1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
//! Graph Edge related constructs.

use self::Direction::{Incoming, Outgoing};
use crate::graph::{Directed, Graph, Undirected};
use crate::node::NodeTrait;
use crate::traverse::Neighbors;
use indexmap::map::Iter as IndexMapIter;
use indexmap::IndexMap;
use std::marker::PhantomData;

/// A graph's edge type determines whether is has directed edges or not.
pub trait EdgeType {
    fn is_directed() -> bool;
}

impl EdgeType for Directed {
    #[inline]
    fn is_directed() -> bool {
        true
    }
}

impl EdgeType for Undirected {
    #[inline]
    fn is_directed() -> bool {
        false
    }
}

pub struct Edges<'a, N, E: 'a, Ty>
where
    N: 'a + NodeTrait,
    Ty: EdgeType,
{
    from: N,
    edges: &'a IndexMap<(N, N), E>,
    iter: Neighbors<'a, N, Ty>,
}

impl<'a, N, E, Ty> Edges<'a, N, E, Ty>
where
    N: 'a + NodeTrait,
    Ty: EdgeType,
{
    pub fn new(from: N, edges: &'a IndexMap<(N, N), E>, iter: Neighbors<'a, N, Ty>) -> Self {
        Self { from, edges, iter }
    }
}

impl<'a, N, E, Ty> Iterator for Edges<'a, N, E, Ty>
where
    N: 'a + NodeTrait,
    E: 'a,
    Ty: EdgeType,
{
    type Item = (N, N, &'a E);
    fn next(&mut self) -> Option<Self::Item> {
        match self.iter.next() {
            None => None,
            Some(b) => {
                let a = self.from;
                match self.edges.get(&Graph::<N, E, Ty>::edge_key(a, b)) {
                    None => unreachable!(),
                    Some(edge) => Some((a, b, edge)),
                }
            }
        }
    }
}

pub struct AllEdges<'a, N, E: 'a, Ty> {
    inner: IndexMapIter<'a, (N, N), E>,
    ty: PhantomData<Ty>,
}

impl<'a, N, E, Ty> AllEdges<'a, N, E, Ty>
where
    N: 'a + NodeTrait,
{
    pub fn new(inner: IndexMapIter<'a, (N, N), E>, ty: PhantomData<Ty>) -> Self {
        Self { inner, ty }
    }
}

impl<'a, N, E, Ty> Iterator for AllEdges<'a, N, E, Ty>
where
    N: 'a + NodeTrait,
    E: 'a,
    Ty: EdgeType,
{
    type Item = (N, N, &'a E);
    fn next(&mut self) -> Option<Self::Item> {
        match self.inner.next() {
            None => None,
            Some((&(a, b), v)) => Some((a, b, v)),
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }

    fn count(self) -> usize {
        self.inner.count()
    }

    fn nth(&mut self, n: usize) -> Option<Self::Item> {
        self.inner
            .nth(n)
            .map(|(&(n1, n2), weight)| (n1, n2, weight))
    }

    fn last(self) -> Option<Self::Item> {
        self.inner
            .last()
            .map(|(&(n1, n2), weight)| (n1, n2, weight))
    }
}

impl<'a, N, E, Ty> DoubleEndedIterator for AllEdges<'a, N, E, Ty>
where
    N: 'a + NodeTrait,
    E: 'a,
    Ty: EdgeType,
{
    fn next_back(&mut self) -> Option<Self::Item> {
        self.inner
            .next_back()
            .map(|(&(n1, n2), weight)| (n1, n2, weight))
    }
}

/// Convert an element like `(i, j)` or `(i, j, w)` into
/// a triple of source, target, edge weight.
///
/// For `Graph::from_edges` and `Graph::from_edges`.
pub trait IntoWeightedEdge<E> {
    type NodeId;
    fn into_weighted_edge(self) -> (Self::NodeId, Self::NodeId, E);
}

impl<Ix, E> IntoWeightedEdge<E> for (Ix, Ix)
where
    E: Default,
{
    type NodeId = Ix;

    fn into_weighted_edge(self) -> (Ix, Ix, E) {
        let (s, t) = self;
        (s, t, E::default())
    }
}

impl<Ix, E> IntoWeightedEdge<E> for (Ix, Ix, E) {
    type NodeId = Ix;
    fn into_weighted_edge(self) -> (Ix, Ix, E) {
        self
    }
}

impl<'a, Ix, E> IntoWeightedEdge<E> for (Ix, Ix, &'a E)
where
    E: Clone,
{
    type NodeId = Ix;
    fn into_weighted_edge(self) -> (Ix, Ix, E) {
        let (a, b, c) = self;
        (a, b, c.clone())
    }
}

impl<'a, Ix, E> IntoWeightedEdge<E> for &'a (Ix, Ix)
where
    Ix: Copy,
    E: Default,
{
    type NodeId = Ix;
    fn into_weighted_edge(self) -> (Ix, Ix, E) {
        let (s, t) = *self;
        (s, t, E::default())
    }
}

impl<'a, Ix, E> IntoWeightedEdge<E> for &'a (Ix, Ix, E)
where
    Ix: Copy,
    E: Clone,
{
    type NodeId = Ix;
    fn into_weighted_edge(self) -> (Ix, Ix, E) {
        self.clone()
    }
}

/// Edge direction.
#[derive(Copy, Debug, PartialEq, PartialOrd, Ord, Eq, Hash)]
#[repr(usize)]
pub enum Direction {
    /// An `Outgoing` edge is an outward edge *from* the current node.
    Outgoing = 0,
    /// An `Incoming` edge is an inbound edge *to* the current node.
    Incoming = 1,
}

copyclone!(Direction);

impl Direction {
    /// Return the opposite `Direction`.
    #[inline]
    pub fn opposite(self) -> Direction {
        match self {
            Outgoing => Incoming,
            Incoming => Outgoing,
        }
    }

    /// Return `0` for `Outgoing` and `1` for `Incoming`.
    #[inline]
    pub fn index(self) -> usize {
        (self as usize) & 0x1
    }
}

// Non-repr(usize) version of Direction.
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum CompactDirection {
    Outgoing,
    Incoming,
}

impl From<Direction> for CompactDirection {
    fn from(d: Direction) -> Self {
        match d {
            Outgoing => CompactDirection::Outgoing,
            Incoming => CompactDirection::Incoming,
        }
    }
}

impl PartialEq<Direction> for CompactDirection {
    fn eq(&self, rhs: &Direction) -> bool {
        (*self as usize) == (*rhs as usize)
    }
}