1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
//! Skellam distribution on signed integers
#[cfg(feature = "serde1")]
use serde::{Deserialize, Serialize};

use crate::dist::Poisson;
use crate::impl_display;
use crate::misc::bessel::bessel_iv;
use crate::traits::*;
use lru::LruCache;
use rand::Rng;
use std::cell::RefCell;

/// [Skellam distribution](https://en.wikipedia.org/wiki/Skellam_distribution)
/// over x in {.., -2, -1, 0, 1, ... }.
///
/// # Example
///
/// ```
/// use rv::prelude::*;
///
/// // Create Skellam(μ_1=5.3, μ_2=2.5)
/// let skel = Skellam::new(5.3, 2.5).unwrap();
///
/// // Draw 100 samples
/// let mut rng = rand::thread_rng();
/// let xs: Vec<i32> = skel.sample(100, &mut rng);
/// assert_eq!(xs.len(), 100)
/// ```
#[derive(Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Skellam {
    /// Mean of first poisson
    mu_1: f64,
    /// Mean of second poisson
    mu_2: f64,
    /// Cached values of bessel_iv. Note that the cache is not invalidated when
    /// the values of mu_1 or mu_2 change.
    #[cfg_attr(feature = "serde1", serde(skip, default = "cache_default"))]
    bessel_iv_cache: RefCell<LruCache<i32, f64>>,
}

fn cache_default() -> RefCell<LruCache<i32, f64>> {
    RefCell::new(LruCache::new(100))
}

#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub enum SkellamError {
    /// The first rate parameter is less than or equal to zero
    Mu1TooLow { mu_1: f64 },
    /// The first rate parameter is infinite or NaN
    Mu1NotFinite { mu_1: f64 },
    /// The second rate parameter is less than or equal to zero
    Mu2TooLow { mu_2: f64 },
    /// The second rate parameter is infinite or NaN
    Mu2NotFinite { mu_2: f64 },
}

impl Skellam {
    /// Create a new Skellam distribution with given rates
    pub fn new(mu_1: f64, mu_2: f64) -> Result<Self, SkellamError> {
        if mu_1 <= 0.0 {
            Err(SkellamError::Mu1TooLow { mu_1 })
        } else if mu_2 <= 0.0 {
            Err(SkellamError::Mu2TooLow { mu_2 })
        } else if !mu_1.is_finite() {
            Err(SkellamError::Mu1NotFinite { mu_1 })
        } else if !mu_2.is_finite() {
            Err(SkellamError::Mu2NotFinite { mu_2 })
        } else {
            Ok(Self::new_unchecked(mu_1, mu_2))
        }
    }

    /// Creates a new Skellam without checking whether the parameters are valid.
    #[inline]
    pub fn new_unchecked(mu_1: f64, mu_2: f64) -> Self {
        Skellam {
            mu_1,
            mu_2,
            bessel_iv_cache: cache_default(),
        }
    }

    /// Get the mu_1 parameter
    ///
    /// # Example
    ///
    /// ```
    /// # use rv::dist::Skellam;
    /// let skel = Skellam::new(2.0, 3.0).unwrap();
    /// assert_eq!(skel.mu_1(), 2.0);
    /// ```
    #[inline]
    pub fn mu_1(&self) -> f64 {
        self.mu_1
    }

    /// Set the mu_1 (first rate) parameter
    ///
    /// # Example
    ///
    /// ```rust
    /// use rv::dist::Skellam;
    /// let mut skel = Skellam::new(2.0, 1.0).unwrap();
    /// assert_eq!(skel.mu_1(), 2.0);
    ///
    /// skel.set_mu_1(1.1).unwrap();
    /// assert_eq!(skel.mu_1(), 1.1);
    /// ```
    ///
    /// Will error for invalid values
    ///
    /// ```rust
    /// # use rv::dist::Skellam;
    /// # let mut skel = Skellam::new(2.0, 1.0).unwrap();
    /// assert!(skel.set_mu_1(1.1).is_ok());
    /// assert!(skel.set_mu_1(0.0).is_err());
    /// assert!(skel.set_mu_1(-1.0).is_err());
    /// assert!(skel.set_mu_1(std::f64::INFINITY).is_err());
    /// assert!(skel.set_mu_1(std::f64::NEG_INFINITY).is_err());
    /// assert!(skel.set_mu_1(std::f64::NAN).is_err());
    /// ```
    #[inline]
    pub fn set_mu_1(&mut self, mu_1: f64) -> Result<(), SkellamError> {
        if mu_1 <= 0.0 {
            Err(SkellamError::Mu1TooLow { mu_1 })
        } else if !mu_1.is_finite() {
            Err(SkellamError::Mu1NotFinite { mu_1 })
        } else {
            self.set_mu_1_unchecked(mu_1);
            Ok(())
        }
    }

    /// Set the mu_1 (first rate) parameter without input validation
    #[inline]
    pub fn set_mu_1_unchecked(&mut self, mu_1: f64) {
        self.mu_1 = mu_1;
    }

    /// Get the mu_2 parameter
    ///
    /// # Example
    ///
    /// ```
    /// # use rv::dist::Skellam;
    /// let skel = Skellam::new(2.0, 3.0).unwrap();
    /// assert_eq!(skel.mu_2(), 3.0);
    /// ```
    #[inline]
    pub fn mu_2(&self) -> f64 {
        self.mu_2
    }

    /// Set the mu_2 (second rate) parameter
    ///
    /// # Example
    ///
    /// ```rust
    /// use rv::dist::Skellam;
    /// let mut skel = Skellam::new(2.0, 1.0).unwrap();
    /// assert_eq!(skel.mu_2(), 1.0);
    ///
    /// skel.set_mu_2(1.1).unwrap();
    /// assert_eq!(skel.mu_2(), 1.1);
    /// ```
    ///
    /// Will error for invalid values
    ///
    /// ```rust
    /// # use rv::dist::Skellam;
    /// # let mut skel = Skellam::new(2.0, 1.0).unwrap();
    /// assert!(skel.set_mu_2(1.1).is_ok());
    /// assert!(skel.set_mu_2(0.0).is_err());
    /// assert!(skel.set_mu_2(-1.0).is_err());
    /// assert!(skel.set_mu_2(std::f64::INFINITY).is_err());
    /// assert!(skel.set_mu_2(std::f64::NEG_INFINITY).is_err());
    /// assert!(skel.set_mu_2(std::f64::NAN).is_err());
    /// ```
    #[inline]
    pub fn set_mu_2(&mut self, mu_2: f64) -> Result<(), SkellamError> {
        if mu_2 <= 0.0 {
            Err(SkellamError::Mu2TooLow { mu_2 })
        } else if !mu_2.is_finite() {
            Err(SkellamError::Mu2NotFinite { mu_2 })
        } else {
            self.set_mu_2_unchecked(mu_2);
            Ok(())
        }
    }

    /// Set the mu_2 (first rate) parameter without input validation
    #[inline]
    pub fn set_mu_2_unchecked(&mut self, mu_2: f64) {
        self.mu_2 = mu_2;
    }

    /// Set the cache size on the internal LRU for Bessel Iv calls.
    #[inline]
    pub fn set_cache_cap(&self, cap: usize) {
        self.bessel_iv_cache.borrow_mut().resize(cap);
    }
}

impl From<&Skellam> for String {
    fn from(skellam: &Skellam) -> String {
        format!("Skellam(μ_1: {}, μ_2: {})", skellam.mu_1, skellam.mu_2)
    }
}

impl_display!(Skellam);

macro_rules! impl_traits {
    ($kind:ty) => {
        impl Rv<$kind> for Skellam {
            fn ln_f(&self, x: &$kind) -> f64 {
                let kf = f64::from(*x);
                let mut cache = self.bessel_iv_cache.borrow_mut();
                let bf: f64 =
                    cache.get(&(*x as i32)).map(|b| *b).unwrap_or_else(|| {
                        let b =
                            bessel_iv(kf, 2.0 * (self.mu_1 * self.mu_2).sqrt())
                                .unwrap()
                                .ln();
                        cache.put((*x as i32), b);
                        b
                    });

                -(self.mu_1 + self.mu_2)
                    + (kf / 2.0) * (self.mu_1 / self.mu_2).ln()
                    + bf
            }

            fn draw<R: Rng>(&self, rng: &mut R) -> $kind {
                let pois_1 = Poisson::new_unchecked(self.mu_1);
                let pois_2 = Poisson::new_unchecked(self.mu_2);
                let x_1: u32 = pois_1.draw(rng);
                let x_2: u32 = pois_2.draw(rng);
                (x_1 - x_2) as $kind
            }

            fn sample<R: Rng>(&self, n: usize, rng: &mut R) -> Vec<$kind> {
                let pois_1 = Poisson::new_unchecked(self.mu_1);
                let pois_2 = Poisson::new_unchecked(self.mu_2);
                pois_1
                    .sample(n, rng)
                    .into_iter()
                    .zip(pois_2.sample(n, rng).into_iter())
                    .map(|(x_1, x_2): (u32, u32)| {
                        (x_1 as $kind) - (x_2 as $kind)
                    })
                    .collect()
            }
        }

        impl Support<$kind> for Skellam {
            #[allow(unused_comparisons)]
            fn supports(&self, _x: &$kind) -> bool {
                true
            }
        }

        impl DiscreteDistr<$kind> for Skellam {}
    };
}

impl Mean<f64> for Skellam {
    fn mean(&self) -> Option<f64> {
        Some(self.mu_1 - self.mu_2)
    }
}

impl Variance<f64> for Skellam {
    fn variance(&self) -> Option<f64> {
        Some(self.mu_1 + self.mu_2)
    }
}

impl Skewness for Skellam {
    fn skewness(&self) -> Option<f64> {
        Some((self.mu_1 - self.mu_2) / (self.mu_1 + self.mu_2).powi(3).sqrt())
    }
}

impl Kurtosis for Skellam {
    fn kurtosis(&self) -> Option<f64> {
        Some(3.0 + (self.mu_1 + self.mu_2).recip())
    }
}

impl_traits!(i8);
impl_traits!(i16);
impl_traits!(i32);

impl PartialEq for Skellam {
    fn eq(&self, other: &Skellam) -> bool {
        self.mu_1 == other.mu_1 && self.mu_2 == other.mu_2
    }
}

impl Clone for Skellam {
    fn clone(&self) -> Self {
        let old_cache = self.bessel_iv_cache.borrow();
        let mut cache = LruCache::new(old_cache.len());
        for (key, value) in old_cache.iter() {
            cache.put(*key, *value);
        }
        Skellam {
            mu_1: self.mu_1,
            mu_2: self.mu_2,
            bessel_iv_cache: RefCell::new(cache),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::misc::x2_test;
    use crate::test_basic_impls;
    use std::f64;

    const TOL: f64 = 1E-12;
    const N_TRIES: usize = 5;
    const X2_PVAL: f64 = 0.2;

    test_basic_impls!(Skellam::new(0.5, 2.0).unwrap(), 3_i32);

    #[test]
    fn new() {
        let skel = Skellam::new(0.001, 3.456).unwrap();
        assert::close(skel.mu_1, 0.001, TOL);
        assert::close(skel.mu_2, 3.456, TOL);

        let skel = Skellam::new(1.234, 5.432).unwrap();
        assert::close(skel.mu_1, 1.234, TOL);
        assert::close(skel.mu_2, 5.432, TOL);
    }

    #[test]
    fn new_should_reject_non_finite_rate() {
        assert!(Skellam::new(1.0, f64::INFINITY).is_err());
        assert!(Skellam::new(1.0, f64::NAN).is_err());
        assert!(Skellam::new(f64::INFINITY, 1.0).is_err());
        assert!(Skellam::new(f64::NAN, 1.0).is_err());
    }

    #[test]
    fn new_should_reject_rate_lteq_zero() {
        assert!(Skellam::new(0.0, 0.0).is_err());
        assert!(Skellam::new(1.0, -1E-12).is_err());
        assert!(Skellam::new(-1E-12, 1.0).is_err());
        assert!(Skellam::new(1.0, f64::NEG_INFINITY).is_err());
        assert!(Skellam::new(f64::NEG_INFINITY, 1.0).is_err());
    }

    #[test]
    fn ln_pdf() {
        let skel = Skellam::new(5.3, 6.5).unwrap();
        assert::close(skel.ln_pmf(&1_i32), -2.347033152058002, TOL);
        assert::close(skel.ln_pmf(&5_i32), -3.8056891572335125, TOL);
        assert::close(skel.ln_pmf(&11_i32), -8.339462666191974, TOL);

        assert::close(skel.ln_pmf(&0_i32), -2.200416098697956, TOL);

        assert::close(skel.ln_pmf(&-1_i32), -2.1429377957144866, TOL);
        assert::close(skel.ln_pmf(&-5_i32), -2.7852123755159357, TOL);
        assert::close(skel.ln_pmf(&-11_i32), -6.094413746413306, TOL);
    }

    #[test]
    fn mean() {
        let m1 = Skellam::new(1.5, 2.3).unwrap().mean().unwrap();
        assert::close(m1, -0.8, TOL);

        let m2 = Skellam::new(33.2, 10.5).unwrap().mean().unwrap();
        assert::close(m2, 22.7, TOL);
    }

    #[test]
    fn variance() {
        let v1 = Skellam::new(1.5, 2.3).unwrap().variance().unwrap();
        assert::close(v1, 3.8, TOL);

        let v2 = Skellam::new(33.2, 10.5).unwrap().variance().unwrap();
        assert::close(v2, 43.7, TOL);
    }

    #[test]
    fn skewness() {
        let s = Skellam::new(5.3, 4.5).unwrap().skewness().unwrap();
        assert::close(s, 0.026076594489793457, TOL);
    }

    #[test]
    fn kurtosis() {
        let k = Skellam::new(5.3, 4.5).unwrap().kurtosis().unwrap();
        assert::close(k, 3.1020408163265305, TOL);
    }

    #[test]
    fn draw_test() {
        let mut rng = rand::thread_rng();
        let pois = Skellam::new(3.0, 3.0).unwrap();

        // How many bins do we need?
        let right_len: usize = (0..100)
            .position(|x| pois.pmf(&(x as i32)) < f64::EPSILON)
            .unwrap_or(99)
            + 1;

        let left_len: usize = (0..100)
            .position(|x| pois.pmf(&(-(x as i32))) < f64::EPSILON)
            .unwrap_or(99)
            + 1;

        let total_bins = left_len + right_len;
        let ps: Vec<f64> = (-(left_len as i32)..(right_len as i32))
            .map(|x| pois.pmf(&x))
            .collect();

        let passes = (0..N_TRIES).fold(0, |acc, _| {
            let mut f_obs: Vec<u32> = vec![0; total_bins];
            let xs: Vec<i32> = pois
                .sample(1000, &mut rng)
                .into_iter()
                .map(|x: i32| x.min(right_len as i32).max(-(left_len as i32)))
                .collect();

            xs.iter().for_each(|&x| {
                f_obs[(x + left_len as i32) as usize] += 1;
            });
            let (_, p) = x2_test(&f_obs, &ps);
            if p > X2_PVAL {
                acc + 1
            } else {
                acc
            }
        });
        assert!(passes > 0);
    }
}