1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
//! This is the core of Sana.
//!
//! Specifically, this crate provides the following:
//!
//! - Extended regular expression derivatives
//! - DFA construction for a rule set
//! - IR generation from a DFA
//!
//! If you just want generate a lexer, use the main crate (`sana`) instead.

use regex::{Regex, Derivative, RegexVector};
use automata::{State, Automata};
use std::collections::{HashMap, VecDeque};

pub mod regex;
pub mod automata;
pub mod ir;
#[cfg(feature = "automata_dot")]
pub mod dot;

/// DFA construction error
#[derive(Debug, Clone, PartialEq)]
pub enum Error {
    /// Ambiguity error for rules with given indices
    ///
    /// The rules can match the same string but have the same precedence
    AmbiguityError(usize, usize)
}

/// A lexer rule
///
/// It usually corresponds to a token
#[derive(Debug, Clone, PartialEq)]
pub struct Rule<T> {
    pub regex: Regex,
    pub priority: usize,
    pub action: T,
}

impl<T: Clone> Rule<T> {
    /// Construct DFA using regular expression derivatives
    pub fn construct_dfa(&self) -> Automata<T> {
        let state =
            if self.regex.is_nullable() { State::Action(self.action.clone()) }
            else { State::Normal };

        let mut automata = Automata::new(state);
        let mut queue = VecDeque::<Regex>::new();
        let mut stored = HashMap::<Regex, usize>::new();

        queue.push_back(self.regex.clone());
        stored.insert(self.regex.clone(), 0);

        while let Some(r) = queue.pop_front() {
            let from = *stored.get(&r).unwrap();
            let set = r.class_set();

            for class in set.classes() {
                let dr = r.derivative(class.pick());
                let to =
                    if let Some(&i) = stored.get(&dr) { i }
                    else {
                        let i = stored.len();
                        let state =
                            if dr.is_nullable() { State::Action(self.action.clone()) }
                            else { State::Normal };

                        queue.push_back(dr.clone());
                        stored.insert(dr, i);

                        automata.insert_state(state);

                        i
                    };

                for range in class.ranges() {
                    automata.insert_edge(from, to, range)
                }
            }
        }

        automata
    }
}

/// A rule set is just a vector of rules
#[derive(Debug, Clone, PartialEq)]
pub struct RuleSet<T> {
    pub rules: Vec<Rule<T>>
}

impl<T: Clone> RuleSet<T> {
    /// From all rules with index i ∈ rule_indices, return the rule
    /// with the higherst priority
    ///
    /// If there are more than one such rules, return the ambiguity error
    fn top_rule<I>(&self, mut rule_indices: I) -> Result<Option<&Rule<T>>, Error>
    where I: Iterator<Item=usize> {
        let ix =
            if let Some(ix) = rule_indices.next() { ix }
            else { return Ok(None) };

        let (mut top_ix, mut top_prio) = (ix, self.rules[ix].priority);
        for i in rule_indices {
            use std::cmp::Ordering::*;

            let prio = self.rules[i].priority;
            match prio.cmp(&top_prio) {
                Less => (),
                Equal => return Err(Error::AmbiguityError(top_ix, i)),
                Greater => { top_ix = i; top_prio = prio }
            }
        }

        Ok(Some(&self.rules[top_ix]))
    }

    /// Construct a DFA from a rule set
    ///
    /// In the resulting DFA, the action of each action state is set to
    /// the action of the rule with the highest priority.
    ///
    /// If there's more than one rule with the same priority that matches
    /// the same input, then an ambiguity error is returned
    pub fn construct_dfa(&self) -> Result<Automata<T>, Error> {
        let vector = RegexVector {
            exprs: self.rules.iter().map(|r| r.regex.clone()).collect()
        };
        let rule = self.top_rule(vector.nullables())?;
        let state =
            match rule {
                Some(rule) => State::Action(rule.action.clone()),
                _ => State::Normal,
            };

        let mut automata = Automata::new(state);
        let mut queue = VecDeque::new();
        let mut stored = HashMap::<_, usize>::new();

        queue.push_back(vector.clone());
        stored.insert(vector, 0);

        let mut current_ranges = vec![];

        while let Some(vec) = queue.pop_front() {
            let from = *stored.get(&vec).unwrap();
            let set = vec.class_set();

            for class in set.classes() {
                let dvec = vec.derivative(class.pick());
                let to =
                    if let Some(&i) = stored.get(&dvec) { i }
                    else {
                        let i = stored.len();
                        let state =
                            match self.top_rule(dvec.nullables())? {
                                Some(rule) => State::Action(rule.action.clone()),
                                _ => State::Normal,
                            };

                        queue.push_back(dvec.clone());
                        stored.insert(dvec, i);

                        automata.insert_state(state);

                        i
                    };

                current_ranges.extend(class.ranges().map(|r| (from, to, r)));
            }

            current_ranges.sort();

            let mut current = None;
            for (from, to, range) in current_ranges.drain(..) {
                match &mut current {
                    Some((f, t, r)) => {
                        match range.concat(*r) {
                            Some(conc) if *f == from && *t == to =>
                                *r = conc,
                            _ => {
                                automata.insert_edge(*f, *t, *r);
                                current = Some((from, to, range))
                            }
                        }
                    },
                    _ => current = Some((from, to, range)),
                }
            }
            if let Some((from, to, range)) = current {
                automata.insert_edge(from, to, range)
            }
        }

        Ok(automata)
    }
}