1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
//! Beta Binomial distribution of x in {0, ..., n}
#[cfg(feature = "serde1")]
use serde::{Deserialize, Serialize};

use once_cell::sync::OnceCell;
use rand::Rng;
use special::Beta as _;
use std::f64;
use std::fmt;

use crate::misc::{ln_binom, ln_pflip};
use crate::traits::*;
use crate::{clone_cache_f64, impl_display};

/// [Beta Binomial distribution](https://en.wikipedia.org/wiki/Beta-binomial_distribution)
/// over k in {0, ..., n}
///
/// # Example
///
/// ```
/// use std::f64;
/// use rv::prelude::*;
///
/// let a = 3.0;
/// let b = 2.0;
/// let n = 20;
///
/// let beta = Beta::new(a, b).unwrap();
/// let beta_binom = BetaBinomial::new(n, a, b).unwrap();
///
/// let beta_mean: f64 = beta.mean().unwrap();
/// let beta_binom_mean: f64 = beta_binom.mean().unwrap();
/// assert!( (beta_mean * f64::from(n) - beta_binom_mean).abs() < 1E-12 );
/// ```
///
/// Some functions will panic when given data outside the supported range:
/// [0, n]
///
/// ```
/// # use rv::prelude::*;
/// let beta_binom = BetaBinomial::new(20, 3.0, 2.0).unwrap();
/// assert!(!beta_binom.supports(&21_u32));
/// ```
///
/// The following will panic because 21 is out of the support
///
/// ```should_panic
/// # use rv::prelude::*;
/// # let beta_binom = BetaBinomial::new(20, 3.0, 2.0).unwrap();
/// beta_binom.pmf(&21_u32); // panics
/// ```

#[derive(Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct BetaBinomial {
    /// Total number of trials
    n: u32,
    /// Analogous to Beta Distribution α parameter.
    alpha: f64,
    /// Analogous to Beta Distribution β parameter
    beta: f64,
    // ln_beta(alpha, beta)
    #[cfg_attr(feature = "serde1", serde(skip))]
    ln_beta_ab: OnceCell<f64>,
}

impl Clone for BetaBinomial {
    fn clone(&self) -> Self {
        Self {
            n: self.n,
            alpha: self.alpha,
            beta: self.beta,
            ln_beta_ab: clone_cache_f64!(self, ln_beta_ab),
        }
    }
}

impl PartialEq for BetaBinomial {
    fn eq(&self, other: &BetaBinomial) -> bool {
        self.n == other.n
            && self.alpha == other.alpha
            && self.beta == other.beta
    }
}

#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub enum BetaBinomialError {
    /// The alpha parameter is less than zero
    AlphaTooLow { alpha: f64 },
    /// The alpha parameter is infinite or NaN
    AlphaNotFinite { alpha: f64 },
    /// The beta parameter is less than zero
    BetaTooLow { beta: f64 },
    /// The beta parameter is infinite or NaN
    BetaNotFinite { beta: f64 },
    /// The number of trails is zero
    NIsZero,
}

impl BetaBinomial {
    /// Create a beta-binomal distirbution
    ///
    /// # Arguments
    ///
    /// - n: the total number of trials
    /// - alpha: the prior pseudo obersvations of success
    /// - beta: the prior pseudo obersvations of failure
    pub fn new(
        n: u32,
        alpha: f64,
        beta: f64,
    ) -> Result<Self, BetaBinomialError> {
        if alpha <= 0.0 {
            Err(BetaBinomialError::AlphaTooLow { alpha })
        } else if !alpha.is_finite() {
            Err(BetaBinomialError::AlphaNotFinite { alpha })
        } else if beta <= 0.0 {
            Err(BetaBinomialError::BetaTooLow { beta })
        } else if !beta.is_finite() {
            Err(BetaBinomialError::BetaNotFinite { beta })
        } else if n == 0 {
            Err(BetaBinomialError::NIsZero)
        } else {
            Ok(BetaBinomial {
                n,
                alpha,
                beta,
                ln_beta_ab: OnceCell::new(),
            })
        }
    }

    /// Creates a new BetaBinomial without checking whether the parameters are
    /// valid.
    #[inline]
    pub fn new_unchecked(n: u32, alpha: f64, beta: f64) -> Self {
        BetaBinomial {
            n,
            alpha,
            beta,
            ln_beta_ab: OnceCell::new(),
        }
    }

    /// Evaluate or fetch cached log sigma
    #[inline]
    fn ln_beta_ab(&self) -> f64 {
        *self
            .ln_beta_ab
            .get_or_init(|| self.alpha.ln_beta(self.beta))
    }

    /// Get `n`, the number of trials.
    ///
    /// # Example
    ///
    /// ```rust
    /// use rv::dist::BetaBinomial;
    /// let bb = BetaBinomial::new(10, 1.0, 2.0).unwrap();
    /// assert_eq!(bb.n(), 10);
    /// ```
    #[inline]
    pub fn n(&self) -> u32 {
        self.n
    }

    /// Get the `alpha` parameter
    ///
    /// # Example
    ///
    /// ```rust
    /// use rv::dist::BetaBinomial;
    /// let bb = BetaBinomial::new(10, 1.0, 2.0).unwrap();
    /// assert_eq!(bb.alpha(), 1.0);
    /// ```
    #[inline]
    pub fn alpha(&self) -> f64 {
        self.alpha
    }

    /// Set the alpha parameter
    ///
    /// # Example
    ///
    /// ```rust
    /// use rv::dist::BetaBinomial;
    ///
    /// let mut bb = BetaBinomial::new(10, 1.0, 5.0).unwrap();
    ///
    /// bb.set_alpha(2.0).unwrap();
    /// assert_eq!(bb.alpha(), 2.0);
    /// ```
    ///
    /// Will error for invalid values
    ///
    /// ```rust
    /// # use rv::dist::BetaBinomial;
    /// # let mut bb = BetaBinomial::new(10, 1.0, 5.0).unwrap();
    /// assert!(bb.set_alpha(0.1).is_ok());
    /// assert!(bb.set_alpha(0.0).is_err());
    /// assert!(bb.set_alpha(-1.0).is_err());
    /// assert!(bb.set_alpha(std::f64::INFINITY).is_err());
    /// assert!(bb.set_alpha(std::f64::NAN).is_err());
    /// ```
    #[inline]
    pub fn set_alpha(&mut self, alpha: f64) -> Result<(), BetaBinomialError> {
        if alpha <= 0.0 {
            Err(BetaBinomialError::AlphaTooLow { alpha })
        } else if !alpha.is_finite() {
            Err(BetaBinomialError::AlphaNotFinite { alpha })
        } else {
            self.set_alpha_unchecked(alpha);
            Ok(())
        }
    }

    /// Set alpha without input validation
    #[inline]
    pub fn set_alpha_unchecked(&mut self, alpha: f64) {
        self.ln_beta_ab = OnceCell::new();
        self.alpha = alpha
    }

    /// Get the `beta` parameter
    ///
    /// # Example
    ///
    /// ```rust
    /// use rv::dist::BetaBinomial;
    /// let bb = BetaBinomial::new(10, 1.0, 2.0).unwrap();
    /// assert_eq!(bb.beta(), 2.0);
    /// ```
    #[inline]
    pub fn beta(&self) -> f64 {
        self.beta
    }

    /// Set the beta parameter
    ///
    /// # Example
    ///
    /// ```rust
    /// # use rv::dist::BetaBinomial;
    /// let mut bb = BetaBinomial::new(10, 1.0, 5.0).unwrap();
    ///
    /// bb.set_beta(2.0).unwrap();
    /// assert_eq!(bb.beta(), 2.0);
    /// ```
    ///
    /// Will error for invalid values
    ///
    /// ```rust
    /// # use rv::dist::BetaBinomial;
    /// # let mut bb = BetaBinomial::new(10, 1.0, 5.0).unwrap();
    /// assert!(bb.set_beta(0.1).is_ok());
    /// assert!(bb.set_beta(0.0).is_err());
    /// assert!(bb.set_beta(-1.0).is_err());
    /// assert!(bb.set_beta(std::f64::INFINITY).is_err());
    /// assert!(bb.set_beta(std::f64::NAN).is_err());
    /// ```
    #[inline]
    pub fn set_beta(&mut self, beta: f64) -> Result<(), BetaBinomialError> {
        if beta <= 0.0 {
            Err(BetaBinomialError::BetaTooLow { beta })
        } else if !beta.is_finite() {
            Err(BetaBinomialError::BetaNotFinite { beta })
        } else {
            self.set_beta_unchecked(beta);
            Ok(())
        }
    }

    /// Set beta without input validation
    #[inline]
    pub fn set_beta_unchecked(&mut self, beta: f64) {
        self.ln_beta_ab = OnceCell::new();
        self.beta = beta
    }

    /// Set the value of the n parameter
    ///
    /// # Example
    ///
    /// ```rust
    /// use rv::dist::BetaBinomial;
    ///
    /// let mut bb = BetaBinomial::new(10, 0.5, 0.5).unwrap();
    ///
    /// bb.set_n(11).unwrap();
    ///
    /// assert_eq!(bb.n(), 11);
    /// ```
    ///
    /// Will error for invalid values
    ///
    /// ```rust
    /// # use rv::dist::BetaBinomial;
    /// # let mut bb = BetaBinomial::new(10, 0.5, 0.5).unwrap();
    /// assert!(bb.set_n(11).is_ok());
    /// assert!(bb.set_n(1).is_ok());
    /// assert!(bb.set_n(0).is_err());
    /// ```
    #[inline]
    pub fn set_n(&mut self, n: u32) -> Result<(), BetaBinomialError> {
        if n == 0 {
            Err(BetaBinomialError::NIsZero)
        } else {
            self.set_n_unchecked(n);
            Ok(())
        }
    }

    /// Set the value of n without input validation
    #[inline]
    pub fn set_n_unchecked(&mut self, n: u32) {
        self.n = n
    }
}

impl From<&BetaBinomial> for String {
    fn from(bb: &BetaBinomial) -> String {
        format!("BetaBinomial({}; α: {}, β: {})", bb.n, bb.alpha, bb.beta)
    }
}

impl_display!(BetaBinomial);

macro_rules! impl_int_traits {
    ($kind:ty) => {
        impl Rv<$kind> for BetaBinomial {
            fn ln_f(&self, k: &$kind) -> f64 {
                let nf = f64::from(self.n);
                let kf = *k as f64;
                ln_binom(nf, kf)
                    + (kf + self.alpha).ln_beta(nf - kf + self.beta)
                    - self.ln_beta_ab()
            }

            fn draw<R: Rng>(&self, mut rng: &mut R) -> $kind {
                self.sample(1, &mut rng)[0]
            }

            fn sample<R: Rng>(&self, n: usize, mut rng: &mut R) -> Vec<$kind> {
                // TODO: Could speed this up if we didn't compute the
                // k-independent terms in ln_f
                let ln_weights: Vec<f64> =
                    (0..=self.n).map(|x| self.ln_f(&x)).collect();

                ln_pflip(&ln_weights, n, true, &mut rng)
                    .iter()
                    .map(|k| *k as $kind)
                    .collect()
            }
        }

        impl Support<$kind> for BetaBinomial {
            #[allow(unused_comparisons)]
            fn supports(&self, k: &$kind) -> bool {
                *k >= 0 && *k <= self.n as $kind
            }
        }

        impl DiscreteDistr<$kind> for BetaBinomial {}

        impl Cdf<$kind> for BetaBinomial {
            fn cdf(&self, k: &$kind) -> f64 {
                // XXX: Slow and awful.
                // TODO: could make this faster with hypergeometric function,
                // but the `special` crate doesn't implement it
                (0..=*k).fold(0.0, |acc, x| acc + self.pmf(&x))
            }
        }
    };
}

impl Mean<f64> for BetaBinomial {
    fn mean(&self) -> Option<f64> {
        let nf = f64::from(self.n);
        let m = self.alpha / (self.alpha + self.beta);
        Some(nf * m)
    }
}

impl Variance<f64> for BetaBinomial {
    fn variance(&self) -> Option<f64> {
        let nf = f64::from(self.n);
        let apb = self.alpha + self.beta;
        let v_numer = nf * self.alpha * self.beta * (apb + nf);
        let v_denom = apb * apb * (apb + 1.0);
        Some(v_numer / v_denom)
    }
}

impl_int_traits!(u8);
impl_int_traits!(u16);
impl_int_traits!(u32);
impl_int_traits!(u64);
impl_int_traits!(usize);

impl_int_traits!(i8);
impl_int_traits!(i16);
impl_int_traits!(i32);
impl_int_traits!(i64);

impl std::error::Error for BetaBinomialError {}

impl fmt::Display for BetaBinomialError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::AlphaTooLow { alpha } => {
                write!(f, "alpha ({}) must be greater than zero", alpha)
            }
            Self::AlphaNotFinite { alpha } => {
                write!(f, "alpha ({}) was non finite", alpha)
            }
            Self::BetaTooLow { beta } => {
                write!(f, "beta ({}) must be greater than zero", beta)
            }
            Self::BetaNotFinite { beta } => {
                write!(f, "beta ({}) was non finite", beta)
            }
            Self::NIsZero => write!(f, "n was zero"),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::test_basic_impls;
    use std::f64;

    const TOL: f64 = 1E-12;

    test_basic_impls!([count] BetaBinomial::new(10, 0.2, 0.7).unwrap());

    #[test]
    fn new() {
        let beta_binom = BetaBinomial::new(10, 0.1, 0.2).unwrap();
        assert_eq!(beta_binom.n, 10);
        assert::close(beta_binom.alpha(), 0.1, TOL);
        assert::close(beta_binom.beta(), 0.2, TOL);
    }

    #[test]
    fn pmf() {
        let beta_binom = BetaBinomial::new(10, 0.5, 2.0).unwrap();
        // Values from wolfram alpha
        let target = vec![
            0.387765, 0.176257, 0.118973, 0.0881283, 0.0674732, 0.0520508,
            0.039761, 0.0295368, 0.020768, 0.0130762, 0.00621118,
        ];
        let pmfs: Vec<f64> = (0..=10).map(|k| beta_binom.pmf(&k)).collect();
        assert::close(pmfs, target, 1E-6);
    }
}