1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
//! A 2 dimensional grid that stores it's internal data in a `Vec`. The size of
//! the grid is constant and elements cannot be removed, only changed. Provides
//! very fast iteration and access speed.
//!
//! Elements can be inserted and accessed via their 1d index, 2d index, or
//! read/modified via iterators.
//!
//! # Example
//!
//! ```
//! use sark_grids::*;
//!
//! let mut grid = Grid::new([10,10]);
//!
//! grid[0] = 'a';
//! grid[ [1,0] ] = 'b';
//!
//! assert_eq!('a', grid[0]);
//! assert_eq!('b', grid[ [1,0] ]);
//!
//! grid.insert_column_at([3,2], "hello".chars());
//! let hello: String = grid.iter_column(3).skip(2).take(5).collect();
//!
//! assert_eq!("hello", hello);
//! ```

use std::ops::{Bound, Index, IndexMut, RangeBounds, Sub};

use glam::{IVec2, UVec2, Vec2};
use itertools::Itertools;

use crate::{geometry::GridRect, point::Size2d, GridPoint, Pivot};

/// A dense sized grid that stores it's elements in a `Vec`.
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct Grid<T> {
    data: Vec<T>,
    size: UVec2,
}

impl<T> Default for Grid<T> {
    fn default() -> Self {
        Self {
            data: Default::default(),
            size: Default::default(),
        }
    }
}

impl<T> Grid<T> {
    /// Creates a new [Grid<T>] with the given default value set for all elements.
    pub fn new(size: impl Size2d) -> Self
    where
        T: Default + Clone,
    {
        let size = size.as_ivec2();
        let len = (size.x * size.y) as usize;

        Self {
            data: vec![T::default(); len],
            size: size.as_uvec2(),
        }
    }

    pub fn filled(value: T, size: impl Size2d) -> Self
    where
        T: Clone,
    {
        let size = size.as_ivec2();
        let len = (size.x * size.y) as usize;

        Self {
            data: vec![value; len],
            size: size.as_uvec2(),
        }
    }

    /// Insert into a row of the grid using an iterator.
    ///
    /// Will insert up to the length of a row.
    pub fn insert_row(&mut self, y: usize, row: impl DoubleEndedIterator<Item = T>) {
        self.insert_row_at([0, y as i32], row);
    }

    /// Insert into a row of the grid using an iterator.
    ///
    /// Will insert up to the length of a row.
    pub fn insert_row_at(&mut self, xy: impl GridPoint, row: impl Iterator<Item = T>) {
        let [x, y] = xy.as_array();
        let iter = self.iter_row_mut(y as usize).skip(x as usize);
        for (v, input) in iter.zip(row) {
            *v = input;
        }
    }

    /// Insert into a column of the grid using an iterator.
    ///
    /// Will insert up to the height of a column.
    pub fn insert_column(&mut self, x: usize, column: impl IntoIterator<Item = T>) {
        self.insert_column_at([x as i32, 0], column);
    }

    /// Insert into a column of the grid using an iterator.
    ///
    /// Will insert up to the height of a column.
    pub fn insert_column_at(&mut self, xy: impl GridPoint, column: impl IntoIterator<Item = T>) {
        let [x, y] = xy.as_array();
        let iter = self.iter_column_mut(x as usize).skip(y as usize);
        for (v, input) in iter.zip(column) {
            *v = input;
        }
    }

    pub fn width(&self) -> usize {
        self.size.x as usize
    }

    pub fn height(&self) -> usize {
        self.size.y as usize
    }

    pub fn size(&self) -> UVec2 {
        self.size
    }

    /// How many tiles/elements are in the grid.
    #[allow(clippy::len_without_is_empty)]
    pub fn len(&self) -> usize {
        self.data.len()
    }

    /// Get the position of the given pivot point on the grid.
    #[inline]
    pub fn pivot_position(&self, pivot: Pivot) -> IVec2 {
        let p = self.size().sub(1).as_vec2() * Vec2::from(pivot);
        p.round().as_ivec2()
    }

    /// Try to retrieve the value at the given position.
    ///
    /// Returns `None` if the position is out of bounds.
    #[inline]
    pub fn get(&self, xy: impl GridPoint) -> Option<&T> {
        if !self.in_bounds(xy) {
            return None;
        }
        let i = self.transform_lti(xy);
        Some(&self.data[i])
    }

    /// Try to retrieve the mutable value at the given position.
    ///
    /// Returns `None` if the position is out of bounds.
    pub fn get_mut(&mut self, xy: impl GridPoint) -> Option<&mut T> {
        if !self.in_bounds(xy) {
            return None;
        }
        let i = self.transform_lti(xy);
        Some(&mut self.data[i])
    }

    #[inline]
    pub fn in_bounds(&self, pos: impl GridPoint) -> bool {
        let p = pos.as_ivec2();
        !(p.cmplt(IVec2::ZERO).any() || p.cmpge(self.size.as_ivec2()).any())
    }

    /// Gets the index for a given side.
    pub fn side_index(&self, side: Side) -> usize {
        match side {
            Side::Left => 0,
            Side::Top => self.height() - 1,
            Side::Right => self.width() - 1,
            Side::Bottom => 0,
        }
    }

    // Size of the grid along a given axis, where 0 == x and 1 == y
    pub fn axis_size(&self, axis: usize) -> usize {
        match axis {
            0 => self.width(),
            1 => self.height(),
            _ => panic!("Invalid grid axis {axis}"),
        }
    }

    /// An iterator over all elements in the grid.
    #[inline]
    pub fn iter(&self) -> impl DoubleEndedIterator<Item = &T> {
        self.data.iter()
    }

    /// A mutable iterator over all elements in the grid.
    #[inline]
    pub fn iter_mut(&mut self) -> impl DoubleEndedIterator<Item = &mut T> {
        self.data.iter_mut()
    }

    /// An iterator over a single row of the grid.
    ///
    /// Goes from left to right.
    #[inline]
    pub fn iter_row(&self, y: usize) -> impl DoubleEndedIterator<Item = &T> {
        let w = self.width();
        let i = y * w;
        self.data[i..i + w].iter()
    }

    /// A mutable iterator over a single row of the grid.
    ///
    /// Iterates from left to right.
    #[inline]
    pub fn iter_row_mut(&mut self, y: usize) -> impl DoubleEndedIterator<Item = &mut T> {
        let w = self.width();
        let i = y * w;
        self.data[i..i + w].iter_mut()
    }

    /// Iterate over a range of rows.
    ///
    /// Yields &\[T\] (Slice of T)
    pub fn iter_rows(
        &self,
        range: impl RangeBounds<usize>,
    ) -> impl DoubleEndedIterator<Item = &[T]> {
        let [start, end] = self.range_to_start_end(range, 1);
        let width = self.width();
        let x = start * width;
        let count = end.saturating_sub(start) + 1;
        let chunks = self.data[x..].chunks(width);
        chunks.take(count)
    }

    /// Iterate mutably over a range of rows.
    ///
    /// Yields &mut \[`T`\] (Slice of mutable `T`)
    pub fn iter_rows_mut(
        &mut self,
        range: impl RangeBounds<usize>,
    ) -> impl DoubleEndedIterator<Item = &mut [T]> {
        let [start, end] = self.range_to_start_end(range, 1);
        let width = self.width();
        let x = start * width;
        let count = end - start + 1;
        let chunks = self.data[x..].chunks_mut(width);
        chunks.take(count)
    }

    /// An iterator over a single column of the grid.
    ///
    /// Goes from bottom to top.
    #[inline]
    pub fn iter_column(&self, x: usize) -> impl DoubleEndedIterator<Item = &T> {
        let w = self.width();
        return self.data[x..].iter().step_by(w);
    }

    /// A mutable iterator over a single column of the grid.
    ///
    /// Goes from bottom to top.
    #[inline]
    pub fn iter_column_mut(&mut self, x: usize) -> impl DoubleEndedIterator<Item = &mut T> {
        let w = self.width();
        return self.data[x..].iter_mut().step_by(w);
    }

    /// Final index along a given axis, where 0 == width, and 1 == height.
    pub fn axis_index(&self, axis: usize) -> usize {
        match axis {
            0 => self.side_index(Side::Right),
            1 => self.side_index(Side::Top),
            _ => panic!("Invalid grid axis {axis}"),
        }
    }

    /// An iterator over a rectangular portion of the grid defined by the given range.
    ///
    /// Yields `(IVec2, &T)`, where `IVec2` is the corresponding position of the value in the grid.
    pub fn rect_iter(
        &self,
        range: impl RangeBounds<[i32; 2]>,
    ) -> impl Iterator<Item = (IVec2, &T)> {
        let (min, max) = ranges_to_min_max(range, self.size().as_ivec2());
        (min.y..=max.y)
            .cartesian_product(min.x..=max.x)
            .map(|(y, x)| {
                let i = self.transform_lti([x, y]);
                ((IVec2::new(x, y)), &self.data[i])
            })
    }

    /// Returns an iterator which enumerates the 2d position of every value in the grid.
    ///
    /// Yields `(IVec2, &T)`, where `IVec2` is the corresponding position of the value in the grid.
    pub fn iter_2d(&self) -> impl Iterator<Item = (IVec2, &T)> {
        (0..self.height())
            .cartesian_product(0..self.width())
            .map(|(y, x)| IVec2::new(x as i32, y as i32))
            .zip(self.data.iter())
    }

    /// Returns a mutable iterator which enumerates the 2d position of every value in the grid.
    ///
    /// Yields `(IVec2, &mut T)`, where `IVec2` is the corresponding position of the value in the grid.
    pub fn iter_2d_mut(&mut self) -> impl Iterator<Item = (IVec2, &mut T)> {
        //let offset = self.pivot_offset;
        (0..self.height())
            .cartesian_product(0..self.width())
            .map(move |(y, x)| (Vec2::from([x as f32, y as f32])).as_ivec2())
            .zip(self.data.iter_mut())
    }

    /// Retrieve a linear slice of the underlying grid data.
    pub fn slice(&self) -> &[T] {
        self.data.as_slice()
    }

    /// Retrieve a mutable linear slice of the underlying grid data.
    pub fn slice_mut(&mut self) -> &mut [T] {
        self.data.as_mut_slice()
    }

    /// Convert a range into a [start,end] pair.
    ///
    /// An unbounded "end" returned by this function should be treated as EXCLUSIVE.
    fn range_to_start_end(&self, range: impl RangeBounds<usize>, axis: usize) -> [usize; 2] {
        let start = match range.start_bound() {
            Bound::Included(start) => *start,
            Bound::Excluded(start) => *start,
            Bound::Unbounded => 0,
        };
        let end = match range.end_bound() {
            Bound::Included(end) => *end,
            Bound::Excluded(end) => *end - 1,
            Bound::Unbounded => self.axis_size(axis),
        };

        [start, end]
    }

    /// Returns the bounds of the grid.
    #[inline]
    pub fn bounds(&self) -> GridRect {
        GridRect::from_bl([0, 0], self.size)
    }

    /// Converts a 2d grid position to it's corresponding 1D index. If a pivot
    /// was applied to the given grid point, it will be accounted for.
    #[inline(always)]
    pub fn transform_lti(&self, xy: impl GridPoint) -> usize {
        let xy = self.pivoted_point(xy);
        let [x, y] = xy.to_array();
        y as usize * self.width() + x as usize
    }

    /// Converts a 1d index to it's corresponding grid position.
    #[inline(always)]
    pub fn transform_itl(&self, index: usize) -> IVec2 {
        let index = index as i32;
        let w = self.width() as i32;
        let x = index % w;
        let y = index / w;
        IVec2::new(x, y)
    }

    /// Convert a point from grid space (bottom-left origin) to world space
    /// (center origin).
    #[inline(always)]
    pub fn transform_ltw(&self, xy: impl GridPoint) -> IVec2 {
        xy.as_ivec2() - self.size.as_ivec2() / 2
    }

    /// Convert a point from world space (center origin) to grid space
    /// (bottom-left origin).
    #[inline(always)]
    pub fn transform_wtl(&self, xy: impl GridPoint) -> IVec2 {
        xy.as_ivec2() + self.size.as_ivec2() / 2
    }

    /// Retrieve a grid position from a pivoted point.
    ///
    /// If no pivot has been applied, the point will be returned directly.
    #[inline]
    pub fn pivoted_point(&self, xy: impl GridPoint) -> IVec2 {
        if let Some(pivot) = xy.get_pivot() {
            pivot.transform_point(xy, self.size)
        } else {
            xy.as_ivec2()
        }
    }
}

fn ranges_to_min_max(range: impl RangeBounds<[i32; 2]>, max: IVec2) -> (IVec2, IVec2) {
    let min = match range.start_bound() {
        std::ops::Bound::Included([x, y]) => IVec2::new(*x, *y),
        std::ops::Bound::Excluded([x, y]) => IVec2::new(*x, *y),
        std::ops::Bound::Unbounded => IVec2::ZERO,
    };

    let max = match range.end_bound() {
        std::ops::Bound::Included([x, y]) => IVec2::new(*x, *y),
        std::ops::Bound::Excluded([x, y]) => IVec2::new(x - 1, y - 1),
        std::ops::Bound::Unbounded => max,
    };

    debug_assert!(min.cmpge(IVec2::ZERO).all() && min.cmplt(max).all());
    debug_assert!(max.cmple(max).all());

    (min, max)
}

impl<T: Clone, P: GridPoint> Index<P> for Grid<T> {
    type Output = T;

    fn index(&self, p: P) -> &Self::Output {
        let i = self.transform_lti(p);
        &self.data[i]
    }
}

impl<T: Clone, P: GridPoint> IndexMut<P> for Grid<T>
where
    T: Default,
{
    fn index_mut(&mut self, index: P) -> &mut T {
        let xy = index.as_ivec2();
        let i = self.transform_lti(xy);
        &mut self.data[i]
    }
}

impl<T: Clone> Index<usize> for Grid<T> {
    type Output = T;

    fn index(&self, i: usize) -> &Self::Output {
        &self.data[i]
    }
}
impl<T: Clone> IndexMut<usize> for Grid<T>
where
    T: Default,
{
    fn index_mut(&mut self, index: usize) -> &mut T {
        &mut self.data[index]
    }
}

#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub enum Side {
    Left,
    Top,
    Right,
    Bottom,
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn range_convert() {
        let grid = Grid::filled(0, [5, 11]);
        let [start, end] = grid.range_to_start_end(.., 0);
        assert_eq!([start, end], [0, 5]);
        let [start, count] = grid.range_to_start_end(5..=10, 0);
        assert_eq!([start, count], [5, 10]);
        let [start, count] = grid.range_to_start_end(3..11, 0);
        assert_eq!([start, count], [3, 10]);
    }

    #[test]
    fn rows_iter() {
        let mut grid = Grid::new([3, 10]);
        grid.insert_row(3, std::iter::repeat(5));
        grid.insert_row(4, std::iter::repeat(6));

        let mut iter = grid.iter_rows(3..=4);

        assert!(iter.next().unwrap().iter().all(|v| *v == 5));
        assert!(iter.next().unwrap().iter().all(|v| *v == 6));
    }

    #[test]
    fn rows_iter_mut() {
        let mut grid = Grid::new([3, 4]);
        for row in grid.iter_rows_mut(..) {
            row.iter_mut().for_each(|v| *v = 5);
        }

        assert!(grid.iter().all(|v| *v == 5));
    }

    #[test]
    fn row_iter() {
        let mut grid = Grid::new([10, 15]);

        let chars = "hello".chars();

        for (elem, ch) in grid.iter_row_mut(3).take(5).zip(chars) {
            *elem = ch;
        }

        let hello = grid.iter_row(3).take(5).collect::<String>();

        assert_eq!("hello", hello);

        assert_eq!(grid.iter_row(6).count(), 10);
    }

    #[test]
    fn column_iter() {
        let mut grid = Grid::new([10, 15]);

        let chars = ['h', 'e', 'l', 'l', 'o'];

        for (elem, ch) in grid.iter_column_mut(5).take(5).zip(chars) {
            *elem = ch;
        }

        let hello = grid.iter_column(5).take(5).collect::<String>();

        assert_eq!("hello", hello);

        assert_eq!(grid.iter_column(2).count(), 15);
    }

    #[test]
    fn iter_2d() {
        let mut grid = Grid::new([5, 3]);
        grid[[0, 0]] = 5;
        grid[[3, 1]] = 10;
        grid[[4, 2]] = 20;

        let vec: Vec<_> = grid.iter_2d().collect();

        assert_eq!(vec.len(), 5 * 3);
        assert_eq!(*vec[grid.transform_lti([0, 0])].1, 5);
        assert_eq!(*vec[grid.transform_lti([3, 1])].1, 10);
        assert_eq!(*vec[grid.transform_lti([4, 2])].1, 20);

        let mut iter = grid.iter_2d();
        let (p, _) = iter.next().unwrap();
        assert_eq!(0, p.x);
        assert_eq!(0, p.y);
        let (p, _) = iter.next().unwrap();
        assert_eq!(1, p.x);
        assert_eq!(0, p.y);

        let (p, _) = iter.nth(3).unwrap();
        assert_eq!(0, p.x);
        assert_eq!(1, p.y);
    }

    #[test]
    fn iter() {
        let grid = Grid::<i32>::filled(5, [10, 10]);

        let v: Vec<_> = grid.iter().collect();

        assert_eq!(v.len(), 100);
        assert_eq!(*v[0], 5);
        assert_eq!(*v[99], 5);
    }

    #[test]
    fn iter_mut() {
        let mut grid = Grid::new([10, 10]);

        for i in grid.iter_mut() {
            *i = 10;
        }

        assert_eq!(grid[0], 10);
    }

    #[test]
    fn rect_iter() {
        let mut grid = Grid::new([11, 15]);

        grid[[2, 2]] = 5;
        grid[[4, 4]] = 10;

        let iter = grid.rect_iter([2, 2]..=[4, 4]);
        let vec: Vec<_> = iter.collect();

        assert_eq!(vec.len(), 9);
        assert_eq!(*vec[0].1, 5);
        assert_eq!(*vec[8].1, 10);

        let mut iter = grid.rect_iter([2, 2]..=[4, 4]);

        let (p, _) = iter.next().unwrap();
        assert_eq!(p, IVec2::new(2, 2));
        assert_eq!(iter.nth(7).unwrap().0, IVec2::new(4, 4));
    }

    #[test]
    fn column_insert() {
        let mut grid = Grid::new([10, 10]);

        grid.insert_column(3, "Hello".chars());

        let hello: String = grid.iter_column(3).take(5).collect();

        assert_eq!(hello, "Hello");
    }

    #[test]
    fn row_insert() {
        let mut grid = Grid::new([10, 10]);

        grid.insert_row(3, "Hello".chars());

        let hello: String = grid.iter_row(3).take(5).collect();

        assert_eq!(hello, "Hello");
    }

    #[test]
    fn ltw() {
        let grid = Grid::filled(0, [10, 10]);
        assert_eq!([5, 5], grid.transform_wtl([0, 0]).to_array());
        assert_eq!([0, 0], grid.transform_ltw([5, 5]).to_array());

        let grid = Grid::filled(0, [9, 9]);
        assert_eq!([4, 4], grid.transform_wtl([0, 0]).to_array());
        assert_eq!([0, 0], grid.transform_ltw([4, 4]).to_array());
    }
}