safe_gc/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
#![doc = include_str!("../README.md")]
#![forbid(unsafe_code)]
#![deny(missing_docs)]
mod free_list;
mod mark_bits;
use free_list::FreeList;
use mark_bits::MarkBits;
use std::{
any::{Any, TypeId},
cell::RefCell,
collections::HashMap,
fmt::Debug,
hash::Hash,
rc::Rc,
sync::atomic,
};
/// Report references to other GC-managed objects to the collector.
///
/// This trait must be implemented by all types that are allocated within a
/// [`Heap`].
///
/// Failure to enumerate all edges in an instance will result in wacky -- but
/// still safe! -- behavior: panics when attempting to access a collected
/// object, accesses to a "wrong" object that's been allocated in place of the
/// old object, etc...
///
/// # Example
///
/// ```
/// use safe_gc::{Collector, Gc, Trace};
///
/// struct List<T: Trace> {
/// value: Gc<T>,
/// prev: Option<Gc<List<T>>>,
/// next: Option<Gc<List<T>>>,
/// }
///
/// impl<T: Trace> Trace for List<T> {
/// fn trace(&self, collector: &mut Collector) {
/// collector.edge(self.value);
/// if let Some(prev) = self.prev {
/// collector.edge(prev);
/// }
/// if let Some(next) = self.next {
/// collector.edge(next);
/// }
/// }
/// }
/// ```
pub trait Trace: Any {
/// Call `collector.edge(gc)` for each `Gc<T>` reference within `self`.
fn trace(&self, collector: &mut Collector);
}
/// A reference to a garbage-collected `T`.
///
/// `Gc<T>` should be used when:
///
/// * Referencing other GC-managed objects from within a GC-managed object's
/// type definition.
///
/// * Traversing or mutating GC-managed objects when you know a garbage
/// collection cannot happen.
///
/// A `Gc<T>` does *not* root the referenced `T` or keep it alive across garbage
/// collections. (The [`Root<T>`][crate::Root] type does that.) Therefore,
/// `Gc<T>` should *not* be used to hold onto GC references across any operation
/// that could trigger a garbage collection.
///
/// # Example: Referencing Other GC-Managed Objects Within a GC-Managed Object
///
/// ```
/// use safe_gc::{Collector, Gc, Trace};
///
/// struct Tree<T: Trace> {
/// // A non-nullable reference to a GC-managed `T`.
/// value: Gc<T>,
///
/// // Nullable references to parent, left, and right tree nodes.
/// parent: Option<Gc<Tree<T>>>,
/// left: Option<Gc<Tree<T>>>,
/// right: Option<Gc<Tree<T>>>,
/// }
///
/// impl<T: Trace> Trace for Tree<T> {
/// fn trace(&self, collector: &mut Collector) {
/// // Report each of the `Gc<T>`s referenced from within `self` to the
/// // collector. See the `Trace` docs for more details.
/// collector.edge(self.value);
/// if let Some(parent) = self.parent {
/// collector.edge(parent);
/// }
/// if let Some(left) = self.left {
/// collector.edge(left);
/// }
/// if let Some(right) = self.right {
/// collector.edge(right);
/// }
/// }
/// }
/// ```
///
/// # Example: Accessing a `Gc<T>`'s referenced `T`
///
/// ```
/// use safe_gc::{Gc, Heap, Trace};
///
/// struct Node {
/// value: u32,
/// tail: Option<Gc<Node>>,
/// }
///
/// impl Trace for Node {
/// // ...
/// # fn trace(&self, _: &mut safe_gc::Collector) {}
/// }
///
/// let mut heap = Heap::new();
///
/// let a = heap.alloc(Node { value: 36, tail: None });
/// let b = heap.alloc(Node { value: 42, tail: Some(a.into()) });
/// let c = heap.alloc(Node { value: 99, tail: Some(b.clone().into()) });
///
/// // Read `(*c).tail`.
/// let c_tail = heap[&c].tail;
/// assert_eq!(c_tail, Some(b.into()));
///
/// // Write `(*c).tail = None`.
/// heap[&c].tail = None;
/// ```
///
/// # Example: Downgrading a `Root<T>` into a `Gc<T>`
///
/// The [`Heap::alloc`] method returns rooted references, but to store those
/// references into the field of a GC-managed object, you'll need to unroot the
/// reference with [`Root<T>::unrooted`][crate::Root::unrooted]. (You can also
/// use `root.into()` or `Gc::from(root)`.)
///
/// ```
/// use safe_gc::{Gc, Heap, Root, Trace};
///
/// struct Cat {
/// siblings: Vec<Gc<Cat>>,
/// }
///
/// impl Trace for Cat {
/// // ...
/// # fn trace(&self, _: &mut safe_gc::Collector) {}
/// }
///
/// let mut heap = Heap::new();
///
/// let momo: Root<Cat> = heap.alloc(Cat { siblings: vec![] });
/// let juno: Root<Cat> = heap.alloc(Cat { siblings: vec![] });
///
/// // Add `momo` and `juno` to each other's siblings vectors. This requires
/// // downgrading the `Root<Cat>`s to `Gc<Cat>`s via the `unrooted` method.
/// heap[&momo].siblings.push(juno.unrooted());
/// heap[&juno].siblings.push(momo.unrooted());
/// ```
///
/// # Example: Upgrading a `Gc<T>` into a `Root<T>`
///
/// You can upgrade a `Gc<T>` into a [`Root<T>`][crate::Root] via the
/// [`Heap::root`] method, so that you can hold references to GC-objects across
/// operations that can potentially trigger garbage collections.
///
/// See the docs for [`Heap::root`] for more details and an example.
pub struct Gc<T> {
heap_id: u32,
index: u32,
_phantom: std::marker::PhantomData<*mut T>,
}
impl<T> Gc<T> {
/// Create a new `Gc<T>` from a raw heap ID and index.
pub fn from_raw_parts(heap_id: u32, index: u32) -> Self {
Self {
heap_id,
index,
_phantom: std::marker::PhantomData,
}
}
/// Get the raw heap ID and index from a `Gc<T>`.
pub fn into_raw_parts(self) -> (u32, u32) {
(self.heap_id, self.index)
}
}
impl<T> Clone for Gc<T> {
fn clone(&self) -> Self {
*self
}
}
impl<T> Copy for Gc<T> {}
impl<T> Debug for Gc<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct(&format!("Gc<{}>", std::any::type_name::<T>()))
.field("heap_id", &self.heap_id)
.field("index", &self.index)
.finish()
}
}
impl<T> Hash for Gc<T> {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.heap_id.hash(state);
self.index.hash(state);
}
}
impl<T> PartialEq<Self> for Gc<T> {
fn eq(&self, other: &Self) -> bool {
self.heap_id == other.heap_id && self.index == other.index
}
}
impl<T> PartialEq<Root<T>> for Gc<T>
where
T: Trace,
{
fn eq(&self, other: &Root<T>) -> bool {
*self == other.unrooted()
}
}
impl<T> Eq for Gc<T> {}
impl<T> From<Root<T>> for Gc<T>
where
T: Trace,
{
fn from(root: Root<T>) -> Self {
root.unrooted()
}
}
impl<'a, T> From<&'a Root<T>> for Gc<T>
where
T: Trace,
{
fn from(root: &'a Root<T>) -> Self {
root.unrooted()
}
}
struct RootSet<T> {
inner: Rc<RefCell<FreeList<Gc<T>>>>,
}
impl<T> Clone for RootSet<T> {
fn clone(&self) -> Self {
Self {
inner: Rc::clone(&self.inner),
}
}
}
impl<T> Default for RootSet<T> {
fn default() -> Self {
Self {
inner: Rc::new(RefCell::new(FreeList::<Gc<T>>::default())),
}
}
}
impl<T> RootSet<T>
where
T: Trace,
{
fn insert(&self, gc: Gc<T>) -> Root<T> {
let mut inner = self.inner.borrow_mut();
let index = inner.alloc(gc);
Root {
roots: self.clone(),
index,
}
}
fn remove(&self, index: u32) {
let mut inner = self.inner.borrow_mut();
inner.dealloc(index);
}
fn trace(&self, collector: &mut Collector) {
let inner = self.inner.borrow();
for (_, gc) in inner.iter() {
collector.edge(*gc);
}
}
}
/// A rooted reference to a GC-managed `T`.
///
/// `Root<T>`s prevent their referenced `T` from being reclaimed during garbage
/// collections. This makes them suitable for holding references to GC-managed
/// objects across operations that can trigger GCs.
///
/// `Root<T>`s are *not* suitable for referencing other GC-manged objects within
/// the definition of a GC-managed object. Doing this will effectively leak
/// everything transitively referenced from the `Root<T>`. Instead, use
/// [`Gc<T>`][crate::Gc] for references to other GC-managed objects from within
/// a GC-managed object.
///
/// See also the docs for [`Gc<T>`][crate::Gc] for more examples of converting
/// between `Root<T>` and `Gc<T>` and when you want to use which type.
///
/// # Example: Creating a `Root<T>` via Allocation
///
/// ```
/// use safe_gc::{Gc, Heap, Root, Trace};
///
/// struct Node {
/// value: u32,
/// tail: Option<Gc<Node>>,
/// }
///
/// impl Trace for Node {
/// // ...
/// # fn trace(&self, _: &mut safe_gc::Collector) {}
/// }
///
/// let mut heap = Heap::new();
///
/// // Allocating a new GC object in a heap returns a `Root<T>` reference.
/// let node: Root<Node> = heap.alloc(Node { value: 1234, tail: None });
/// ```
pub struct Root<T>
where
T: Trace,
{
roots: RootSet<T>,
index: u32,
}
impl<T> Clone for Root<T>
where
T: Trace,
{
fn clone(&self) -> Self {
self.roots.insert(self.unrooted())
}
}
impl<T> PartialEq<Root<T>> for Root<T>
where
T: Trace,
{
fn eq(&self, other: &Root<T>) -> bool {
self.unrooted() == other.unrooted()
}
}
impl<T> PartialEq<Gc<T>> for Root<T>
where
T: Trace,
{
fn eq(&self, other: &Gc<T>) -> bool {
self.unrooted() == *other
}
}
impl<T> Drop for Root<T>
where
T: Trace,
{
fn drop(&mut self) {
self.roots.remove(self.index);
}
}
impl<T> Root<T>
where
T: Trace,
{
/// Get an unrooted [`Gc<T>`][crate::Gc] reference pointing to the same `T`
/// that this `Root<T>` points to.
///
/// See also the docs for [`Gc<T>`][crate::Gc] for more examples of
/// converting between `Root<T>` and `Gc<T>` and when you want to use which
/// type.
pub fn unrooted(&self) -> Gc<T> {
let inner = (*self.roots.inner).borrow();
*inner.get(self.index)
}
}
struct Arena<T> {
roots: RootSet<T>,
elements: FreeList<T>,
}
// We don't default to 0-capacity arenas because the arenas themselves are
// lazily constructed, and so by the time we are constructing an arena, we will
// always immediately push onto it.
const DEFAULT_ARENA_CAPACITY: usize = 32;
impl<T> Default for Arena<T> {
fn default() -> Self {
Arena {
roots: RootSet::<T>::default(),
elements: FreeList::with_capacity(DEFAULT_ARENA_CAPACITY),
}
}
}
impl<T> Arena<T>
where
T: Trace,
{
#[inline]
fn try_alloc(&mut self, heap_id: u32, value: T) -> Result<Root<T>, T> {
let index = self.elements.try_alloc(value)?;
Ok(self.root(Gc {
heap_id,
index,
_phantom: std::marker::PhantomData,
}))
}
fn alloc_slow(&mut self, heap_id: u32, value: T) -> Root<T> {
if self.elements.len() == self.elements.capacity() {
self.elements.double_capacity();
}
let index = self.elements.try_alloc(value).ok().unwrap();
self.root(Gc {
heap_id,
index,
_phantom: std::marker::PhantomData,
})
}
#[inline]
fn root(&self, gc: Gc<T>) -> Root<T> {
self.roots.insert(gc)
}
}
trait ArenaObject: Any {
fn as_any(&self) -> &dyn Any;
fn as_any_mut(&mut self) -> &mut dyn Any;
fn trace_roots(&self, collector: &mut Collector);
fn trace_one(&mut self, index: u32, collector: &mut Collector);
fn capacity(&self) -> usize;
fn sweep(&mut self, mark_bits: &MarkBits);
}
impl<T> ArenaObject for Arena<T>
where
T: Trace,
{
fn as_any(&self) -> &dyn Any {
self
}
fn as_any_mut(&mut self) -> &mut dyn Any {
self
}
fn trace_roots(&self, collector: &mut Collector) {
self.roots.trace(collector);
}
fn trace_one(&mut self, index: u32, collector: &mut Collector) {
self.elements.get(index).trace(collector);
}
fn capacity(&self) -> usize {
self.elements.capacity()
}
fn sweep(&mut self, mark_bits: &MarkBits) {
let capacity = self.elements.capacity();
for index in 0..u32::try_from(capacity).unwrap() {
if !mark_bits.get(index) {
self.elements.dealloc(index);
}
}
// If we are close to running out of capacity, reserve additional
// space. This amortizes the cost of collections and avoids the failure
// mode where we do a full GC on every object allocation:
//
// * The arena has zero available capacity.
// * The mutator tries to allocate, triggering a GC.
// * The GC is able to free up only one (or only a small handfull) of
// slots.
// * The mutator's pending allocation fills the newly reclaimed slot.
// * Now we are out of capacity again, and the process repeats from the
// top.
let len = self.elements.len();
let available = capacity - len;
if available < capacity / 4 {
self.elements.double_capacity();
}
}
}
/// The garbage collector for a heap.
///
/// GC-managed objects should report all of their references to other GC-managed
/// objects (aka "edges") to the collector in their [`Trace`] implementations.
///
/// See the docs for [`Trace`] for more information.
//
// This type is only exposed to users so they can report edges, but internally
// this does a bit more than that:
//
// * It maintains the mark stack work lists that contain all the GC objects
// we've seen but have not yet finished processing.
//
// * It maintains the mark bits for all GC objects in the heap, which keep track
// of which GC objects we have and have not seen while tracing the live set.
pub struct Collector {
heap_id: u32,
mark_stacks: HashMap<TypeId, Vec<u32>>,
mark_bits: HashMap<TypeId, MarkBits>,
}
impl Collector {
fn new(heap_id: u32) -> Self {
Self {
heap_id,
mark_stacks: HashMap::default(),
mark_bits: HashMap::default(),
}
}
/// Report a reference to another GC-managed object (aka an "edge" in the
/// heap graph).
///
/// See the docs for [`Trace`] for more information.
///
/// Panics when given cross-heap edges. See the "Cross-`Heap` GC References"
/// section of [`Heap`]'s documentation for details on cross-heap edges.
pub fn edge<T>(&mut self, to: Gc<T>)
where
T: Trace,
{
assert_eq!(to.heap_id, self.heap_id);
let ty = TypeId::of::<T>();
let mark_bits = self.mark_bits.get_mut(&ty).unwrap();
if mark_bits.set(to.index) {
return;
}
let mark_stack = self.mark_stacks.entry(ty).or_default();
mark_stack.push(to.index);
}
fn next_non_empty_mark_stack(&self) -> Option<TypeId> {
self.mark_stacks.iter().find_map(
|(ty, stack)| {
if stack.is_empty() {
None
} else {
Some(*ty)
}
},
)
}
fn pop_mark_stack(&mut self, type_id: TypeId) -> Option<u32> {
self.mark_stacks.get_mut(&type_id).unwrap().pop()
}
}
/// A collection of GC-managed objects.
///
/// A `Heap` is a collection of GC-managed objects that can all reference each
/// other, and garbage collection is performed at the `Heap` granularity. The
/// smaller the `Heap`, the less overhead imposed by garbage collecting it. The
/// larger the `Heap`, the more overhead is imposed.
///
/// There are no restrictions on the shape of references between GC-managed
/// objects within a `Heap`: references may form arbitrary cycles and there is
/// no imposed ownership hierarchy.
///
/// # Allocating Objects
///
/// You can allocate objects with the [`Heap::alloc`] method.
///
/// You can allocate instances of any number of heterogeneous types of
/// GC-managed objects within a `Heap`: they may, for example, contain both
/// `Cons` objects and `Tree` objects. `Heap`s are *not* constrained to only
/// instances of a single, uniform `T` type of GC objects.
///
/// All types allocated within a heap must, however, implement the [`Trace`]
/// trait. See the [`Trace`] trait's docs for more details.
///
/// ```
/// use safe_gc::{Gc, Heap, Trace};
///
/// struct Tree<T: Trace> {
/// value: Gc<T>,
/// parent: Option<Gc<Tree<T>>>,
/// left: Option<Gc<Tree<T>>>,
/// right: Option<Gc<Tree<T>>>,
/// }
///
/// impl<T: Trace> Trace for Tree<T> {
/// // See the docs for `Trace` for details...
/// # fn trace(&self, _: &mut safe_gc::Collector) {}
/// }
///
/// struct Cat {
/// cuteness: u32,
/// cat_tree: Option<Gc<Tree<Cat>>>,
/// }
///
/// impl Trace for Cat {
/// // See the docs for `Trace` for details...
/// # fn trace(&self, _: &mut safe_gc::Collector) {}
/// }
///
/// let mut heap = Heap::new();
///
/// // Allocate a cat within the heap!
/// let goomba = heap.alloc(Cat {
/// cuteness: u32::MAX,
/// cat_tree: None,
/// });
///
/// // Also allocate a tree within the heap!
/// let tree = heap.alloc(Tree {
/// value: goomba.unrooted(),
/// parent: None,
/// left: None,
/// right: None,
/// });
///
/// // Create a cycle: the `tree` already references `goomba`, but now
/// // `goomba` references the `tree` as well.
/// heap[goomba].cat_tree = Some(tree.into());
/// ```
///
/// # Accessing Allocating Objects
///
/// Rather than dereferencing pointers to allocated GC objects directly, you
/// must use one of two types ([`Gc<T>`][crate::Gc] or [`Root<T>`][crate::Root])
/// to index into the `Heap` to access the referenced `T` object. This enables
/// `safe-gc`'s lack of `unsafe` code and allows the implementation to follow
/// Rust's ownership and borrowing discipline.
///
/// Given a [`Gc<T>`][crate::Gc] or [`Root<T>`][crate::Root], you can use the
/// [`Heap::get`] method to get an `&T`. Similarly, you can use the
/// [`Heap::get_mut`] method to get an `&mut T`. As convenient syntactic sugar,
/// `Heap` also implements [`std::ops::Index`] and [`std::ops::IndexMut`] as
/// aliases for `get` and `get_mut` respectively.
///
/// The [`Gc<T>`][crate::Gc] index type is an unrooted reference, suitable for
/// defining references to other GC-managed types within a GC-managed type's
/// definition.
///
/// The [`Root<T>`][crate::Root] index type is a rooted reference, prevents its
/// referent from being reclaimed during garbage collections, and is suitable
/// for holding GC-managed objects alive from outside of the `Heap`.
///
/// See the docs for [`Gc<T>`][crate::Gc] and [`Root<T>`][crate::Root] for more
/// details, how to convert between them, and other examples.
///
/// ```
/// use safe_gc::{Heap, Trace};
///
/// struct Point(u32, u32);
///
/// impl Trace for Point {
/// // ...
/// # fn trace(&self, _: &mut safe_gc::Collector) {}
/// }
///
/// let mut heap = Heap::new();
///
/// let p = heap.alloc(Point(42, 36));
///
/// // Read data from an object in the heap.
/// let p0 = heap[&p].0;
/// assert_eq!(p0, 42);
///
/// // Write data to an object in the heap.
/// heap[&p].1 = 5;
/// ```
///
/// # When Can Garbage Collections Happen?
///
/// There are two ways to trigger garbage collection:
///
/// 1. When the [`Heap::gc`] method is explicitly invoked.
///
/// 2. When allocating an object in the heap with [`Heap::alloc`].
///
/// Note that both of those methods require an `&mut self`, so they cannot be
/// invoked when there are shared `&Heap` borrows. Therefore, when there are
/// shared `&Heap` borrows, you may freely use [`Gc<T>`][crate::Gc] instead of
/// [`Root<T>`][crate::Root] to hold references to objects in the heap without
/// fear of the GC collecting the objects out from under your feet. Traversing
/// deeply nested structures will have more overhead when using
/// [`Root<T>`][crate::Root] than when using [`Gc<T>`][crate::Gc] because
/// [`Root<T>`][crate::Root] must maintain its associated entry in the heap's
/// root set.
///
/// # Finalization and `Drop`
///
/// Unlike many GC libraries for Rust, it is perfectly safe and footgun-free to
/// put `Drop` types in the GC heap, even if they have references to other GC
/// objects. Finalization of and `Drop` implementations for GC objects is
/// usually tricky because of the risks of accessing objects that have already
/// been reclaimed by the collector or accidentally entrenching objects and
/// making them live again.
///
/// The reason this is fine with `safe-gc` is because the `Drop` implementation
/// doesn't have access to a `Heap`, so it statically *cannot* suffer from those
/// kinds of bugs.
///
/// # Cross-`Heap` GC References
///
/// Typically, GC objects will only reference other GC objects that are within
/// the same `Heap`. In fact, edges reported to the [`Collector`] *must* point
/// to objects within the same `Heap` as the object being traced or else
/// [`Collector::edge`] will raise a panic.
///
/// However, you can create cross-heap edges with [`Root<T>`][crate::Root], but
/// it requires some care. While a [`Root<T>`][crate::Root] pointing to an
/// object in the same `Heap` will make all transitively referenced objects
/// unreclaimable, a [`Root<T>`][crate::Root] pointing to an object in another
/// heap will not indefinitely leak memory, provided you do not create *cycles*
/// across `Heap`s. To fully collect all garbage across all `Heap`s, you will
/// need to run GC on each `Heap` either
///
/// * in topological order of cross-`Heap` edges, if you statically know that
/// order in your application, or
///
/// * in a fixed point loop, if you do not statically know that order.
///
/// However, if you don't statically know that topological order, it is
/// recommended that you don't create cross-`Heap` edges; you will likely
/// accidentally create cycles and leak memory. Instead, simply put everything
/// in the same `Heap`.
///
/// Collecting cycles across `Heap`s would require a global, cross-`Heap`
/// collector, and is not a goal of this crate. If you do choose to create
/// cross-`Heap` references, the responsibility of avoiding cross-`Heap` cycles
/// is yours.
pub struct Heap {
// The unique ID for this heap. Used to ensure that `Gc<T>`s are only used
// with their associated arena. Could use branded lifetimes to avoid these
// IDs and checks statically, but the API is gross and pushes lifetimes into
// everything.
id: u32,
// A map from `type_id(T)` to `Arena<T>`.
arenas: HashMap<TypeId, Box<dyn ArenaObject>>,
collector: Collector,
}
impl Default for Heap {
fn default() -> Self {
Heap::new()
}
}
impl<T> std::ops::Index<Root<T>> for Heap
where
T: Trace,
{
type Output = T;
fn index(&self, root: Root<T>) -> &Self::Output {
&self[root.unrooted()]
}
}
impl<T> std::ops::IndexMut<Root<T>> for Heap
where
T: Trace,
{
fn index_mut(&mut self, root: Root<T>) -> &mut Self::Output {
&mut self[root.unrooted()]
}
}
impl<'a, T> std::ops::Index<&'a Root<T>> for Heap
where
T: Trace,
{
type Output = T;
fn index(&self, root: &'a Root<T>) -> &Self::Output {
&self[root.unrooted()]
}
}
impl<'a, T> std::ops::IndexMut<&'a Root<T>> for Heap
where
T: Trace,
{
fn index_mut(&mut self, root: &'a Root<T>) -> &mut Self::Output {
&mut self[root.unrooted()]
}
}
impl<T> std::ops::Index<Gc<T>> for Heap
where
T: Trace,
{
type Output = T;
fn index(&self, index: Gc<T>) -> &Self::Output {
self.get(index)
}
}
impl<T> std::ops::IndexMut<Gc<T>> for Heap
where
T: Trace,
{
fn index_mut(&mut self, gc: Gc<T>) -> &mut Self::Output {
self.get_mut(gc)
}
}
impl Heap {
/// Construct a new `Heap`.
///
/// # Example
///
/// ```
/// use safe_gc::Heap;
///
/// let heap = Heap::new();
/// ```
#[inline]
pub fn new() -> Self {
let id = Self::next_id();
Self {
id,
arenas: HashMap::default(),
collector: Collector::new(id),
}
}
#[inline]
fn next_id() -> u32 {
static ID_COUNTER: atomic::AtomicU32 = atomic::AtomicU32::new(0);
ID_COUNTER.fetch_add(1, atomic::Ordering::AcqRel)
}
#[inline]
fn arena<T>(&self) -> Option<&Arena<T>>
where
T: Trace,
{
let arena = self.arenas.get(&TypeId::of::<T>())?;
Some(arena.as_any().downcast_ref().unwrap())
}
#[inline]
fn arena_mut<T>(&mut self) -> Option<&mut Arena<T>>
where
T: Trace,
{
let arena = self.arenas.get_mut(&TypeId::of::<T>())?;
Some(arena.as_any_mut().downcast_mut().unwrap())
}
#[inline]
fn ensure_arena<T>(&mut self) -> &mut Arena<T>
where
T: Trace,
{
self.arenas
.entry(TypeId::of::<T>())
.or_insert_with(|| Box::new(Arena::<T>::default()) as _)
.as_any_mut()
.downcast_mut()
.unwrap()
}
/// Allocate an object in the heap.
///
/// # Example
///
/// ```
/// use safe_gc::{Gc, Heap, Trace};
///
/// struct List {
/// value: u32,
/// prev: Option<Gc<List>>,
/// next: Option<Gc<List>>,
/// }
///
/// impl Trace for List {
/// // See the docs for `Trace` for details...
/// # fn trace(&self, _: &mut safe_gc::Collector) {}
/// }
///
/// let mut heap = Heap::new();
///
/// // Allocate an object in the heap.
/// let list = heap.alloc(List {
/// value: 10,
/// prev: None,
/// next: None,
/// });
/// ```
#[inline]
pub fn alloc<T>(&mut self, value: T) -> Root<T>
where
T: Trace,
{
let heap_id = self.id;
let arena = self.ensure_arena::<T>();
match arena.try_alloc(heap_id, value) {
Ok(root) => root,
Err(value) => self.alloc_slow(value),
}
}
#[inline(never)]
fn alloc_slow<T>(&mut self, value: T) -> Root<T>
where
T: Trace,
{
// TODO: need to temporarily root `value` across this GC so that its
// edges don't get collected.
self.gc();
let heap_id = self.id;
let arena = self.ensure_arena::<T>();
arena.alloc_slow(heap_id, value)
}
/// Get a shared reference to an allocated object in the heap.
///
/// You can also use [`std::ops::Index`] to access objects in the heap.
///
/// # Example
///
/// ```
/// use safe_gc::{Gc, Heap, Trace};
///
/// struct List {
/// value: u32,
/// prev: Option<Gc<List>>,
/// next: Option<Gc<List>>,
/// }
///
/// impl Trace for List {
/// // See the docs for `Trace` for details...
/// # fn trace(&self, _: &mut safe_gc::Collector) {}
/// }
///
/// let mut heap = Heap::new();
///
/// // Allocate an object in the heap.
/// let list = heap.alloc(List {
/// value: 10,
/// prev: None,
/// next: None,
/// });
///
/// // Access an allocated object in the heap.
/// let value = heap.get(list).value;
/// assert_eq!(value, 10);
/// ```
#[inline]
pub fn get<T>(&self, gc: impl Into<Gc<T>>) -> &T
where
T: Trace,
{
let gc = gc.into();
assert_eq!(self.id, gc.heap_id);
let arena = self.arena::<T>().unwrap();
arena.elements.get(gc.index)
}
/// Get a shared reference to an allocated object in the heap.
///
/// You can also use [`std::ops::Index`] to access objects in the heap.
///
/// # Example
///
/// ```
/// use safe_gc::{Gc, Heap, Trace};
///
/// struct List {
/// value: u32,
/// prev: Option<Gc<List>>,
/// next: Option<Gc<List>>,
/// }
///
/// impl Trace for List {
/// // See the docs for `Trace` for details...
/// # fn trace(&self, _: &mut safe_gc::Collector) {}
/// }
///
/// let mut heap = Heap::new();
///
/// // Allocate an object in the heap.
/// let list = heap.alloc(List {
/// value: 10,
/// prev: None,
/// next: None,
/// });
///
/// // Mutate an allocated object in the heap.
/// heap.get_mut(&list).value += 1;
/// assert_eq!(heap[list].value, 11);
/// ```
#[inline]
pub fn get_mut<T>(&mut self, gc: impl Into<Gc<T>>) -> &mut T
where
T: Trace,
{
let gc = gc.into();
assert_eq!(self.id, gc.heap_id);
let arena = self.arena_mut::<T>().unwrap();
arena.elements.get_mut(gc.index)
}
/// Root a reference to a GC object.
///
/// This method upgrades a [`Gc<T>`][crate::Gc] into a
/// [`Root<T>`][crate::Root]. This is useful for holding references to
/// GC-managed objects across operations that can potentially trigger
/// garbage collections, making sure that the collector doesn't reclaim them
/// from under your feed.
///
/// # Example
///
/// ```
/// use safe_gc::{Gc, Heap, Root, Trace};
///
/// struct Node {
/// value: u32,
/// tail: Option<Gc<Node>>,
/// }
///
/// impl Trace for Node {
/// // See the docs for `Trace` for details...
/// # fn trace(&self, _: &mut safe_gc::Collector) {}
/// }
///
/// let mut heap = Heap::new();
///
/// let a = heap.alloc(Node { value: 0, tail: None });
/// let b = heap.alloc(Node { value: 1, tail: Some(a.into()) });
///
/// // Get a reference to a `Gc<T>` from the heap.
/// let b_tail: Gc<Node> = heap[b].tail.unwrap();
///
/// // Upgrade the `Gc<T>` to a `Root<T>` via the `Heap::root` method so it is
/// // suitable for holding across garbage collections.
/// let b_tail: Root<Node> = heap.root(b_tail);
///
/// // Now we can perform operations, like heap allocation, that might GC
/// // without worrying about `b_tail`'s referenced GC object from being
/// // collected out from under us.
/// heap.alloc(Node { value: 123, tail: None });
///
/// // And we can access `b_tail`'s referenced GC object again, after GC may
/// // have happened.
/// let b_tail_value = heap[&b_tail].value;
/// assert_eq!(b_tail_value, 0);
/// ```
#[inline]
pub fn root<T>(&self, gc: Gc<T>) -> Root<T>
where
T: Trace,
{
assert_eq!(self.id, gc.heap_id);
let arena = self.arena::<T>().unwrap();
arena.root(gc)
}
/// Collect garbage.
///
/// Any object in the heap that is not transitively referenced by a
/// [`Root<T>`][crate::Root] will be reclaimed.
///
/// # Example
///
/// ```
/// use safe_gc::Heap;
///
/// let mut heap = Heap::new();
///
/// # let allocate_a_bunch_of_stuff = |_| {};
/// allocate_a_bunch_of_stuff(&mut heap);
///
/// // Collect garbage!
/// heap.gc();
/// ```
#[inline(never)]
pub fn gc(&mut self) {
debug_assert!(self.collector.mark_stacks.values().all(|s| s.is_empty()));
// Reset/pre-allocate the mark bits.
for (ty, arena) in &self.arenas {
self.collector
.mark_bits
.entry(*ty)
.or_default()
.reset(arena.capacity());
}
// Mark all roots.
for arena in self.arenas.values() {
arena.trace_roots(&mut self.collector);
}
// Mark everything transitively reachable from the roots.
//
// NB: We have a two-level fixed-point loop to avoid checking if every
// mark stack is non-empty on every iteration of the hottest, inner-most
// loop.
while let Some(type_id) = self.collector.next_non_empty_mark_stack() {
while let Some(index) = self.collector.pop_mark_stack(type_id) {
self.arenas
.get_mut(&type_id)
.unwrap()
.trace_one(index, &mut self.collector);
}
}
// Sweep.
for (ty, arena) in &mut self.arenas {
let mark_bits = &self.collector.mark_bits[ty];
arena.sweep(mark_bits);
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn object_safety() {
fn _trace(_: &dyn Trace) {}
fn _arena_object(_: &dyn ArenaObject) {}
}
}