
pub fn size(&self) -> IVec2 {
self.size
}
/// How many tiles/elements are in the grid.
pub fn len(&self) -> usize {
self.data.len()
}
pub fn is_empty(&self) -> bool {
self.data.is_empty()
}
/// Converts a 2d grid position to it's corresponding 1D index.
#[inline(always)]
pub fn transform_lti(&self, pos: impl GridPoint) -> usize {
let [x, y] = pos.as_array();
(y * self.width() as i32 + x) as usize
}
/// Converts a 1d index to it's corresponding grid position.
#[inline(always)]
pub fn transform_itl(&self, index: usize) -> impl GridPoint {
let index = index as i32;
let w = self.width() as i32;
let x = index % w;
let y = index / w;
[x, y]
}
/// Gets the index for a given side.
pub fn side_index(&self, side: Side) -> usize {
match side {
Side::Left => 0,
Side::Top => self.height() - 1,
Side::Right => self.width() - 1,
Side::Bottom => 0,
}
}
/// Returns true if the position is in the bounds of the grid. Note this
/// doesn't necessarily mean a tile exists at that point - just that it's
/// in bounds.
#[inline(always)]
pub fn in_bounds(&self, pos: impl GridPoint) -> bool {
let xy = pos.as_ivec2();
xy.cmpge(IVec2::ZERO).all() && xy.cmplt(self.size).all()
}
/// Returns the bounds of the grid.
#[inline]
pub fn bounds(&self) -> GridRect {
GridRect::from_bl([0, 0], self.size)
}
/// Insert a value in the grid at the given 1d index.
///
/// Returns `None` if no value was already present. Otherwise the old value
/// is returned.
#[inline]
pub fn insert_index(&mut self, index: usize, value: T) -> Option<T> {
self.data.insert(index, value)
}
/// Insert a value in the grid.
///
/// Returns `None` if no value was already present. Otherwise the old value
/// is returned.
#[inline]
pub fn insert(&mut self, pos: impl GridPoint, value: T) -> Option<T> {
let pos = pos.as_ivec2();
let i = self.transform_lti(pos);
self.data.insert(i, value)
}
/// Retrieve a value in the grid from it's 1d index.
///
/// Returns `None` if there is no value at the index.
#[inline]
pub fn get_index(&self, index: usize) -> Option<&T> {
self.data.get(&index)
}
/// Retrieve a mutable value in the grid from it's 1d index.
///
/// Returns `None` if there is no value at the index.
#[inline]
pub fn get_mut_index(&mut self, index: usize) -> Option<&mut T> {
self.data.get_mut(&index)
}
/// Retrieve a value in the grid from it's 2d position.
///
/// Returns `None` if there is no value at the position, or if the position
/// is out of bounds.
#[inline]
pub fn get(&self, pos: impl GridPoint) -> Option<&T> {
if !self.in_bounds(pos) {
return None;
}
let i = self.transform_lti(pos.as_ivec2());
self.data.get(&i)
}
/// Retrieve a mutable value in the grid from it's 2d position.
///
/// Returns `None` if there is no value at the position.
#[inline]
pub fn get_mut(&mut self, pos: impl GridPoint) -> Option<&mut T> {
let i = self.transform_lti(pos.as_ivec2());
self.data.get_mut(&i)
}
}
impl<T: Clone, P: GridPoint> Index<P> for SparseGrid<T> {
type Output = T;
fn index(&self, index: P) -> &Self::Output {
let xy = index.as_ivec2();
let i = self.transform_lti(xy);
&self.data[&i]
}
}
impl<T: Clone, P: GridPoint> IndexMut<P> for SparseGrid<T>
where
T: Default,
{
fn index_mut(&mut self, index: P) -> &mut T {
let xy = index.as_ivec2();
let i = self.transform_lti(xy);
// TODO: Should this panic if no element exists?
&mut *self.data.entry(i).or_default()
}
}
impl<T: Clone> Index<usize> for SparseGrid<T> {
type Output = T;
#[inline(always)]
fn index(&self, index: usize) -> &Self::Output {
&self.data[&index]
}
}
impl<T: Clone> IndexMut<usize> for SparseGrid<T>
where
T: Default,
{
fn index_mut(&mut self, index: usize) -> &mut T {
&mut *self.data.entry(index).or_default()
}
}
#[cfg(test)]
mod test {
use glam::IVec2;
use crate::point::GridPoint;
use super::SparseGrid;
#[test]
fn index() {
let mut grid = SparseGrid::new([10, 17]);
let [x, y] = grid.transform_itl(5).as_array();
grid[[5, 6]] = 10;
assert_eq!(grid[[5, 6]], 10);
let xy = IVec2::new(x, y);
grid[xy] = 15;
assert_eq!(grid[xy], 15);
}
#[test]
fn insert_row() {
let mut grid = SparseGrid::new([10, 10]);
grid.insert_row(5, "Hello".chars());
assert_eq!(5, grid.len());
let str: String = grid.iter_2d().map(|(_, v)| v).collect();
assert_eq!("Hello", str);
for (i, (p, _)) in grid.iter_2d().enumerate() {
assert_eq!([i as i32, 5], p.to_array());
}
}
#[test]
fn insert_row_at() {
let mut grid = SparseGrid::new([10, 10]);
grid.insert_row_at([3, 3], "Hello".chars());
assert_eq!(5, grid.len());
let str: String = grid.iter_values().collect();
assert_eq!("Hello", str);
let kvp: Vec<_> = grid.iter_2d().collect();
assert_eq!((IVec2::new(3, 3), &'H'), kvp[0]);
assert_eq!((IVec2::new(4, 3), &'e'), kvp[1]);
assert_eq!((IVec2::new(5, 3), &'l'), kvp[2]);
assert_eq!((IVec2::new(6, 3), &'l'), kvp[3]);
assert_eq!((IVec2::new(7, 3), &'o'), kvp[4]);
}
#[test]
fn insert_col() {
let mut grid = SparseGrid::new([10, 10]);
grid.insert_column(5, "Hello".chars());
assert_eq!(5, grid.len());
let str: String = grid.iter_2d().map(|(_, v)| v).collect();
assert_eq!("Hello", str);
for (i, (p, _)) in grid.iter_2d().enumerate() {
assert_eq!([5, i as i32], p.to_array());
}
}
#[test]
fn insert_col_at() {
let mut grid = SparseGrid::new([10, 10]);
grid.insert_column_at([3, 3], "Hello".chars());
assert_eq!(5, grid.len());
let str: String = grid.iter_2d().map(|(_, v)| v).collect();
assert_eq!("Hello", str);
let kvp: Vec<_> = grid.iter_2d().collect();
assert_eq!((IVec2::new(3, 3), &'H'), kvp[0]);
assert_eq!((IVec2::new(3, 4), &'e'), kvp[1]);
assert_eq!((IVec2::new(3, 5), &'l'), kvp[2]);
assert_eq!((IVec2::new(3, 6), &'l'), kvp[3]);
assert_eq!((IVec2::new(3, 7), &'o'), kvp[4]);
}
#[test]
fn insert() {
let mut grid = SparseGrid::new([10, 10]);
grid[[0, 0]] = 'h';
grid[[1, 3]] = '3';
assert_eq!(2, grid.len());
assert_eq!('h', grid[[0, 0]]);
assert_eq!('3', grid[[1, 3]]);
}
}