1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
#![cfg(target_feature = "sse4.1")]

use super::*;

/// Blends the `i16` lanes according to the immediate mask.
///
/// Each bit 0 though 7 controls lane 0 through 7. Use 0 for the `a` value and
/// 1 for the `b` value.
///
/// * **Intrinsic:** [`_mm_blend_epi16`]
/// * **Assembly:** `pblendw xmm, xmm, imm8`
pub fn blend_imm_i16_m128i<const IMM: i32>(a: m128i, b: m128i) -> m128i {
  m128i(unsafe { _mm_blend_epi16(a.0, b.0, IMM) })
}

/// Blends the `i16` lanes according to the immediate mask.
///
/// Bits 0 and 1 control where output lane 0 and 1 come from. Use 0 for the `a`
/// value and 1 for the `b` value.
///
/// * **Intrinsic:** [`_mm_blend_pd`]
/// * **Assembly:** `blendpd xmm, xmm, imm8`
pub fn blend_imm_m128d<const IMM: i32>(a: m128d, b: m128d) -> m128d {
  m128d(unsafe { _mm_blend_pd(a.0, b.0, IMM) })
}

/// Blends the lanes according to the immediate mask.
///
/// Bits 0 to 3 control where output lane 0 to 3 come from. Use 0 for the `a`
/// value and 1 for the `b` value.
///
/// * **Intrinsic:** [`_mm_blend_ps`]
/// * **Assembly:** `blendps xmm, xmm, imm8`
pub fn blend_imm_m128<const IMM: i32>(a: m128, b: m128) -> m128 {
  m128(unsafe { _mm_blend_ps(a.0, b.0, IMM) })
}

/// Blend the `i8` lanes according to a runtime varying mask.
///
/// The sign bit of each `i8` lane in the `mask` value determines if the output
/// lane uses `a` (mask non-negative) or `b` (mask negative).
///
/// * **Intrinsic:** [`_mm_blendv_epi8`]
/// * **Assembly:** `pblendvb xmm, xmm`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn blend_varying_i8_m128i(a: m128i, b: m128i, mask: m128i) -> m128i {
  m128i(unsafe { _mm_blendv_epi8(a.0, b.0, mask.0) })
}

/// Blend the lanes according to a runtime varying mask.
///
/// The sign bit of each lane in the `mask` value determines if the output
/// lane uses `a` (mask non-negative) or `b` (mask negative).
///
/// * **Intrinsic:** [`_mm_blendv_pd`]
/// * **Assembly:** `blendvpd xmm, xmm`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn blend_varying_m128d(a: m128d, b: m128d, mask: m128d) -> m128d {
  m128d(unsafe { _mm_blendv_pd(a.0, b.0, mask.0) })
}

/// Blend the lanes according to a runtime varying mask.
///
/// The sign bit of each lane in the `mask` value determines if the output
/// lane uses `a` (mask non-negative) or `b` (mask negative).
///
/// * **Intrinsic:** [`_mm_blendv_ps`]
/// * **Assembly:** `blendvps xmm, xmm`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn blend_varying_m128(a: m128, b: m128, mask: m128) -> m128 {
  m128(unsafe { _mm_blendv_ps(a.0, b.0, mask.0) })
}

/// Round each lane to a whole number, towards positive infinity.
///
/// * **Intrinsic:** [`_mm_ceil_pd`]
/// * **Assembly:** `roundpd xmm, xmm, imm8`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn ceil_m128d(a: m128d) -> m128d {
  m128d(unsafe { _mm_ceil_pd(a.0) })
}

/// Round each lane to a whole number, towards positive infinity.
///
/// * **Intrinsic:** [`_mm_ceil_ps`]
/// * **Assembly:** `roundps xmm, xmm, imm8`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn ceil_m128(a: m128) -> m128 {
  m128(unsafe { _mm_ceil_ps(a.0) })
}

/// Round the low lane of `b` toward positive infinity, high lane is `a`.
///
/// * **Intrinsic:** [`_mm_ceil_sd`]
/// * **Assembly:** `roundsd xmm, xmm, imm8`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn ceil_m128d_s(a: m128d, b: m128d) -> m128d {
  m128d(unsafe { _mm_ceil_sd(a.0, b.0) })
}

/// Round the low lane of `b` toward positive infinity, other lanes `a`.
///
/// * **Intrinsic:** [`_mm_ceil_ss`]
/// * **Assembly:** `roundss xmm, xmm, imm8`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn ceil_m128_s(a: m128, b: m128) -> m128 {
  m128(unsafe { _mm_ceil_ss(a.0, b.0) })
}

/// Lanewise `a == b` with lanes as `i64`.
///
/// All bits 1 for true (`-1`), all bit 0 for false (`0`).
///
/// * **Intrinsic:** [`_mm_cmpeq_epi64`]
/// * **Assembly:** `pcmpeqq xmm, xmm`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn cmp_eq_mask_i64_m128i(a: m128i, b: m128i) -> m128i {
  m128i(unsafe { _mm_cmpeq_epi64(a.0, b.0) })
}

/// Convert the lower four `i16` lanes to four `i32` lanes.
///
/// * **Intrinsic:** [`_mm_cvtepi16_epi32`]
/// * **Assembly:** `pmovsxwd xmm, xmm`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn convert_to_i32_m128i_from_lower4_i16_m128i(a: m128i) -> m128i {
  m128i(unsafe { _mm_cvtepi16_epi32(a.0) })
}

/// Convert the lower two `i64` lanes to two `i32` lanes.
///
/// * **Intrinsic:** [`_mm_cvtepi16_epi64`]
/// * **Assembly:** `pmovsxwq xmm, xmm`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn convert_to_i16_m128i_from_lower2_i16_m128i(a: m128i) -> m128i {
  m128i(unsafe { _mm_cvtepi16_epi64(a.0) })
}

/// Convert the lower two `i32` lanes to two `i64` lanes.
///
/// * **Intrinsic:** [`_mm_cvtepi32_epi64`]
/// * **Assembly:** `_mm_cvtepi32_epi64`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn convert_to_i64_m128i_from_lower2_i32_m128i(a: m128i) -> m128i {
  m128i(unsafe { _mm_cvtepi32_epi64(a.0) })
}

/// Convert the lower eight `i8` lanes to eight `i16` lanes.
///
/// * **Intrinsic:** [`_mm_cvtepi8_epi16`]
/// * **Assembly:** `pmovsxbw xmm, xmm`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn convert_to_i16_m128i_from_lower8_i8_m128i(a: m128i) -> m128i {
  m128i(unsafe { _mm_cvtepi8_epi16(a.0) })
}

/// Convert the lower four `i8` lanes to four `i32` lanes.
///
/// * **Intrinsic:** [`_mm_cvtepi8_epi32`]
/// * **Assembly:** `pmovsxbd xmm, xmm`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn convert_to_i32_m128i_from_lower4_i8_m128i(a: m128i) -> m128i {
  m128i(unsafe { _mm_cvtepi8_epi32(a.0) })
}

/// Convert the lower two `i8` lanes to two `i64` lanes.
///
/// * **Intrinsic:** [`_mm_cvtepi8_epi64`]
/// * **Assembly:** `pmovsxbq xmm, xmm`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn convert_to_i64_m128i_from_lower2_i8_m128i(a: m128i) -> m128i {
  m128i(unsafe { _mm_cvtepi8_epi64(a.0) })
}

/// Convert the lower four `u16` lanes to four `u32` lanes.
///
/// * **Intrinsic:** [`_mm_cvtepu16_epi32`]
/// * **Assembly:** `pmovzxwd xmm, xmm`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn convert_to_u32_m128i_from_lower4_u16_m128i(a: m128i) -> m128i {
  m128i(unsafe { _mm_cvtepu16_epi32(a.0) })
}

/// Convert the lower two `u16` lanes to two `u64` lanes.
///
/// * **Intrinsic:** [`_mm_cvtepu16_epi64`]
/// * **Assembly:** `pmovzxwq xmm, xmm`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn convert_to_u64_m128i_from_lower2_u16_m128i(a: m128i) -> m128i {
  m128i(unsafe { _mm_cvtepu16_epi64(a.0) })
}

/// Convert the lower two `u32` lanes to two `u64` lanes.
///
/// * **Intrinsic:** [`_mm_cvtepu32_epi64`]
/// * **Assembly:** `pmovzxdq xmm, xmm`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn convert_to_u64_m128i_from_lower2_u32_m128i(a: m128i) -> m128i {
  m128i(unsafe { _mm_cvtepu32_epi64(a.0) })
}

/// Convert the lower eight `u8` lanes to eight `u16` lanes.
///
/// * **Intrinsic:** [`_mm_cvtepu8_epi16`]
/// * **Assembly:** `pmovzxbw xmm, xmm`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn convert_to_u16_m128i_from_lower8_u8_m128i(a: m128i) -> m128i {
  m128i(unsafe { _mm_cvtepu8_epi16(a.0) })
}

/// Convert the lower four `u8` lanes to four `u32` lanes.
///
/// * **Intrinsic:** [`_mm_cvtepu8_epi32`]
/// * **Assembly:** `pmovzxbd xmm, xmm`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn convert_to_u32_m128i_from_lower4_u8_m128i(a: m128i) -> m128i {
  m128i(unsafe { _mm_cvtepu8_epi32(a.0) })
}

/// Convert the lower two `u8` lanes to two `u64` lanes.
///
/// * **Intrinsic:** [`_mm_cvtepu8_epi64`]
/// * **Assembly:** `pmovzxbq xmm, xmm`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn convert_to_u64_m128i_from_lower2_u8_m128i(a: m128i) -> m128i {
  m128i(unsafe { _mm_cvtepu8_epi64(a.0) })
}

/// Performs a dot product of two `m128d` registers.
///
/// The output details are determined by the constant:
/// * For each lane, you can multiply that lane from `a` and `b` or you can take
///   a default of 0.0
/// * Bits 4 and 5 determines if we mul lanes 0 in `a` and `b`, and lanes 1 in
///   `a` and `b`.
/// * This forms two temporary `f64` values which are summed to a single `f64`.
/// * For each output lane, you can have the sum in that lane or 0.0.
/// * Bits 0 and 1 determines if an output lane is our sum or 0.0.
///
/// * **Intrinsic:** [`_mm_dp_pd`]
/// * **Assembly:** `dppd xmm, xmm, imm8`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn dot_product_m128d<const IMM: i32>(a: m128d, b: m128d) -> m128d {
  m128d(unsafe { _mm_dp_pd(a.0, b.0, IMM) })
}

/// Performs a dot product of two `m128` registers.
///
/// The output details are determined by a control mask:
/// * For each lane, you can multiply that lane from `a` and `b` or you can take
///   a default of 0.0
/// * Bits 4 through 7 determine if we should mul lanes 0 through 3.
/// * This forms four temporary `f32` values which are summed to a single `f32`.
/// * For each output lane, you can have the sum in that lane or 0.0.
/// * Bits 0 through 3 determines if the `sum` is in lanes 0 through 3.
///
/// * **Intrinsic:** [`_mm_dp_ps`]
/// * **Assembly:** `dpps xmm, xmm, imm8`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn dot_product_m128<const IMM: i32>(a: m128, b: m128) -> m128 {
  m128(unsafe { _mm_dp_ps(a.0, b.0, IMM) })
}

/// Gets the `i32` lane requested. Only the lowest 2 bits are considered.
///
/// * **Intrinsic:** [`_mm_extract_epi32`]
/// * **Assembly:** `pextrd r32, xmm, imm8`
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn extract_i32_imm_m128i<const IMM: i32>(a: m128i) -> i32 {
  unsafe { _mm_extract_epi32(a.0, IMM) }
}

/// Gets the `i64` lane requested. Only the lowest bit is considered.
///
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([5_i64, 6]);
/// assert_eq!(extract_i64_imm_m128i::<1>(a), 6_i64);
/// ```
#[must_use]
#[inline(always)]
#[cfg(target_arch = "x86_64")]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn extract_i64_imm_m128i<const IMM: i32>(a: m128i) -> i64 {
  unsafe { _mm_extract_epi64(a.0, IMM) }
}

/// Gets the `i8` lane requested. Only the lowest 4 bits are considered.
///
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([0_i8, 1, 2, 3, 4, 5, 6, 101, 8, 9, 10, 11, 12, 13, 14, 15]);
/// assert_eq!(extract_i8_as_i32_imm_m128i::<7>(a), 101_i32);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn extract_i8_as_i32_imm_m128i<const IMM: i32>(a: m128i) -> i32 {
  unsafe { _mm_extract_epi8(a.0, IMM) }
}

/// Gets the `f32` lane requested. Returns as an `i32` bit pattern.
///
/// ```
/// # use safe_arch::*;
/// let a = m128::from_array([5.0, 6.0, 7.0, 8.0]);
/// assert_eq!(extract_f32_as_i32_bits_imm_m128::<3>(a), 8_f32.to_bits() as i32);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn extract_f32_as_i32_bits_imm_m128<const IMM: i32>(a: m128) -> i32 {
  unsafe { _mm_extract_ps(a.0, IMM) }
}

/// Round each lane to a whole number, towards negative infinity
///
/// ```
/// # use safe_arch::*;
/// let a = m128d::from_array([-0.1, 1.8]);
/// assert_eq!(floor_m128d(a).to_array(), [-1.0, 1.0]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn floor_m128d(a: m128d) -> m128d {
  m128d(unsafe { _mm_floor_pd(a.0) })
}

/// Round each lane to a whole number, towards negative infinity
///
/// ```
/// # use safe_arch::*;
/// let a = m128::from_array([-0.1, 1.8, 2.5, 3.0]);
/// assert_eq!(floor_m128(a).to_array(), [-1.0, 1.0, 2.0, 3.0]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn floor_m128(a: m128) -> m128 {
  m128(unsafe { _mm_floor_ps(a.0) })
}

/// Round the low lane of `b` toward negative infinity, high lane is `a`.
///
/// ```
/// # use safe_arch::*;
/// let a = m128d::from_array([-0.1, 1.8]);
/// let b = m128d::from_array([2.5, 3.0]);
/// assert_eq!(floor_m128d_s(a, b).to_array(), [2.0, 1.8]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn floor_m128d_s(a: m128d, b: m128d) -> m128d {
  m128d(unsafe { _mm_floor_sd(a.0, b.0) })
}

/// Round the low lane of `b` toward negative infinity, other lanes `a`.
///
/// ```
/// # use safe_arch::*;
/// let a = m128::from_array([-0.1, 1.8, 5.0, 6.0]);
/// let b = m128::from_array([2.5, 3.0, 10.0, 20.0]);
/// assert_eq!(floor_m128_s(a, b).to_array(), [2.0, 1.8, 5.0, 6.0]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn floor_m128_s(a: m128, b: m128) -> m128 {
  m128(unsafe { _mm_floor_ss(a.0, b.0) })
}

/// Inserts a new value for the `i32` lane specified.
///
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([5, 6, 7, 8]);
/// let b: [i32; 4] = insert_i32_imm_m128i::<1>(a, 23).into();
/// assert_eq!(b, [5, 23, 7, 8]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn insert_i32_imm_m128i<const IMM: i32>(a: m128i, new: i32) -> m128i {
  m128i(unsafe { _mm_insert_epi32(a.0, new, IMM) })
}

/// Inserts a new value for the `i64` lane specified.
///
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([5_i64, 6]);
/// let b: [i64; 2] = insert_i64_imm_m128i::<1>(a, 23).into();
/// assert_eq!(b, [5_i64, 23]);
/// ```
#[must_use]
#[inline(always)]
#[cfg(target_arch = "x86_64")]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn insert_i64_imm_m128i<const IMM: i32>(a: m128i, new: i64) -> m128i {
  m128i(unsafe { _mm_insert_epi64(a.0, new, IMM) })
}

/// Inserts a new value for the `i64` lane specified.
///
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([0_i8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]);
/// let b: [i8; 16] = insert_i8_imm_m128i::<1>(a, 23).into();
/// assert_eq!(b, [0_i8, 23, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn insert_i8_imm_m128i<const IMM: i32>(a: m128i, new: i32) -> m128i {
  m128i(unsafe { _mm_insert_epi8(a.0, new, IMM) })
}

/// Inserts a lane from `$b` into `$a`, optionally at a new position.
///
/// Also, you can zero out any lanes you like for free as part of the same
/// operation. If you don't specify the mask argument then no lanes are zeroed.
///
/// ```
/// # use safe_arch::*;
/// let a = m128::from_array([1.0, 2.0, 3.0, 4.0]);
/// let b = m128::from_array([5.0, 6.0, 7.0, 8.0]);
/// //
/// let c = insert_f32_imm_m128::<0b00_11_0000>(a, b).to_array();
/// assert_eq!(c, [1.0, 2.0, 3.0, 5.0]);
/// //
/// let c = insert_f32_imm_m128::<0b00_11_0110>(a, b).to_array();
/// assert_eq!(c, [1.0, 0.0, 0.0, 5.0]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn insert_f32_imm_m128<const IMM: i32>(a: m128, b: m128) -> m128 {
  m128(unsafe { _mm_insert_ps(a.0, b.0, IMM) })
}

/// Lanewise `max(a, b)` with lanes as `i32`.
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([1, 2, 3, 4]);
/// let b = m128i::from([5, 6, -7, 8]);
/// let c: [i32; 4] = max_i32_m128i(a, b).into();
/// assert_eq!(c, [5, 6, 3, 8]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn max_i32_m128i(a: m128i, b: m128i) -> m128i {
  m128i(unsafe { _mm_max_epi32(a.0, b.0) })
}

/// Lanewise `max(a, b)` with lanes as `i8`.
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([0_i8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 127]);
/// let b = m128i::from([0_i8, 11, 2, -13, 4, 15, 6, -17, -8, 19, -20, 21, 22, -23, 24, 127]);
/// let c: [i8; 16] = max_i8_m128i(a, b).into();
/// assert_eq!(c, [0, 11, 2, 3, 4, 15, 6, 7, 8, 19, 10, 21, 22, 13, 24, 127]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn max_i8_m128i(a: m128i, b: m128i) -> m128i {
  m128i(unsafe { _mm_max_epi8(a.0, b.0) })
}

/// Lanewise `max(a, b)` with lanes as `u16`.
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([1_u16, 2, 300, 400, 1, 2, 3, 4]);
/// let b = m128i::from([5_u16, 6, 7, 8, 15, 26, 37, 48]);
/// let c: [u16; 8] = max_u16_m128i(a, b).into();
/// assert_eq!(c, [5_u16, 6, 300, 400, 15, 26, 37, 48]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn max_u16_m128i(a: m128i, b: m128i) -> m128i {
  m128i(unsafe { _mm_max_epu16(a.0, b.0) })
}

/// Lanewise `max(a, b)` with lanes as `u32`.
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([1, 200, 3, 4]);
/// let b = m128i::from([5, 6, 7, 8]);
/// let c: [u32; 4] = max_u32_m128i(a, b).into();
/// assert_eq!(c, [5, 200, 7, 8]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn max_u32_m128i(a: m128i, b: m128i) -> m128i {
  m128i(unsafe { _mm_max_epu32(a.0, b.0) })
}

/// Lanewise `min(a, b)` with lanes as `i32`.
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([1, 2, 3, 4]);
/// let b = m128i::from([5, 6, -7, 8]);
/// let c: [i32; 4] = min_i32_m128i(a, b).into();
/// assert_eq!(c, [1, 2, -7, 4]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn min_i32_m128i(a: m128i, b: m128i) -> m128i {
  m128i(unsafe { _mm_min_epi32(a.0, b.0) })
}

/// Lanewise `min(a, b)` with lanes as `i8`.
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([0_i8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 127]);
/// let b = m128i::from([0_i8, 11, 2, -13, 4, 15, 6, -17, -8, 19, -20, 21, 22, -23, 24, 127]);
/// let c: [i8; 16] = min_i8_m128i(a, b).into();
/// assert_eq!(c, [0_i8, 1, 2, -13, 4, 5, 6, -17, -8, 9, -20, 11, 12, -23, 14, 127]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn min_i8_m128i(a: m128i, b: m128i) -> m128i {
  m128i(unsafe { _mm_min_epi8(a.0, b.0) })
}

/// Lanewise `min(a, b)` with lanes as `u16`.
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([1_u16, 2, 300, 400, 1, 2, 3, 4]);
/// let b = m128i::from([5_u16, 6, 7, 8, 15, 26, 37, 48]);
/// let c: [u16; 8] = min_u16_m128i(a, b).into();
/// assert_eq!(c, [1_u16, 2, 7, 8, 1, 2, 3, 4]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn min_u16_m128i(a: m128i, b: m128i) -> m128i {
  m128i(unsafe { _mm_min_epu16(a.0, b.0) })
}

/// Lanewise `min(a, b)` with lanes as `u32`.
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([1, 200, 3, 4]);
/// let b = m128i::from([5, 6, 7, 8]);
/// let c: [u32; 4] = min_u32_m128i(a, b).into();
/// assert_eq!(c, [1, 6, 3, 4]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn min_u32_m128i(a: m128i, b: m128i) -> m128i {
  m128i(unsafe { _mm_min_epu32(a.0, b.0) })
}

/// Min `u16` value, position, and other lanes zeroed.
///
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([120_u16, 24, 300, 400, 90, 129, 31, 114]);
/// let c: [u16; 8] = min_position_u16_m128i(a).into();
/// assert_eq!(c, [24_u16, 1, 0, 0, 0, 0, 0, 0]);
///
/// // the position favors the leftmost minimum
/// let a = m128i::from([120_u16, 24, 24, 400, 90, 129, 31, 114]);
/// let c: [u16; 8] = min_position_u16_m128i(a).into();
/// assert_eq!(c, [24_u16, 1, 0, 0, 0, 0, 0, 0]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn min_position_u16_m128i(a: m128i) -> m128i {
  m128i(unsafe { _mm_minpos_epu16(a.0) })
}

/// Computes eight `u16` "sum of absolute difference" values according to the
/// bytes selected.
///
/// * `a` can be 0 or 1, and specifies to skip the first fur `$a` values or not.
/// * `b` can be 0, 1, 2, or 3 and specifies to skip the first four times that
///   many values in `$b`.
///
/// This is used for some HD codec thing, and I don't really get what the point
/// is, but I'm sure someone uses it. If you can write better docs about what
/// this does please file a PR.
///
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([0_u8, 1, 56, 3, 255, 5, 127, 7, 128, 9, 100, 101, 123, 13, 154, 125]);
/// let b = m128i::from([12_u8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]);
/// //
/// let c: [u16; 8] = multi_packed_sum_abs_diff_u8_m128i::<0b00_00>(a, b).into();
/// assert_eq!(c, [66, 319, 301, 390, 376, 263, 253, 236]);
/// //
/// let c: [u16; 8] = multi_packed_sum_abs_diff_u8_m128i::<0b00_01>(a, b).into();
/// assert_eq!(c, [62, 305, 305, 372, 372, 245, 249, 222]);
/// //
/// let c: [u16; 8] = multi_packed_sum_abs_diff_u8_m128i::<0b00_10>(a, b).into();
/// assert_eq!(c, [70, 305, 305, 372, 372, 241, 241, 210]);
/// //
/// let c: [u16; 8] = multi_packed_sum_abs_diff_u8_m128i::<0b00_11>(a, b).into();
/// assert_eq!(c, [78, 305, 305, 372, 372, 241, 241, 210]);
/// //
/// let c: [u16; 8] = multi_packed_sum_abs_diff_u8_m128i::<0b01_00>(a, b).into();
/// assert_eq!(c, [376, 263, 253, 236, 320, 321, 319, 373]);
/// //
/// let c: [u16; 8] = multi_packed_sum_abs_diff_u8_m128i::<0b01_01>(a, b).into();
/// assert_eq!(c, [372, 245, 249, 222, 316, 311, 315, 369]);
/// //
/// let c: [u16; 8] = multi_packed_sum_abs_diff_u8_m128i::<0b01_10>(a, b).into();
/// assert_eq!(c, [372, 241, 241, 210, 300, 295, 299, 353]);
/// //
/// let c: [u16; 8] = multi_packed_sum_abs_diff_u8_m128i::<0b01_11>(a, b).into();
/// assert_eq!(c, [372, 241, 241, 210, 292, 285, 287, 339]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn multi_packed_sum_abs_diff_u8_m128i<const IMM: i32>(a: m128i, b: m128i) -> m128i {
  m128i(unsafe { _mm_mpsadbw_epu8(a.0, b.0, IMM) })
}

/// Multiplies the odd `i32` lanes and gives the widened (`i64`) results.
///
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([1, 7, i32::MAX, 7]);
/// let b = m128i::from([-5, 7, i32::MAX, 7]);
/// let c: [i64; 2] = mul_widen_i32_odd_m128i(a, b).into();
/// assert_eq!(c, [(-1 * 5), (i32::MAX as i64 * i32::MAX as i64)]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn mul_widen_i32_odd_m128i(a: m128i, b: m128i) -> m128i {
  m128i(unsafe { _mm_mul_epi32(a.0, b.0) })
}

/// Lanewise `a * b` with 32-bit lanes.
///
/// This keeps the low 32-bits from each 64-bit output,
/// so it actually works for both `i32` and `u32`.
/// ```
/// # use safe_arch::*;
/// let ai = m128i::from([1, 2000000, -300, 45689]);
/// let bi = m128i::from([5, 6000000, 700, -89109]);
/// let ci: [i32; 4] = mul_32_m128i(ai, bi).into();
/// assert_eq!(ci, [5, -138625024, -210000, 223666195]);
///
/// let au = m128i::from([u32::MAX, 26, 5678, 1234567890]);
/// let bu = m128i::from([u32::MAX, 74, 9101112, 765]);
/// let cu: [u32; 4] = mul_32_m128i(au, bu).into();
/// assert_eq!(cu, [1, 1924, 136506384, 3846598026]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn mul_32_m128i(a: m128i, b: m128i) -> m128i {
  m128i(unsafe { _mm_mullo_epi32(a.0, b.0) })
}

/// Saturating convert `i32` to `u16`, and pack the values.
/// ```
/// # use safe_arch::*;
/// let a = m128i::from([1, 2, 3, 4]);
/// let b = m128i::from([9, -10, -11, i32::MAX]);
/// let c: [u16; 8] = pack_i32_to_u16_m128i(a, b).into();
/// assert_eq!(c, [1, 2, 3, 4, 9, 0, 0, u16::MAX]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn pack_i32_to_u16_m128i(a: m128i, b: m128i) -> m128i {
  m128i(unsafe { _mm_packus_epi32(a.0, b.0) })
}

/// Rounds each lane in the style specified.
///
/// ```
/// # use safe_arch::*;
/// let a = m128d::from_array([-0.1, 1.6]);
/// //
/// assert_eq!(round_m128d::<{ round_op!(Nearest) }>(a).to_array(), [0.0, 2.0]);
/// //
/// assert_eq!(round_m128d::<{ round_op!(NegInf) }>(a).to_array(), [-1.0, 1.0]);
/// //
/// assert_eq!(round_m128d::<{ round_op!(PosInf) }>(a).to_array(), [0.0, 2.0]);
/// //
/// assert_eq!(round_m128d::<{ round_op!(Zero) }>(a).to_array(), [0.0, 1.0]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn round_m128d<const MODE: i32>(a: m128d) -> m128d {
  m128d(unsafe { _mm_round_pd(a.0, MODE) })
}

/// Rounds `$b` low as specified, keeps `$a` high.
///
/// ```
/// # use safe_arch::*;
/// let a = m128d::from_array([f64::NAN, 900.0]);
/// //
/// let b = m128d::from_array([-0.1, f64::NAN]);
/// //
/// assert_eq!(round_m128d_s::<{ round_op!(Nearest) }>(a, b).to_array(), [0.0, 900.0]);
/// assert_eq!(round_m128d_s::<{ round_op!(NegInf) }>(a, b).to_array(), [-1.0, 900.0]);
/// //
/// let b = m128d::from_array([2.4, f64::NAN]);
/// //
/// assert_eq!(round_m128d_s::<{ round_op!(PosInf) }>(a, b).to_array(), [3.0, 900.0]);
/// assert_eq!(round_m128d_s::<{ round_op!(Zero) }>(a, b).to_array(), [2.0, 900.0]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn round_m128d_s<const MODE: i32>(a: m128d, b: m128d) -> m128d {
  m128d(unsafe { _mm_round_sd(a.0, b.0, MODE) })
}

/// Rounds each lane in the style specified.
///
/// ```
/// # use safe_arch::*;
/// let a = m128::from_array([-0.1, 1.6, 3.3, 4.5]);
/// //
/// assert_eq!(round_m128::<{ round_op!(Nearest) }>(a).to_array(), [0.0, 2.0, 3.0, 4.0]);
/// //
/// assert_eq!(round_m128::<{ round_op!(NegInf) }>(a).to_array(), [-1.0, 1.0, 3.0, 4.0]);
/// //
/// assert_eq!(round_m128::<{ round_op!(PosInf) }>(a).to_array(), [0.0, 2.0, 4.0, 5.0]);
/// //
/// assert_eq!(round_m128::<{ round_op!(Zero) }>(a).to_array(), [0.0, 1.0, 3.0, 4.0]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn round_m128<const MODE: i32>(a: m128) -> m128 {
  m128(unsafe { _mm_round_ps(a.0, MODE) })
}

/// Rounds `$b` low as specified, other lanes use `$a`.
///
/// ```
/// # use safe_arch::*;
/// let a = m128::from_array([f32::NAN, 6.0, 7.0, 8.0]);
/// //
/// let b = m128::from_array([-0.1, f32::NAN, f32::NAN, f32::NAN]);
/// //
/// assert_eq!(round_m128_s::<{ round_op!(Nearest) }>(a, b).to_array(), [0.0, 6.0, 7.0, 8.0]);
/// assert_eq!(round_m128_s::<{ round_op!(NegInf) }>(a, b).to_array(), [-1.0, 6.0, 7.0, 8.0]);
/// //
/// let b = m128::from_array([2.4, f32::NAN, f32::NAN, f32::NAN]);
/// //
/// assert_eq!(round_m128_s::<{ round_op!(PosInf) }>(a, b).to_array(), [3.0, 6.0, 7.0, 8.0]);
/// assert_eq!(round_m128_s::<{ round_op!(Zero) }>(a, b).to_array(), [2.0, 6.0, 7.0, 8.0]);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn round_m128_s<const MODE: i32>(a: m128, b: m128) -> m128 {
  m128(unsafe { _mm_round_ss(a.0, b.0, MODE) })
}

/// Tests if all bits are 1.
///
/// ```
/// # use safe_arch::*;
/// let a = m128i::from(0_u128);
/// let b = m128i::from(u128::MAX);
/// assert_eq!(test_all_ones_m128i(a), 0);
/// assert_eq!(test_all_ones_m128i(b), 1);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn test_all_ones_m128i(a: m128i) -> i32 {
  unsafe { _mm_test_all_ones(a.0) }
}

/// Returns if all masked bits are 0, `(a & mask) as u128 == 0`
///
/// ```
/// # use safe_arch::*;
/// let a = m128i::from(0b111_u128);
/// let mask = m128i::from(u128::MAX);
/// assert_eq!(test_all_zeroes_m128i(a, mask), 0);
/// //
/// let a = m128i::from(0b0_u128);
/// let mask = m128i::from(u128::MAX);
/// assert_eq!(test_all_zeroes_m128i(a, mask), 1);
/// //
/// let a = m128i::from(0b1_0000_u128);
/// let mask = m128i::from(0b0_1111_u128);
/// assert_eq!(test_all_zeroes_m128i(a, mask), 1);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn test_all_zeroes_m128i(a: m128i, mask: m128i) -> i32 {
  unsafe { _mm_test_all_zeros(a.0, mask.0) }
}

/// Returns if, among the masked bits, there's both 0s and 1s
///
/// * Zero Flag = `(a & mask) as u128 == 0`
/// * Carry Flag = `((!a) & mask) as u128 == 0`
/// * Return `ZeroFlag == 0 && Carry Flag == 0`
///
/// ```
/// # use safe_arch::*;
/// let a = m128i::from(0b111_u128);
/// let mask = m128i::from(u128::MAX);
/// assert_eq!(test_mixed_ones_and_zeroes_m128i(a, mask), 1);
/// //
/// let a = m128i::from(0b0_u128);
/// let mask = m128i::from(u128::MAX);
/// assert_eq!(test_mixed_ones_and_zeroes_m128i(a, mask), 0);
/// //
/// let a = m128i::from(0b1_0000_u128);
/// let mask = m128i::from(0b0_1111_u128);
/// assert_eq!(test_mixed_ones_and_zeroes_m128i(a, mask), 0);
/// //
/// let a = m128i::from(0b1_0000_u128);
/// let mask = m128i::from(0b1_1111_u128);
/// assert_eq!(test_mixed_ones_and_zeroes_m128i(a, mask), 1);
/// ```
#[must_use]
#[inline(always)]
#[cfg_attr(docs_rs, doc(cfg(target_feature = "sse4.1")))]
pub fn test_mixed_ones_and_zeroes_m128i(a: m128i, mask: m128i) -> i32 {
  unsafe { _mm_test_mix_ones_zeros(a.0, mask.0) }
}