1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
//! Possion distribution on unisgned integers
#[cfg(feature = "serde1")]
use serde::{Deserialize, Serialize};

use crate::dist::Uniform;
use crate::impl_display;
use crate::traits::*;
use num::{Bounded, FromPrimitive, Integer, Saturating, ToPrimitive, Unsigned};
use rand::Rng;
use std::fmt;

/// [Geometric distribution](https://en.wikipedia.org/wiki/Geometric_distribution)
/// over x in {0, 1, 2, 3, ... }.
///
/// # Example
///
/// ```
/// use rv::prelude::*;
///
/// // Create Geometric(p=0.5)
/// let geom = Geometric::new(0.5).unwrap();
///
/// // Draw Samples
/// let mut rng = rand::thread_rng();
/// let xs: Vec<u32> = geom.sample(100, &mut rng);
/// assert_eq!(xs.len(), 100)
/// ```
#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Geometric {
    p: f64,
}

#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub enum GeometricError {
    /// The p parameter is infinite or NaN
    PNotFinite { p: f64 },
    /// The p parameter is less than or equal to zero
    PTooLow { p: f64 },
    /// The p parameter is greater than one
    PGreaterThanOne { p: f64 },
}

impl Geometric {
    /// Create a new geometric distribution
    #[inline]
    pub fn new(p: f64) -> Result<Self, GeometricError> {
        if !p.is_finite() {
            Err(GeometricError::PNotFinite { p })
        } else if p <= 0.0 {
            Err(GeometricError::PTooLow { p })
        } else if p > 1.0 {
            Err(GeometricError::PGreaterThanOne { p })
        } else {
            Ok(Geometric { p })
        }
    }

    /// Creates a new Geometric without checking whether the parameter is
    /// valid.
    #[inline]
    pub fn new_unchecked(p: f64) -> Self {
        Geometric { p }
    }

    /// Get the p parameter
    #[inline]
    pub fn p(&self) -> f64 {
        self.p
    }

    /// Set the p parameter
    ///
    /// # Example
    ///
    /// ```rust
    /// # use rv::dist::Geometric;
    /// let mut geom = Geometric::new(0.2).unwrap();
    /// geom.set_p(0.5).unwrap();
    ///
    /// assert_eq!(geom.p(), 0.5);
    /// ```
    ///
    /// Will error for invalid values
    ///
    /// ```rust
    /// # use rv::dist::Geometric;
    /// # let mut geom = Geometric::new(0.2).unwrap();
    /// assert!(geom.set_p(0.5).is_ok());
    /// assert!(geom.set_p(1.0).is_ok());
    /// assert!(geom.set_p(0.0).is_err());
    /// assert!(geom.set_p(-1.0).is_err());
    /// assert!(geom.set_p(1.1).is_err());
    /// assert!(geom.set_p(std::f64::INFINITY).is_err());
    /// assert!(geom.set_p(std::f64::NEG_INFINITY).is_err());
    /// assert!(geom.set_p(std::f64::NAN).is_err());
    /// ```
    #[inline]
    pub fn set_p(&mut self, p: f64) -> Result<(), GeometricError> {
        if !p.is_finite() {
            Err(GeometricError::PNotFinite { p })
        } else if p > 1.0 {
            Err(GeometricError::PGreaterThanOne { p })
        } else if p <= 0.0 {
            Err(GeometricError::PTooLow { p })
        } else {
            self.set_p_unchecked(p);
            Ok(())
        }
    }

    /// Set p without input validation
    #[inline]
    pub fn set_p_unchecked(&mut self, p: f64) {
        self.p = p;
    }

    // Use the inversion method to select the corresponding integer.
    #[inline]
    fn inversion_draw_method<X, R>(rng: &mut R, p: f64) -> X
    where
        X: Unsigned + Integer + FromPrimitive + Bounded,
        R: Rng,
    {
        let u: f64 = Uniform::new(0.0, 1.0).unwrap().draw(rng);
        X::from_f64(((1.0 - u).ln() / (1.0 - p).ln()).ceil() - 1.0)
            .unwrap_or_else(X::max_value)
    }

    // Increase the value until the cdf surpasses the given p value.
    #[inline]
    fn search_draw_method<X, R>(rng: &mut R, p: f64) -> X
    where
        X: Unsigned + Integer + Saturating,
        R: Rng,
    {
        let u: f64 = rng.gen();
        let q = 1.0 - p;

        let mut t: X = X::zero();
        let mut sum = p;
        let mut prod = p;

        while u > sum {
            prod *= q;
            sum += prod;
            t = t.saturating_add(X::one());
        }
        t
    }
}

impl Default for Geometric {
    fn default() -> Self {
        Geometric { p: 0.5 }
    }
}

impl From<&Geometric> for String {
    fn from(geom: &Geometric) -> String {
        format!("G(p: {})", geom.p)
    }
}

impl_display!(Geometric);

impl<X> Rv<X> for Geometric
where
    X: Unsigned + Integer + FromPrimitive + ToPrimitive + Saturating + Bounded,
{
    fn ln_f(&self, k: &X) -> f64 {
        // TODO: could cache ln(1-p) and ln(p)
        let kf = (*k).to_f64().unwrap();
        kf * (1.0 - self.p).ln() + self.p.ln()
    }

    fn draw<R: Rng>(&self, rng: &mut R) -> X {
        // Follows the same pattern as
        // https://github.com/numpy/numpy/blob/7c41164f5340dc998ea1c04d2061f7d246894955/numpy/random/mtrand/distributions.c#L777
        if 3.0 * self.p > 1.0 {
            Geometric::search_draw_method(rng, self.p)
        } else {
            Geometric::inversion_draw_method(rng, self.p)
        }
    }
}

impl<X> Support<X> for Geometric
where
    X: Unsigned + Integer,
{
    #[allow(unused_comparisons)]
    fn supports(&self, k: &X) -> bool {
        *k >= X::zero()
    }
}

impl<X> DiscreteDistr<X> for Geometric where
    X: Unsigned + Integer + FromPrimitive + ToPrimitive + Saturating + Bounded
{
}

impl<X> Cdf<X> for Geometric
where
    X: Unsigned + Integer + FromPrimitive + ToPrimitive + Saturating + Bounded,
{
    fn cdf(&self, k: &X) -> f64 {
        let kf = (*k).to_f64().unwrap();
        1.0 - (1.0 - self.p).powf(kf + 1.0)
    }
}

impl Mean<f64> for Geometric {
    fn mean(&self) -> Option<f64> {
        Some((1.0 - self.p) / self.p)
    }
}

impl Variance<f64> for Geometric {
    fn variance(&self) -> Option<f64> {
        Some((1.0 - self.p) / (self.p * self.p))
    }
}

impl Skewness for Geometric {
    fn skewness(&self) -> Option<f64> {
        Some((2.0 - self.p) / (1.0 - self.p).sqrt())
    }
}

impl Kurtosis for Geometric {
    fn kurtosis(&self) -> Option<f64> {
        Some(6.0 + (self.p * self.p) / (1.0 - self.p))
    }
}

impl Entropy for Geometric {
    fn entropy(&self) -> f64 {
        (-(1.0 - self.p) * (1.0 - self.p).log2() - self.p * self.p.log2())
            / self.p
    }
}

impl std::error::Error for GeometricError {}

impl fmt::Display for GeometricError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::PTooLow { p } => {
                write!(f, "p ({}) must be greater than zero", p)
            }
            Self::PGreaterThanOne { p } => {
                write!(f, "p was less greater than one: {}", p)
            }
            Self::PNotFinite { p } => write!(f, "p was non-finite: {}", p),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::misc::x2_test;
    use crate::test_basic_impls;
    use std::f64;

    const TOL: f64 = 1E-12;
    const N_TRIES: usize = 5;
    const X2_PVAL: f64 = 0.2;

    test_basic_impls!([count] Geometric::default());

    #[test]
    fn new() {
        assert::close(Geometric::new(0.001).unwrap().p, 0.001, TOL);
        assert::close(Geometric::new(1.0).unwrap().p, 1.00, TOL);
    }

    #[test]
    fn new_should_reject_non_finite_rate() {
        assert!(Geometric::new(f64::INFINITY).is_err());
        assert!(Geometric::new(f64::NAN).is_err());
        assert!(Geometric::new(1.1).is_err());
    }

    #[test]
    fn new_should_reject_rate_lteq_zero() {
        assert!(Geometric::new(0.0).is_err());
        assert!(Geometric::new(-1E-12).is_err());
        assert!(Geometric::new(-1E12).is_err());
        assert!(Geometric::new(f64::NEG_INFINITY).is_err());
    }

    #[test]
    fn ln_pdf() {
        let geom = Geometric::new(0.5).unwrap();
        assert::close(geom.ln_pmf(&0_u32), -0.6931471805599453, TOL);
        assert::close(geom.ln_pmf(&1_u32), -1.3862943611198906, TOL);
        assert::close(geom.ln_pmf(&5_u32), -4.1588830833596715, TOL);
        assert::close(geom.ln_pmf(&11_u32), -8.317766166719343, TOL);
    }

    #[test]
    fn cdf() {
        let geom = Geometric::new(0.5).unwrap();
        assert::close(geom.cdf(&0_u32), 0.5, TOL);
        assert::close(geom.cdf(&1_u32), 0.75, TOL);
        assert::close(geom.cdf(&3_u32), 0.9375, TOL);
        assert::close(geom.cdf(&5_u32), 0.984375, TOL);
    }

    #[test]
    fn mean() {
        let m1 = Geometric::new(0.1).unwrap().mean().unwrap();
        assert::close(m1, 9.0, TOL);

        let m2 = Geometric::new(0.5).unwrap().mean().unwrap();
        assert::close(m2, 1.0, TOL);

        let m3 = Geometric::new(0.9).unwrap().mean().unwrap();
        assert::close(m3, 0.111111111111111, TOL);
    }

    #[test]
    fn variance() {
        let v1 = Geometric::new(0.1).unwrap().variance().unwrap();
        assert::close(v1, 90.0, TOL);

        let v2 = Geometric::new(0.5).unwrap().variance().unwrap();
        assert::close(v2, 2.0, TOL);

        let v3 = Geometric::new(0.9).unwrap().variance().unwrap();
        assert::close(v3, 0.12345679012345676, TOL);
    }

    #[test]
    fn skewness() {
        let s = Geometric::new(0.5).unwrap().skewness().unwrap();
        assert::close(s, 2.121_320_343_559_642_4, TOL);
    }

    #[test]
    fn kurtosis() {
        let k = Geometric::new(0.5).unwrap().kurtosis().unwrap();
        assert::close(k, 6.5, TOL);
    }

    fn test_draw_generic(p: f64) {
        let mut rng = rand::thread_rng();
        let geom = Geometric::new(p).unwrap();

        // How many bins do we need?
        let k: usize = (0..100)
            .position(|x| geom.pmf(&(x as u32)) < f64::EPSILON)
            .unwrap_or(99)
            + 1;

        let ps: Vec<f64> = (0..k).map(|x| geom.pmf(&(x as u32))).collect();

        let passes = (0..N_TRIES).fold(0, |acc, _| {
            let mut f_obs: Vec<u32> = vec![0; k];
            let xs: Vec<u32> = geom.sample(1000, &mut rng);
            xs.iter().for_each(|&x| f_obs[x as usize] += 1);
            let (_, p) = x2_test(&f_obs, &ps);
            if p > X2_PVAL {
                acc + 1
            } else {
                acc
            }
        });
        assert!(passes > 0);
    }

    #[test]
    fn draw_test_05() {
        test_draw_generic(0.5)
    }

    #[test]
    fn draw_test_02() {
        test_draw_generic(0.2)
    }
}