1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
// Copyright 2017 MaidSafe.net limited.
//
// This SAFE Network Software is licensed to you under (1) the MaidSafe.net Commercial License,
// version 1.0 or later, or (2) The General Public License (GPL), version 3, depending on which
// licence you accepted on initial access to the Software (the "Licences").
//
// By contributing code to the SAFE Network Software, or to this project generally, you agree to be
// bound by the terms of the MaidSafe Contributor Agreement.  This, along with the Licenses can be
// found in the root directory of this project at LICENSE, COPYING and CONTRIBUTOR.
//
// Unless required by applicable law or agreed to in writing, the SAFE Network Software distributed
// under the GPL Licence is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.
//
// Please review the Licences for the specific language governing permissions and limitations
// relating to use of the SAFE Network Software.

use crypto::shared_secretbox;
use errors::CoreError;
use ffi::MDataInfo as FfiMDataInfo;
use ffi::arrays::{SymNonce, SymSecretKey};
use ffi_utils::ReprC;
use ipc::IpcError;
use rand::{OsRng, Rng};
use routing::{EntryAction, Value, XorName};
use rust_sodium::crypto::secretbox;
use std::collections::{BTreeMap, BTreeSet};
use tiny_keccak::sha3_256;
use utils::{symmetric_decrypt, symmetric_encrypt};

/// Information allowing to locate and access mutable data on the network.
#[derive(Clone, Debug, Eq, PartialEq, Deserialize, Serialize)]
pub struct MDataInfo {
    /// Name of the data where the directory is stored.
    pub name: XorName,
    /// Type tag of the data where the directory is stored.
    pub type_tag: u64,
    /// Key to encrypt/decrypt the directory content.
    /// and the nonce to be used for keys
    pub enc_info: Option<(shared_secretbox::Key, secretbox::Nonce)>,

    /// Future encryption info, used for two-phase data reencryption.
    pub new_enc_info: Option<(shared_secretbox::Key, secretbox::Nonce)>,
}

impl MDataInfo {
    /// Construct `MDataInfo` for private (encrypted) data with a
    /// provided private key.
    pub fn new_private(
        name: XorName,
        type_tag: u64,
        enc_info: (shared_secretbox::Key, secretbox::Nonce),
    ) -> Self {
        MDataInfo {
            name,
            type_tag,
            enc_info: Some(enc_info),
            new_enc_info: None,
        }
    }

    /// Construct `MDataInfo` for public data.
    pub fn new_public(name: XorName, type_tag: u64) -> Self {
        MDataInfo {
            name,
            type_tag,
            enc_info: None,
            new_enc_info: None,
        }
    }

    /// Generate random `MDataInfo` for private (encrypted) mutable data.
    pub fn random_private(type_tag: u64) -> Result<Self, CoreError> {
        let mut rng = os_rng()?;
        let enc_info = (shared_secretbox::gen_key(), secretbox::gen_nonce());
        Ok(Self::new_private(rng.gen(), type_tag, enc_info))
    }

    /// Generate random `MDataInfo` for public mutable data.
    pub fn random_public(type_tag: u64) -> Result<Self, CoreError> {
        let mut rng = os_rng()?;
        Ok(Self::new_public(rng.gen(), type_tag))
    }

    /// Returns the encryption key, if any.
    pub fn enc_key(&self) -> Option<&shared_secretbox::Key> {
        self.enc_info.as_ref().map(|&(ref key, _)| key)
    }

    /// Returns the nonce, inf any.
    pub fn nonce(&self) -> Option<&secretbox::Nonce> {
        self.enc_info.as_ref().map(|&(_, ref nonce)| nonce)
    }

    /// encrypt the key for the mdata entry accordingly
    pub fn enc_entry_key(&self, plain_text: &[u8]) -> Result<Vec<u8>, CoreError> {
        if let Some((ref key, seed)) = self.new_enc_info {
            enc_entry_key(plain_text, key, seed)
        } else if let Some((ref key, seed)) = self.enc_info {
            enc_entry_key(plain_text, key, seed)
        } else {
            Ok(plain_text.to_vec())
        }
    }

    /// encrypt the value for this mdata entry accordingly
    pub fn enc_entry_value(&self, plain_text: &[u8]) -> Result<Vec<u8>, CoreError> {
        if let Some((ref key, _)) = self.new_enc_info {
            symmetric_encrypt(plain_text, key, None)
        } else if let Some((ref key, _)) = self.enc_info {
            symmetric_encrypt(plain_text, key, None)
        } else {
            Ok(plain_text.to_vec())
        }
    }

    /// decrypt key or value of this mdata entry
    pub fn decrypt(&self, cipher: &[u8]) -> Result<Vec<u8>, CoreError> {
        if let Some((ref key, _)) = self.new_enc_info {
            if let Ok(plain) = symmetric_decrypt(cipher, key) {
                return Ok(plain);
            }
        }

        if let Some((ref key, _)) = self.enc_info {
            symmetric_decrypt(cipher, key)
        } else {
            Ok(cipher.to_vec())
        }
    }

    /// Start the encryption info re-generation by populating the `new_enc_info`
    /// field with random keys, unless it's already populated.
    pub fn start_new_enc_info(&mut self) {
        if self.enc_info.is_some() && self.new_enc_info.is_none() {
            self.new_enc_info = Some((shared_secretbox::gen_key(), secretbox::gen_nonce()));
        }
    }

    /// Commit the encryption info re-generation by replacing the current encryption info
    /// with `new_enc_info` (if any).
    pub fn commit_new_enc_info(&mut self) {
        if let Some(new_enc_info) = self.new_enc_info.take() {
            self.enc_info = Some(new_enc_info);
        }
    }

    /// Convert into C-representation.
    pub fn into_repr_c(self) -> FfiMDataInfo {
        let (has_enc_info, enc_key, enc_nonce) = enc_info_into_repr_c(self.enc_info);
        let (has_new_enc_info, new_enc_key, new_enc_nonce) =
            enc_info_into_repr_c(self.new_enc_info);

        FfiMDataInfo {
            name: self.name.0,
            type_tag: self.type_tag,
            has_enc_info,
            enc_key,
            enc_nonce,
            has_new_enc_info,
            new_enc_key,
            new_enc_nonce,
        }
    }
}

fn os_rng() -> Result<OsRng, CoreError> {
    OsRng::new().map_err(|_| CoreError::RandomDataGenerationFailure)
}

/// Encrypt the entries (both keys and values) using the `MDataInfo`.
pub fn encrypt_entries(
    info: &MDataInfo,
    entries: &BTreeMap<Vec<u8>, Value>,
) -> Result<BTreeMap<Vec<u8>, Value>, CoreError> {
    let mut output = BTreeMap::new();

    for (key, value) in entries {
        let encrypted_key = info.enc_entry_key(key)?;
        let encrypted_value = encrypt_value(info, value)?;
        let _ = output.insert(encrypted_key, encrypted_value);
    }

    Ok(output)
}

/// Encrypt entry actions using the `MDataInfo`. The effect of this is that the entries
/// mutated by the encrypted actions will end up encrypted using the `MDataInfo`.
pub fn encrypt_entry_actions(
    info: &MDataInfo,
    actions: &BTreeMap<Vec<u8>, EntryAction>,
) -> Result<BTreeMap<Vec<u8>, EntryAction>, CoreError> {
    let mut output = BTreeMap::new();

    for (key, action) in actions {
        let encrypted_key = info.enc_entry_key(key)?;
        let encrypted_action = match *action {
            EntryAction::Ins(ref value) => EntryAction::Ins(encrypt_value(info, value)?),
            EntryAction::Update(ref value) => EntryAction::Update(encrypt_value(info, value)?),
            EntryAction::Del(version) => EntryAction::Del(version),
        };

        let _ = output.insert(encrypted_key, encrypted_action);
    }

    Ok(output)
}

/// Decrypt entries using the `MDataInfo`.
pub fn decrypt_entries(
    info: &MDataInfo,
    entries: &BTreeMap<Vec<u8>, Value>,
) -> Result<BTreeMap<Vec<u8>, Value>, CoreError> {
    let mut output = BTreeMap::new();

    for (key, value) in entries {
        let decrypted_key = info.decrypt(key)?;
        let decrypted_value = decrypt_value(info, value)?;

        let _ = output.insert(decrypted_key, decrypted_value);
    }

    Ok(output)
}

/// Decrypt all keys using the `MDataInfo`.
pub fn decrypt_keys(
    info: &MDataInfo,
    keys: &BTreeSet<Vec<u8>>,
) -> Result<BTreeSet<Vec<u8>>, CoreError> {
    let mut output = BTreeSet::new();

    for key in keys {
        let _ = output.insert(info.decrypt(key)?);
    }

    Ok(output)
}

/// Decrypt all values using the `MDataInfo`.
pub fn decrypt_values(info: &MDataInfo, values: &[Value]) -> Result<Vec<Value>, CoreError> {
    let mut output = Vec::with_capacity(values.len());

    for value in values {
        output.push(decrypt_value(info, value)?);
    }

    Ok(output)
}

fn encrypt_value(info: &MDataInfo, value: &Value) -> Result<Value, CoreError> {
    Ok(Value {
        content: info.enc_entry_value(&value.content)?,
        entry_version: value.entry_version,
    })
}

fn decrypt_value(info: &MDataInfo, value: &Value) -> Result<Value, CoreError> {
    Ok(Value {
        content: info.decrypt(&value.content)?,
        entry_version: value.entry_version,
    })
}

fn enc_entry_key(
    plain_text: &[u8],
    key: &secretbox::Key,
    seed: secretbox::Nonce,
) -> Result<Vec<u8>, CoreError> {
    let nonce = {
        let secretbox::Nonce(ref nonce) = seed;
        let mut pt = plain_text.to_vec();
        pt.extend_from_slice(&nonce[..]);
        unwrap!(secretbox::Nonce::from_slice(
            &sha3_256(&pt)[..secretbox::NONCEBYTES],
        ))
    };
    symmetric_encrypt(plain_text, key, Some(&nonce))
}

impl ReprC for MDataInfo {
    type C = *const FfiMDataInfo;
    type Error = IpcError;

    #[allow(unsafe_code)]
    unsafe fn clone_from_repr_c(c: Self::C) -> Result<Self, Self::Error> {
        let c = &*c;

        Ok(MDataInfo {
            name: XorName(c.name),
            type_tag: c.type_tag,
            enc_info: enc_info_from_repr_c(c.has_enc_info, c.enc_key, c.enc_nonce),
            new_enc_info: enc_info_from_repr_c(c.has_new_enc_info, c.new_enc_key, c.new_enc_nonce),
        })
    }
}

fn enc_info_into_repr_c(
    info: Option<(shared_secretbox::Key, secretbox::Nonce)>,
) -> (bool, SymSecretKey, SymNonce) {
    if let Some((key, nonce)) = info {
        (true, key.0, nonce.0)
    } else {
        (false, Default::default(), Default::default())
    }
}

fn enc_info_from_repr_c(
    is_set: bool,
    key: SymSecretKey,
    nonce: SymNonce,
) -> Option<(shared_secretbox::Key, secretbox::Nonce)> {
    if is_set {
        Some((
            shared_secretbox::Key::from_raw(&key),
            secretbox::Nonce(nonce),
        ))
    } else {
        None
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    // Ensure that a private mdata info is encrypted.
    #[test]
    fn private_mdata_info_encrypts() {
        let info = unwrap!(MDataInfo::random_private(0));
        let key = Vec::from("str of key");
        let val = Vec::from("other is value");
        let enc_key = unwrap!(info.enc_entry_key(&key));
        let enc_val = unwrap!(info.enc_entry_value(&val));
        assert_ne!(enc_key, key);
        assert_ne!(enc_val, val);
        assert_eq!(unwrap!(info.decrypt(&enc_key)), key);
        assert_eq!(unwrap!(info.decrypt(&enc_val)), val);
    }

    // Ensure that a public mdata info is not encrypted.
    #[test]
    fn public_mdata_info_doesnt_encrypt() {
        let info = unwrap!(MDataInfo::random_public(0));
        let key = Vec::from("str of key");
        let val = Vec::from("other is value");
        assert_eq!(unwrap!(info.enc_entry_key(&key)), key);
        assert_eq!(unwrap!(info.enc_entry_value(&val)), val);
        assert_eq!(unwrap!(info.decrypt(&val)), val);
    }

    // Test creating and committing new encryption info.
    #[test]
    fn decrypt() {
        let mut info = unwrap!(MDataInfo::random_private(0));

        let plain = Vec::from("plaintext");
        let old_cipher = unwrap!(info.enc_entry_value(&plain));
        info.start_new_enc_info();
        let new_cipher = unwrap!(info.enc_entry_value(&plain));

        // After start, both encryption infos work.
        assert_eq!(unwrap!(info.decrypt(&old_cipher)), plain);
        assert_eq!(unwrap!(info.decrypt(&new_cipher)), plain);

        // After commit, only the new encryption info works.
        info.commit_new_enc_info();
        match info.decrypt(&old_cipher) {
            Err(CoreError::SymmetricDecipherFailure) => (),
            x => panic!("Unexpected {:?}", x),
        }
        assert_eq!(unwrap!(info.decrypt(&new_cipher)), plain);
    }
}