pub struct SEardKernel { /* private fields */ }Expand description
Squared Exponential function (SEard) kernel
The distance metric here is L2 (Euclidean).
k(a, b) = exp(-0.5 * (a - b)' * M * (a - b))§Parameters
M- Length scale for each dimension.
Implementations§
Source§impl SEardKernel
impl SEardKernel
Sourcepub fn new(length_scale: DVector<f64>) -> Result<Self, KernelError>
pub fn new(length_scale: DVector<f64>) -> Result<Self, KernelError>
Create a new seard kernel with the given length scale
Sourcepub fn new_unchecked(length_scale: DVector<f64>) -> Self
pub fn new_unchecked(length_scale: DVector<f64>) -> Self
Create a new SEardKernel without checking parameters
Trait Implementations§
Source§impl<B> Add<B> for SEardKernelwhere
B: Kernel,
impl<B> Add<B> for SEardKernelwhere
B: Kernel,
Source§impl Clone for SEardKernel
impl Clone for SEardKernel
Source§fn clone(&self) -> SEardKernel
fn clone(&self) -> SEardKernel
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl Debug for SEardKernel
impl Debug for SEardKernel
Source§impl<'de> Deserialize<'de> for SEardKernel
impl<'de> Deserialize<'de> for SEardKernel
Source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
Deserialize this value from the given Serde deserializer. Read more
Source§impl Kernel for SEardKernel
impl Kernel for SEardKernel
Source§fn covariance<R1, R2, C1, C2, S1, S2>(
&self,
x1: &Matrix<f64, R1, C1, S1>,
x2: &Matrix<f64, R2, C2, S2>,
) -> DMatrix<f64>where
R1: Dim,
R2: Dim,
C1: Dim,
C2: Dim,
S1: Storage<f64, R1, C1>,
S2: Storage<f64, R2, C2>,
ShapeConstraint: SameNumberOfColumns<C1, C2>,
fn covariance<R1, R2, C1, C2, S1, S2>(
&self,
x1: &Matrix<f64, R1, C1, S1>,
x2: &Matrix<f64, R2, C2, S2>,
) -> DMatrix<f64>where
R1: Dim,
R2: Dim,
C1: Dim,
C2: Dim,
S1: Storage<f64, R1, C1>,
S2: Storage<f64, R2, C2>,
ShapeConstraint: SameNumberOfColumns<C1, C2>,
Returns the covariance matrix for two equal sized vectors
Source§fn is_stationary(&self) -> bool
fn is_stationary(&self) -> bool
Reports if the given kernel function is stationary.
Source§fn diag<R, C, S>(&self, x: &Matrix<f64, R, C, S>) -> DVector<f64>
fn diag<R, C, S>(&self, x: &Matrix<f64, R, C, S>) -> DVector<f64>
Returns the diagonal of the kernel(x, x)
Source§fn parameters(&self) -> DVector<f64>
fn parameters(&self) -> DVector<f64>
Return the corresponding parameter vector
The parameters here are in a log-scale
Source§fn reparameterize(&self, params: &[f64]) -> Result<Self, KernelError>
fn reparameterize(&self, params: &[f64]) -> Result<Self, KernelError>
Create a new kernel of the given type from the provided parameters.
The parameters here are in a log-scale
Source§fn covariance_with_gradient<R, C, S>(
&self,
x: &Matrix<f64, R, C, S>,
) -> Result<(DMatrix<f64>, CovGrad), CovGradError>
fn covariance_with_gradient<R, C, S>( &self, x: &Matrix<f64, R, C, S>, ) -> Result<(DMatrix<f64>, CovGrad), CovGradError>
Covariance and Gradient with the log-scaled hyper-parameters
Source§fn n_parameters(&self) -> usize
fn n_parameters(&self) -> usize
Return the number of parameters used in this
Kernel.Source§fn consume_parameters<I: IntoIterator<Item = f64>>(
&self,
params: I,
) -> Result<(Self, I::IntoIter), KernelError>
fn consume_parameters<I: IntoIterator<Item = f64>>( &self, params: I, ) -> Result<(Self, I::IntoIter), KernelError>
Takes a sequence of parameters and consumes only the ones it needs
to create itself.
The parameters here are in a log-scale
fn add<B: Kernel>(self, other: B) -> AddKernel<Self, B>
fn mul<B: Kernel>(self, other: B) -> ProductKernel<Self, B>
Source§impl<B> Mul<B> for SEardKernelwhere
B: Kernel,
impl<B> Mul<B> for SEardKernelwhere
B: Kernel,
Source§type Output = ProductKernel<SEardKernel, B>
type Output = ProductKernel<SEardKernel, B>
The resulting type after applying the
* operator.Source§impl PartialEq for SEardKernel
impl PartialEq for SEardKernel
Source§impl Serialize for SEardKernel
impl Serialize for SEardKernel
impl StructuralPartialEq for SEardKernel
Auto Trait Implementations§
impl Freeze for SEardKernel
impl RefUnwindSafe for SEardKernel
impl Send for SEardKernel
impl Sync for SEardKernel
impl Unpin for SEardKernel
impl UnwindSafe for SEardKernel
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.