1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
#![no_std]

//! This crate defines tools to implement datastructures that can live
//! in main memory or on-disk, meaning that their natural habitat is
//! memory-mapped files, but if that environment is threatened, they
//! might seek refuge in lower-level environments.
//!
//! One core building block of this library is the notion of virtual
//! memory pages, which are allocated and freed by an
//! externally-provided allocator (see how the `sanakirja` crate does
//! this). The particular implementation used here is meant to allow a
//! transactional system with readers reading the structures
//! concurrently with one writer at a time.
//!
//! At the moment, only B trees are implemented, as well as the
//! following general traits:
//!
//! - [`LoadPage`] is a trait used to get a pointer to a page. In the
//! most basic version, this may just return a pointer to the file,
//! offset by the requested offset. In more sophisticated versions,
//! this can be used to encrypt and compress pages.
//! - [`AllocPage`] allocates and frees pages, because as
//! datastructures need to be persisted on disk, we can't rely on
//! Rust's memory management to do it for us. Users of this crate
//! don't have to worry about this though.
//!
//! Moreover, two other traits can be used to store things on pages:
//! [`Storable`] is a simple trait that all `Sized + Ord` types
//! without references can readily implement (the [`direct_repr!`]
//! macro does that). For types containing references to pages
//! allocated in the database, the comparison function can be
//! customised. Moreover, these types must supply an iterator over
//! these references, in order for reference-counting to work properly
//! when the datastructures referencing these types are forked.
//!
//! Dynamically-sized types, or types that need to be represented in a
//! dynamically-sized way, can use the [`UnsizedStorable`] format.

pub mod btree;

/// There's a hard-coded assumption that pages have 4K bytes. This is
/// true for normal memory pages on almost all platforms.
pub const PAGE_SIZE: usize = 4096;

/// Types that can be stored on disk. This trait may be used in
/// conjunction with `Sized` in order to determine the on-disk size,
/// or with [`UnsizedStorable`] when special arrangements are needed.
pub trait Storable: core::fmt::Debug {
    /// This is required for B trees, not necessarily for other
    /// structures. The default implementation panics.
    fn compare<T: LoadPage>(&self, _txn: &T, _b: &Self) -> core::cmp::Ordering {
        unimplemented!()
    }

    /// If this value is an offset to another page at offset `offset`,
    /// return `Some(offset)`. Return `None` else.
    fn page_references(&self) -> Self::PageReferences;

    /// If this value is an offset to another page at offset `offset`,
    /// return `Some(offset)`. Return `None` else.
    fn drop<T: AllocPage>(&self, txn: &mut T) -> Result<(), T::Error> {
        for p in self.page_references() {
            txn.decr_rc(p)?;
        }
        Ok(())
    }

    /// An iterator over the offsets to pages contained in this
    /// value. Only values from this crate can generate non-empty
    /// iterators, but combined values (like tuples) must chain the
    /// iterators returned by method `page_offsets`.
    type PageReferences: Iterator<Item = u64>;
}

/// A macro to implement [`Storable`] on "plain" types,
/// i.e. fixed-sized types that are `repr(C)` and don't hold
/// references.
#[macro_export]
macro_rules! direct_repr {
    ($t: ty) => {
        impl Storable for $t {
            type PageReferences = core::iter::Empty<u64>;
            fn page_references(&self) -> Self::PageReferences {
                core::iter::empty()
            }
            fn compare<T>(&self, _: &T, b: &Self) -> core::cmp::Ordering {
                self.cmp(b)
            }
        }
        impl UnsizedStorable for $t {
            const ALIGN: usize = core::mem::align_of::<$t>();

            /// If `Self::SIZE.is_some()`, this must return the same
            /// value. The default implementation is `Self;:SIZE.unwrap()`.
            fn size(&self) -> usize {
                core::mem::size_of::<Self>()
            }

            /// Read the size from an on-page entry.
            unsafe fn onpage_size(_: *const u8) -> usize {
                core::mem::size_of::<Self>()
            }

            /// Write to a page. Must not overwrite the allocated size, but
            /// this isn't checked (which is why it's unsafe).
            unsafe fn write_to_page(&self, p: *mut u8) {
                core::ptr::copy_nonoverlapping(self, p as *mut Self, 1)
            }

            unsafe fn from_raw_ptr<'a, T>(_: &T, p: *const u8) -> &'a Self {
                &*(p as *const Self)
            }
        }
    };
}

direct_repr!(());
direct_repr!(u8);
direct_repr!(i8);
direct_repr!(u16);
direct_repr!(i16);
direct_repr!(u32);
direct_repr!(i32);
direct_repr!(u64);
direct_repr!(i64);
direct_repr!([u8; 16]);

#[cfg(feature = "std")]
extern crate std;
#[cfg(feature = "std")]
direct_repr!(std::net::Ipv4Addr);
#[cfg(feature = "std")]
direct_repr!(std::net::Ipv6Addr);
#[cfg(feature = "std")]
direct_repr!(std::net::IpAddr);
#[cfg(feature = "std")]
direct_repr!(std::net::SocketAddr);
#[cfg(feature = "std")]
direct_repr!(std::time::SystemTime);
#[cfg(feature = "std")]
direct_repr!(std::time::Duration);
#[cfg(feature = "uuid")]
direct_repr!(uuid::Uuid);
#[cfg(feature = "ed25519")]
direct_repr!(ed25519_zebra::VerificationKeyBytes);

/// Types that can be stored on disk.
pub trait UnsizedStorable: Storable {
    const ALIGN: usize;

    /// If `Self::SIZE.is_some()`, this must return the same
    /// value. The default implementation is `Self;:SIZE.unwrap()`.
    fn size(&self) -> usize;

    /// Read the size from an on-page entry. If `Self::SIZE.is_some()`
    /// this must be the same value.
    unsafe fn onpage_size(_: *const u8) -> usize;

    /// Write to a page. Must not overwrite the allocated size, but
    /// this isn't checked (which is why it's unsafe).
    unsafe fn write_to_page(&self, p: *mut u8);

    unsafe fn from_raw_ptr<'a, T>(_: &T, p: *const u8) -> &'a Self;
}

impl Storable for [u8] {
    type PageReferences = core::iter::Empty<u64>;
    fn page_references(&self) -> Self::PageReferences {
        core::iter::empty()
    }
    fn compare<T>(&self, _: &T, b: &Self) -> core::cmp::Ordering {
        self.cmp(b)
    }
}

impl UnsizedStorable for [u8] {
    const ALIGN: usize = 2;
    fn size(&self) -> usize {
        2 + self.len()
    }
    unsafe fn from_raw_ptr<'a, T>(_: &T, p: *const u8) -> &'a Self {
        let len = u16::from_le(*(p as *const u16));
        assert_ne!(len, 0);
        assert_eq!(len & 0xf000, 0);
        core::slice::from_raw_parts(p.add(2), len as usize)
    }
    unsafe fn onpage_size(p: *const u8) -> usize {
        let len = u16::from_le(*(p as *const u16));
        2 + len as usize
    }
    unsafe fn write_to_page(&self, p: *mut u8) {
        assert!(self.len() <= 510);
        *(p as *mut u16) = (self.len() as u16).to_le();
        core::ptr::copy_nonoverlapping(self.as_ptr(), p.add(2), self.len())
    }
}

unsafe fn read<T: LoadPage, K: UnsizedStorable + ?Sized, V: UnsizedStorable + ?Sized>(
    _txn: &T,
    k: *const u8,
) -> (*const u8, *const u8) {
    let s = K::onpage_size(k);
    let v = k.add(s);
    let al = v.align_offset(V::ALIGN);
    let v = v.add(al);
    (k, v)
}

unsafe fn entry_size<K: UnsizedStorable + ?Sized, V: UnsizedStorable + ?Sized>(
    k: *const u8,
) -> usize {
    assert_eq!(k.align_offset(K::ALIGN), 0);
    let ks = K::onpage_size(k);
    // next multiple of va, assuming va is a power of 2.
    let v_off = (ks + V::ALIGN - 1) & !(V::ALIGN - 1);
    let v_ptr = k.add(v_off);
    let vs = V::onpage_size(v_ptr);
    let ka = K::ALIGN.max(V::ALIGN);
    let size = v_off + vs;
    (size + ka - 1) & !(ka - 1)
}

/// Representation of a mutable or shared page. This is an owned page
/// (like `Vec` in Rust's std), but we do not know whether we can
/// mutate it or not.
///
/// The least-significant bit of the first byte of each page is 1 if
/// and only if the page was allocated by the current transaction (and
/// hence isn't visible to any other transaction, meaning we can write
/// on it).
#[derive(Debug)]
#[repr(C)]
pub struct CowPage {
    pub data: *mut u8,
    pub offset: u64,
}

/// Representation of a borrowed, or immutable page, like a slice in
/// Rust.
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub struct Page<'a> {
    pub data: &'a [u8; PAGE_SIZE],
    pub offset: u64,
}

impl CowPage {
    /// Borrows the page.
    pub fn as_page(&self) -> Page {
        Page {
            data: unsafe { &*(self.data as *const [u8; PAGE_SIZE]) },
            offset: self.offset,
        }
    }

    #[cfg(feature = "crc32")]
    pub fn crc(&self, hasher: &crc32fast::Hasher) -> u32 {
        let mut hasher = hasher.clone();
        hasher.reset();
        // Hash the beginning and the end of the page (i.e. remove
        // the CRC).
        unsafe {
            // Remove the dirty bit.
            let x = [(*self.data) & 0xfe];
            hasher.update(&x[..]);
            hasher.update(core::slice::from_raw_parts(self.data.add(1), 3));
            hasher.update(core::slice::from_raw_parts(
                self.data.add(8),
                PAGE_SIZE - 8,
            ));
        }
        hasher.finalize()
    }

    #[cfg(feature = "crc32")]
    pub fn crc_check(&self, hasher: &crc32fast::Hasher) -> bool {
        let crc = unsafe { u32::from_le(*(self.data as *const u32).add(1)) };
        self.crc(hasher) == crc
    }
}

/// An owned page on which we can write. This is just a wrapper around
/// `CowPage` to avoid checking the "dirty" bit at runtime.
#[derive(Debug)]
pub struct MutPage(pub CowPage);

impl MutPage {
    #[cfg(not(feature = "crc32"))]
    pub fn clear_dirty(&mut self) {
        unsafe { *self.0.data &= 0xfe }
    }

    #[cfg(feature = "crc32")]
    pub fn clear_dirty(&mut self, hasher: &crc32fast::Hasher) {
        unsafe {
            *self.0.data &= 0xfe;
            let crc = (self.0.data as *mut u32).add(1);
            *crc = self.0.crc(hasher)
        }
    }
}

unsafe impl Sync for CowPage {}
unsafe impl Send for CowPage {}

impl CowPage {
    /// Checks the dirty bit of a page.
    pub fn is_dirty(&self) -> bool {
        unsafe { (*self.data) & 1 != 0 }
    }
}

/// Trait for loading a page.
pub trait LoadPage {
    type Error;
    /// Loading a page.
    fn load_page(&self, off: u64) -> Result<CowPage, Self::Error>;

    /// Reference-counting. Since reference-counts are designed to be
    /// storable into B trees by external allocators, pages referenced
    /// once aren't stored, and hence are indistinguishable from pages
    /// that are never referenced. The default implementation returns
    /// 0.
    ///
    /// This has the extra benefit of requiring less disk space, and
    /// isn't more unsafe than storing the reference count, since we
    /// aren't supposed to hold a reference to a page with "logical
    /// RC" 0, so storing "1" for that page would be redundant anyway.
    fn rc(&self, _off: u64) -> Result<u64, Self::Error> {
        Ok(0)
    }
}

/// Trait for allocating and freeing pages.
pub trait AllocPage: LoadPage {
    /// Allocate a new page.
    fn alloc_page(&mut self) -> Result<MutPage, Self::Error>;
    /// Increment the page's reference count.
    fn incr_rc(&mut self, off: u64) -> Result<usize, Self::Error>;
    /// Decrement the page's reference count, assuming the page was
    /// first allocated by another transaction. If the RC reaches 0,
    /// free the page. Must return the new RC (0 if freed).
    fn decr_rc(&mut self, off: u64) -> Result<usize, Self::Error>;
    /// Same as [`Self::decr_rc`], but for pages allocated by the current
    /// transaction. This is an important distinction, as pages
    /// allocated by the current transaction can be reused immediately
    /// after being freed.
    fn decr_rc_owned(&mut self, off: u64) -> Result<usize, Self::Error>;
}