1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
use crate::durability::Durability;
use crate::plumbing::CycleDetected;
use crate::revision::{AtomicRevision, Revision};
use crate::{CycleError, Database, DatabaseKeyIndex, Event, EventKind};
use log::debug;
use parking_lot::lock_api::{RawRwLock, RawRwLockRecursive};
use parking_lot::{Mutex, RwLock};
use rustc_hash::{FxHashMap, FxHasher};
use smallvec::SmallVec;
use std::hash::{BuildHasherDefault, Hash};
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::Arc;

pub(crate) type FxIndexSet<K> = indexmap::IndexSet<K, BuildHasherDefault<FxHasher>>;
pub(crate) type FxIndexMap<K, V> = indexmap::IndexMap<K, V, BuildHasherDefault<FxHasher>>;

mod local_state;
use local_state::LocalState;

/// The salsa runtime stores the storage for all queries as well as
/// tracking the query stack and dependencies between cycles.
///
/// Each new runtime you create (e.g., via `Runtime::new` or
/// `Runtime::default`) will have an independent set of query storage
/// associated with it. Normally, therefore, you only do this once, at
/// the start of your application.
pub struct Runtime {
    /// Our unique runtime id.
    id: RuntimeId,

    /// If this is a "forked" runtime, then the `revision_guard` will
    /// be `Some`; this guard holds a read-lock on the global query
    /// lock.
    revision_guard: Option<RevisionGuard>,

    /// Local state that is specific to this runtime (thread).
    local_state: LocalState,

    /// Shared state that is accessible via all runtimes.
    shared_state: Arc<SharedState>,
}

impl Default for Runtime {
    fn default() -> Self {
        Runtime {
            id: RuntimeId { counter: 0 },
            revision_guard: None,
            shared_state: Default::default(),
            local_state: Default::default(),
        }
    }
}

impl std::fmt::Debug for Runtime {
    fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        fmt.debug_struct("Runtime")
            .field("id", &self.id())
            .field("forked", &self.revision_guard.is_some())
            .field("shared_state", &self.shared_state)
            .finish()
    }
}

impl Runtime {
    /// Create a new runtime; equivalent to `Self::default`. This is
    /// used when creating a new database.
    pub fn new() -> Self {
        Self::default()
    }

    /// See [`crate::storage::Storage::snapshot`].
    pub(crate) fn snapshot(&self) -> Self {
        if self.local_state.query_in_progress() {
            panic!("it is not legal to `snapshot` during a query (see salsa-rs/salsa#80)");
        }

        let revision_guard = RevisionGuard::new(&self.shared_state);

        let id = RuntimeId {
            counter: self.shared_state.next_id.fetch_add(1, Ordering::SeqCst),
        };

        Runtime {
            id,
            revision_guard: Some(revision_guard),
            shared_state: self.shared_state.clone(),
            local_state: Default::default(),
        }
    }

    /// A "synthetic write" causes the system to act *as though* some
    /// input of durability `durability` has changed. This is mostly
    /// useful for profiling scenarios, but it also has interactions
    /// with garbage collection. In general, a synthetic write to
    /// durability level D will cause the system to fully trace all
    /// queries of durability level D and below. When running a GC, then:
    ///
    /// - Synthetic writes will cause more derived values to be
    ///   *retained*.  This is because derived values are only
    ///   retained if they are traced, and a synthetic write can cause
    ///   more things to be traced.
    /// - Synthetic writes can cause more interned values to be
    ///   *collected*. This is because interned values can only be
    ///   collected if they were not yet traced in the current
    ///   revision. Therefore, if you issue a synthetic write, execute
    ///   some query Q, and then start collecting interned values, you
    ///   will be able to recycle interned values not used in Q.
    ///
    /// In general, then, one can do a "full GC" that retains only
    /// those things that are used by some query Q by (a) doing a
    /// synthetic write at `Durability::HIGH`, (b) executing the query
    /// Q and then (c) doing a sweep.
    ///
    /// **WARNING:** Just like an ordinary write, this method triggers
    /// cancellation. If you invoke it while a snapshot exists, it
    /// will block until that snapshot is dropped -- if that snapshot
    /// is owned by the current thread, this could trigger deadlock.
    pub fn synthetic_write(&mut self, durability: Durability) {
        self.with_incremented_revision(&mut |_next_revision| Some(durability));
    }

    /// The unique identifier attached to this `SalsaRuntime`. Each
    /// snapshotted runtime has a distinct identifier.
    #[inline]
    pub fn id(&self) -> RuntimeId {
        self.id
    }

    /// Returns the database-key for the query that this thread is
    /// actively executing (if any).
    pub fn active_query(&self) -> Option<DatabaseKeyIndex> {
        self.local_state.active_query()
    }

    /// Read current value of the revision counter.
    #[inline]
    pub(crate) fn current_revision(&self) -> Revision {
        self.shared_state.revisions[0].load()
    }

    /// The revision in which values with durability `d` may have last
    /// changed.  For D0, this is just the current revision. But for
    /// higher levels of durability, this value may lag behind the
    /// current revision. If we encounter a value of durability Di,
    /// then, we can check this function to get a "bound" on when the
    /// value may have changed, which allows us to skip walking its
    /// dependencies.
    #[inline]
    pub(crate) fn last_changed_revision(&self, d: Durability) -> Revision {
        self.shared_state.revisions[d.index()].load()
    }

    /// Read current value of the revision counter.
    #[inline]
    fn pending_revision(&self) -> Revision {
        self.shared_state.pending_revision.load()
    }

    /// Check if the current revision is canceled. If this method ever
    /// returns true, the currently executing query is also marked as
    /// having an *untracked read* -- this means that, in the next
    /// revision, we will always recompute its value "as if" some
    /// input had changed. This means that, if your revision is
    /// canceled (which indicates that current query results will be
    /// ignored) your query is free to shortcircuit and return
    /// whatever it likes.
    ///
    /// This method is useful for implementing cancellation of queries.
    /// You can do it in one of two ways, via `Result`s or via unwinding.
    ///
    /// The `Result` approach looks like this:
    ///
    ///   * Some queries invoke `is_current_revision_canceled` and
    ///     return a special value, like `Err(Canceled)`, if it returns
    ///     `true`.
    ///   * Other queries propagate the special value using `?` operator.
    ///   * API around top-level queries checks if the result is `Ok` or
    ///     `Err(Canceled)`.
    ///
    /// The `panic` approach works in a similar way:
    ///
    ///   * Some queries invoke `is_current_revision_canceled` and
    ///     panic with a special value, like `Canceled`, if it returns
    ///     true.
    ///   * The implementation of `Database` trait overrides
    ///     `on_propagated_panic` to throw this special value as well.
    ///     This way, panic gets propagated naturally through dependant
    ///     queries, even across the threads.
    ///   * API around top-level queries converts a `panic` into `Result` by
    ///     catching the panic (using either `std::panic::catch_unwind` or
    ///     threads) and downcasting the payload to `Canceled` (re-raising
    ///     panic if downcast fails).
    ///
    /// Note that salsa is explicitly designed to be panic-safe, so cancellation
    /// via unwinding is 100% valid approach to cancellation.
    #[inline]
    pub fn is_current_revision_canceled(&self) -> bool {
        let current_revision = self.current_revision();
        let pending_revision = self.pending_revision();
        debug!(
            "is_current_revision_canceled: current_revision={:?}, pending_revision={:?}",
            current_revision, pending_revision
        );
        if pending_revision > current_revision {
            self.report_untracked_read();
            true
        } else {
            // Subtle: If the current revision is not canceled, we
            // still report an **anonymous** read, which will bump up
            // the revision number to be at least the last
            // non-canceled revision. This is needed to ensure
            // deterministic reads and avoid salsa-rs/salsa#66. The
            // specific scenario we are trying to avoid is tested by
            // `no_back_dating_in_cancellation`; it works like
            // this. Imagine we have 3 queries, where Query3 invokes
            // Query2 which invokes Query1. Then:
            //
            // - In Revision R1:
            //   - Query1: Observes cancelation and returns sentinel S.
            //     - Recorded inputs: Untracked, because we observed cancelation.
            //   - Query2: Reads Query1 and propagates sentinel S.
            //     - Recorded inputs: Query1, changed-at=R1
            //   - Query3: Reads Query2 and propagates sentinel S. (Inputs = Query2, ChangedAt R1)
            //     - Recorded inputs: Query2, changed-at=R1
            // - In Revision R2:
            //   - Query1: Observes no cancelation. All of its inputs last changed in R0,
            //     so it returns a valid value with "changed at" of R0.
            //     - Recorded inputs: ..., changed-at=R0
            //   - Query2: Recomputes its value and returns correct result.
            //     - Recorded inputs: Query1, changed-at=R0 <-- key problem!
            //   - Query3: sees that Query2's result last changed in R0, so it thinks it
            //     can re-use its value from R1 (which is the sentinel value).
            //
            // The anonymous read here prevents that scenario: Query1
            // winds up with a changed-at setting of R2, which is the
            // "pending revision", and hence Query2 and Query3
            // are recomputed.
            assert_eq!(pending_revision, current_revision);
            self.report_anon_read(pending_revision);
            false
        }
    }

    /// Acquires the **global query write lock** (ensuring that no queries are
    /// executing) and then increments the current revision counter; invokes
    /// `op` with the global query write lock still held.
    ///
    /// While we wait to acquire the global query write lock, this method will
    /// also increment `pending_revision_increments`, thus signalling to queries
    /// that their results are "canceled" and they should abort as expeditiously
    /// as possible.
    ///
    /// The `op` closure should actually perform the writes needed. It is given
    /// the new revision as an argument, and its return value indicates whether
    /// any pre-existing value was modified:
    ///
    /// - returning `None` means that no pre-existing value was modified (this
    ///   could occur e.g. when setting some key on an input that was never set
    ///   before)
    /// - returning `Some(d)` indicates that a pre-existing value was modified
    ///   and it had the durability `d`. This will update the records for when
    ///   values with each durability were modified.
    ///
    /// Note that, given our writer model, we can assume that only one thread is
    /// attempting to increment the global revision at a time.
    pub(crate) fn with_incremented_revision(
        &mut self,
        op: &mut dyn FnMut(Revision) -> Option<Durability>,
    ) {
        log::debug!("increment_revision()");

        if !self.permits_increment() {
            panic!("increment_revision invoked during a query computation");
        }

        // Set the `pending_revision` field so that people
        // know current revision is canceled.
        let current_revision = self.shared_state.pending_revision.fetch_then_increment();

        // To modify the revision, we need the lock.
        let shared_state = self.shared_state.clone();
        let _lock = shared_state.query_lock.write();

        let old_revision = self.shared_state.revisions[0].fetch_then_increment();
        assert_eq!(current_revision, old_revision);

        let new_revision = current_revision.next();

        debug!("increment_revision: incremented to {:?}", new_revision);

        if let Some(d) = op(new_revision) {
            for rev in &self.shared_state.revisions[1..=d.index()] {
                rev.store(new_revision);
            }
        }
    }

    pub(crate) fn permits_increment(&self) -> bool {
        self.revision_guard.is_none() && !self.local_state.query_in_progress()
    }

    pub(crate) fn execute_query_implementation<DB, V>(
        &self,
        db: &DB,
        database_key_index: DatabaseKeyIndex,
        execute: impl FnOnce() -> V,
    ) -> ComputedQueryResult<V>
    where
        DB: ?Sized + Database,
    {
        debug!(
            "{:?}: execute_query_implementation invoked",
            database_key_index
        );

        db.salsa_event(Event {
            runtime_id: self.id(),
            kind: EventKind::WillExecute {
                database_key: database_key_index,
            },
        });

        // Push the active query onto the stack.
        let max_durability = Durability::MAX;
        let active_query = self
            .local_state
            .push_query(database_key_index, max_durability);

        // Execute user's code, accumulating inputs etc.
        let value = execute();

        // Extract accumulated inputs.
        let ActiveQuery {
            dependencies,
            changed_at,
            durability,
            cycle,
            ..
        } = active_query.complete();

        ComputedQueryResult {
            value,
            durability,
            changed_at,
            dependencies,
            cycle,
        }
    }

    /// Reports that the currently active query read the result from
    /// another query.
    ///
    /// # Parameters
    ///
    /// - `database_key`: the query whose result was read
    /// - `changed_revision`: the last revision in which the result of that
    ///   query had changed
    pub(crate) fn report_query_read<'hack>(
        &self,
        input: DatabaseKeyIndex,
        durability: Durability,
        changed_at: Revision,
    ) {
        self.local_state
            .report_query_read(input, durability, changed_at);
    }

    /// Reports that the query depends on some state unknown to salsa.
    ///
    /// Queries which report untracked reads will be re-executed in the next
    /// revision.
    pub fn report_untracked_read(&self) {
        self.local_state
            .report_untracked_read(self.current_revision());
    }

    /// Acts as though the current query had read an input with the given durability; this will force the current query's durability to be at most `durability`.
    ///
    /// This is mostly useful to control the durability level for [on-demand inputs](https://salsa-rs.github.io/salsa/common_patterns/on_demand_inputs.html).
    pub fn report_synthetic_read(&self, durability: Durability) {
        self.local_state.report_synthetic_read(durability);
    }

    /// An "anonymous" read is a read that doesn't come from executing
    /// a query, but from some other internal operation. It just
    /// modifies the "changed at" to be at least the given revision.
    /// (It also does not disqualify a query from being considered
    /// constant, since it is used for queries that don't give back
    /// actual *data*.)
    ///
    /// This is used when queries check if they have been canceled.
    fn report_anon_read(&self, revision: Revision) {
        self.local_state.report_anon_read(revision)
    }

    /// Obviously, this should be user configurable at some point.
    pub(crate) fn report_unexpected_cycle(
        &self,
        database_key_index: DatabaseKeyIndex,
        error: CycleDetected,
        changed_at: Revision,
    ) -> crate::CycleError<DatabaseKeyIndex> {
        debug!(
            "report_unexpected_cycle(database_key={:?})",
            database_key_index
        );

        let mut query_stack = self.local_state.borrow_query_stack_mut();

        if error.from == error.to {
            // All queries in the cycle is local
            let start_index = query_stack
                .iter()
                .rposition(|active_query| active_query.database_key_index == database_key_index)
                .unwrap();
            let mut cycle = Vec::new();
            let cycle_participants = &mut query_stack[start_index..];
            for active_query in &mut *cycle_participants {
                cycle.push(active_query.database_key_index);
            }

            assert!(!cycle.is_empty());

            for active_query in cycle_participants {
                active_query.cycle = cycle.clone();
            }

            crate::CycleError {
                cycle,
                changed_at,
                durability: Durability::MAX,
            }
        } else {
            // Part of the cycle is on another thread so we need to lock and inspect the shared
            // state
            let dependency_graph = self.shared_state.dependency_graph.lock();

            let mut cycle = Vec::new();
            dependency_graph.push_cycle_path(
                database_key_index,
                error.to,
                query_stack.iter().map(|query| query.database_key_index),
                &mut cycle,
            );
            cycle.push(database_key_index);

            assert!(!cycle.is_empty());

            for active_query in query_stack
                .iter_mut()
                .filter(|query| cycle.iter().any(|key| *key == query.database_key_index))
            {
                active_query.cycle = cycle.clone();
            }

            crate::CycleError {
                cycle,
                changed_at,
                durability: Durability::MAX,
            }
        }
    }

    pub(crate) fn mark_cycle_participants(&self, err: &CycleError<DatabaseKeyIndex>) {
        for active_query in self
            .local_state
            .borrow_query_stack_mut()
            .iter_mut()
            .rev()
            .take_while(|active_query| {
                err.cycle
                    .iter()
                    .any(|e| *e == active_query.database_key_index)
            })
        {
            active_query.cycle = err.cycle.clone();
        }
    }

    /// Try to make this runtime blocked on `other_id`. Returns true
    /// upon success or false if `other_id` is already blocked on us.
    pub(crate) fn try_block_on(&self, database_key: DatabaseKeyIndex, other_id: RuntimeId) -> bool {
        self.shared_state.dependency_graph.lock().add_edge(
            self.id(),
            database_key,
            other_id,
            self.local_state
                .borrow_query_stack()
                .iter()
                .map(|query| query.database_key_index),
        )
    }

    pub(crate) fn unblock_queries_blocked_on_self(&self, database_key_index: DatabaseKeyIndex) {
        self.shared_state
            .dependency_graph
            .lock()
            .remove_edge(database_key_index, self.id())
    }
}

/// State that will be common to all threads (when we support multiple threads)
struct SharedState {
    /// Stores the next id to use for a snapshotted runtime (starts at 1).
    next_id: AtomicUsize,

    /// Whenever derived queries are executing, they acquire this lock
    /// in read mode. Mutating inputs (and thus creating a new
    /// revision) requires a write lock (thus guaranteeing that no
    /// derived queries are in progress). Note that this is not needed
    /// to prevent **race conditions** -- the revision counter itself
    /// is stored in an `AtomicUsize` so it can be cheaply read
    /// without acquiring the lock.  Rather, the `query_lock` is used
    /// to ensure a higher-level consistency property.
    query_lock: RwLock<()>,

    /// This is typically equal to `revision` -- set to `revision+1`
    /// when a new revision is pending (which implies that the current
    /// revision is canceled).
    pending_revision: AtomicRevision,

    /// Stores the "last change" revision for values of each duration.
    /// This vector is always of length at least 1 (for Durability 0)
    /// but its total length depends on the number of durations. The
    /// element at index 0 is special as it represents the "current
    /// revision".  In general, we have the invariant that revisions
    /// in here are *declining* -- that is, `revisions[i] >=
    /// revisions[i + 1]`, for all `i`. This is because when you
    /// modify a value with durability D, that implies that values
    /// with durability less than D may have changed too.
    revisions: Vec<AtomicRevision>,

    /// The dependency graph tracks which runtimes are blocked on one
    /// another, waiting for queries to terminate.
    dependency_graph: Mutex<DependencyGraph<DatabaseKeyIndex>>,
}

impl SharedState {
    fn with_durabilities(durabilities: usize) -> Self {
        SharedState {
            next_id: AtomicUsize::new(1),
            query_lock: Default::default(),
            revisions: (0..durabilities).map(|_| AtomicRevision::start()).collect(),
            pending_revision: AtomicRevision::start(),
            dependency_graph: Default::default(),
        }
    }
}

impl std::panic::RefUnwindSafe for SharedState {}

impl Default for SharedState {
    fn default() -> Self {
        Self::with_durabilities(Durability::LEN)
    }
}

impl std::fmt::Debug for SharedState {
    fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let query_lock = if self.query_lock.try_write().is_some() {
            "<unlocked>"
        } else if self.query_lock.try_read().is_some() {
            "<rlocked>"
        } else {
            "<wlocked>"
        };
        fmt.debug_struct("SharedState")
            .field("query_lock", &query_lock)
            .field("revisions", &self.revisions)
            .field("pending_revision", &self.pending_revision)
            .finish()
    }
}

struct ActiveQuery {
    /// What query is executing
    database_key_index: DatabaseKeyIndex,

    /// Minimum durability of inputs observed so far.
    durability: Durability,

    /// Maximum revision of all inputs observed. If we observe an
    /// untracked read, this will be set to the most recent revision.
    changed_at: Revision,

    /// Set of subqueries that were accessed thus far, or `None` if
    /// there was an untracked the read.
    dependencies: Option<FxIndexSet<DatabaseKeyIndex>>,

    /// Stores the entire cycle, if one is found and this query is part of it.
    cycle: Vec<DatabaseKeyIndex>,
}

pub(crate) struct ComputedQueryResult<V> {
    /// Final value produced
    pub(crate) value: V,

    /// Minimum durability of inputs observed so far.
    pub(crate) durability: Durability,

    /// Maximum revision of all inputs observed. If we observe an
    /// untracked read, this will be set to the most recent revision.
    pub(crate) changed_at: Revision,

    /// Complete set of subqueries that were accessed, or `None` if
    /// there was an untracked read.
    pub(crate) dependencies: Option<FxIndexSet<DatabaseKeyIndex>>,

    /// The cycle if one occured while computing this value
    pub(crate) cycle: Vec<DatabaseKeyIndex>,
}

impl ActiveQuery {
    fn new(database_key_index: DatabaseKeyIndex, max_durability: Durability) -> Self {
        ActiveQuery {
            database_key_index,
            durability: max_durability,
            changed_at: Revision::start(),
            dependencies: Some(FxIndexSet::default()),
            cycle: Vec::new(),
        }
    }

    fn add_read(&mut self, input: DatabaseKeyIndex, durability: Durability, revision: Revision) {
        if let Some(set) = &mut self.dependencies {
            set.insert(input);
        }

        self.durability = self.durability.min(durability);
        self.changed_at = self.changed_at.max(revision);
    }

    fn add_untracked_read(&mut self, changed_at: Revision) {
        self.dependencies = None;
        self.durability = Durability::LOW;
        self.changed_at = changed_at;
    }

    fn add_synthetic_read(&mut self, durability: Durability) {
        self.durability = self.durability.min(durability);
    }

    fn add_anon_read(&mut self, changed_at: Revision) {
        self.changed_at = self.changed_at.max(changed_at);
    }
}

/// A unique identifier for a particular runtime. Each time you create
/// a snapshot, a fresh `RuntimeId` is generated. Once a snapshot is
/// complete, its `RuntimeId` may potentially be re-used.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct RuntimeId {
    counter: usize,
}

#[derive(Clone, Debug)]
pub(crate) struct StampedValue<V> {
    pub(crate) value: V,
    pub(crate) durability: Durability,
    pub(crate) changed_at: Revision,
}

#[derive(Debug)]
struct Edge<K> {
    id: RuntimeId,
    path: Vec<K>,
}

#[derive(Debug)]
struct DependencyGraph<K: Hash + Eq> {
    /// A `(K -> V)` pair in this map indicates that the the runtime
    /// `K` is blocked on some query executing in the runtime `V`.
    /// This encodes a graph that must be acyclic (or else deadlock
    /// will result).
    edges: FxHashMap<RuntimeId, Edge<K>>,
    labels: FxHashMap<K, SmallVec<[RuntimeId; 4]>>,
}

impl<K> Default for DependencyGraph<K>
where
    K: Hash + Eq,
{
    fn default() -> Self {
        DependencyGraph {
            edges: Default::default(),
            labels: Default::default(),
        }
    }
}

impl<K> DependencyGraph<K>
where
    K: Hash + Eq + Clone,
{
    /// Attempt to add an edge `from_id -> to_id` into the result graph.
    fn add_edge(
        &mut self,
        from_id: RuntimeId,
        database_key: K,
        to_id: RuntimeId,
        path: impl IntoIterator<Item = K>,
    ) -> bool {
        assert_ne!(from_id, to_id);
        debug_assert!(!self.edges.contains_key(&from_id));

        // First: walk the chain of things that `to_id` depends on,
        // looking for us.
        let mut p = to_id;
        while let Some(q) = self.edges.get(&p).map(|edge| edge.id) {
            if q == from_id {
                return false;
            }

            p = q;
        }

        self.edges.insert(
            from_id,
            Edge {
                id: to_id,
                path: path.into_iter().chain(Some(database_key.clone())).collect(),
            },
        );
        self.labels
            .entry(database_key.clone())
            .or_default()
            .push(from_id);
        true
    }

    fn remove_edge(&mut self, database_key: K, to_id: RuntimeId) {
        let vec = self.labels.remove(&database_key).unwrap_or_default();

        for from_id in &vec {
            let to_id1 = self.edges.remove(from_id).map(|edge| edge.id);
            assert_eq!(Some(to_id), to_id1);
        }
    }

    fn push_cycle_path<'a>(
        &'a self,
        database_key: K,
        to: RuntimeId,
        local_path: impl IntoIterator<Item = K>,
        output: &mut Vec<K>,
    ) where
        K: std::fmt::Debug,
    {
        let mut current = Some((to, std::slice::from_ref(&database_key)));
        let mut last = None;
        let mut local_path = Some(local_path);

        loop {
            match current.take() {
                Some((id, path)) => {
                    let link_key = path.last().unwrap();

                    output.extend(path.iter().cloned());

                    current = self.edges.get(&id).map(|edge| {
                        let i = edge.path.iter().rposition(|p| p == link_key).unwrap();
                        (edge.id, &edge.path[i + 1..])
                    });

                    if current.is_none() {
                        last = local_path.take().map(|local_path| {
                            local_path
                                .into_iter()
                                .skip_while(move |p| *p != *link_key)
                                .skip(1)
                        });
                    }
                }
                None => break,
            }
        }

        if let Some(iter) = &mut last {
            output.extend(iter);
        }
    }
}

struct RevisionGuard {
    shared_state: Arc<SharedState>,
}

impl RevisionGuard {
    fn new(shared_state: &Arc<SharedState>) -> Self {
        // Subtle: we use a "recursive" lock here so that it is not an
        // error to acquire a read-lock when one is already held (this
        // happens when a query uses `snapshot` to spawn off parallel
        // workers, for example).
        //
        // This has the side-effect that we are responsible to ensure
        // that people contending for the write lock do not starve,
        // but this is what we achieve via the cancellation mechanism.
        //
        // (In particular, since we only ever have one "mutating
        // handle" to the database, the only contention for the global
        // query lock occurs when there are "futures" evaluating
        // queries in parallel, and those futures hold a read-lock
        // already, so the starvation problem is more about them bring
        // themselves to a close, versus preventing other people from
        // *starting* work).
        unsafe {
            shared_state.query_lock.raw().lock_shared_recursive();
        }

        Self {
            shared_state: shared_state.clone(),
        }
    }
}

impl Drop for RevisionGuard {
    fn drop(&mut self) {
        // Release our read-lock without using RAII. As documented in
        // `Snapshot::new` above, this requires the unsafe keyword.
        unsafe {
            self.shared_state.query_lock.raw().unlock_shared();
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn dependency_graph_path1() {
        let mut graph = DependencyGraph::default();
        let a = RuntimeId { counter: 0 };
        let b = RuntimeId { counter: 1 };
        assert!(graph.add_edge(a, 2, b, vec![1]));
        // assert!(graph.add_edge(b, &1, a, vec![3, 2]));
        let mut v = vec![];
        graph.push_cycle_path(1, a, vec![3, 2], &mut v);
        assert_eq!(v, vec![1, 2]);
    }

    #[test]
    fn dependency_graph_path2() {
        let mut graph = DependencyGraph::default();
        let a = RuntimeId { counter: 0 };
        let b = RuntimeId { counter: 1 };
        let c = RuntimeId { counter: 2 };
        assert!(graph.add_edge(a, 3, b, vec![1]));
        assert!(graph.add_edge(b, 4, c, vec![2, 3]));
        // assert!(graph.add_edge(c, &1, a, vec![5, 6, 4, 7]));
        let mut v = vec![];
        graph.push_cycle_path(1, a, vec![5, 6, 4, 7], &mut v);
        assert_eq!(v, vec![1, 3, 4, 7]);
    }
}