1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
// Copyright 2019-2020 the Deno authors. All rights reserved. MIT license.

//! This module's public API exports a number of 'scope' types.
//!
//! These types carry information about the state of the V8 Isolate, as well as
//! lifetimes for certain (return) values. More specialized scopes typically
//! deref to more generic scopes, and ultimately they all deref to `Isolate`.
//!
//! The scope types in the public API are all pointer wrappers, and they all
//! point at a heap-allocated struct `data::ScopeData`. `ScopeData` allocations
//! are never shared between scopes; each Handle/Context/CallbackScope gets
//! its own instance.
//!
//! Notes about the available scope types:
//! See also the tests at the end of this file.
//!
//! - `HandleScope<'s, ()>`
//!   - 's = lifetime of local handles created in this scope, and of the scope
//!     itself.
//!   - This type is returned when a HandleScope is constructed from a direct
//!     reference to an isolate (`&mut Isolate` or `&mut OwnedIsolate`).
//!   - A `Context` is _not_ available. Only certain types JavaScript values can
//!     be created: primitive values, templates, and instances of `Context`.
//!   - Derefs to `Isolate`.
//!
//! - `HandleScope<'s>`
//!   - 's = lifetime of local handles created in this scope, and of the scope
//!     itself.
//!   - A `Context` is available; any type of value can be created.
//!   - Derefs to `HandleScope<'s, ()>`
//!
//! - `ContextScope<'s, P>`
//!   - 's = lifetime of the scope itself.
//!   - A `Context` is available; any type of value can be created.
//!   - Derefs to `P`.
//!   - When a constructed as the child of a `HandleScope<'a, ()>`, the returned
//!     type is `ContextScope<'s, HandleScope<'p>>`. In other words, the parent
//!     HandleScope gets an upgrade to indicate the availability of a `Context`.
//!   - When a new scope is constructed inside this type of scope, the
//!     `ContextScope` wrapper around `P` is erased first, which means that the
//!     child scope is set up as if it had been created with `P` as its parent.
//!
//! - `EscapableHandleScope<'s, 'e>`
//!   - 's = lifetime of local handles created in this scope, and of the scope
//!     itself.
//!   - 'e = lifetime of the HandleScope that will receive the local handle that
//!     is created by `EscapableHandleScope::escape()`.
//!   - A `Context` is available; any type of value can be created.
//!   - Derefs to `HandleScope<'s>`.
//!
//! - `TryCatch<'s, P>`
//!   - 's = lifetime of the TryCatch scope.
//!   - `P` is either a `HandleScope` or an `EscapableHandleScope`. This type
//!     also determines for how long the values returned by `TryCatch` methods
//!     `exception()`, `message()`, and `stack_trace()` are valid.
//!   - Derefs to `P`.
//!   - Creating a new scope inside the `TryCatch` block makes its methods
//!     inaccessible until the inner scope is dropped. However, the `TryCatch`
//!     object will nonetheless catch all exception thrown during its lifetime.
//!
//! - `CallbackScope<'s>`
//!   - 's = lifetime of local handles created in this scope, and the value
//!     returned from the callback, and of the scope itself.
//!   - A `Context` is available; any type of value can be created.
//!   - Derefs to `HandleScope<'s>`.
//!   - This scope type is only to be constructed inside embedder defined
//!     callbacks when these are called by V8.
//!   - When a scope is created inside, type is erased to `HandleScope<'s>`.

use std::alloc::alloc;
use std::alloc::Layout;
use std::any::type_name;
use std::cell::Cell;
use std::marker::PhantomData;
use std::mem::MaybeUninit;
use std::num::NonZeroUsize;
use std::ops::Deref;
use std::ops::DerefMut;
use std::ptr;
use std::ptr::NonNull;

use crate::function::FunctionCallbackInfo;
use crate::function::PropertyCallbackInfo;
use crate::Context;
use crate::Data;
use crate::Isolate;
use crate::Local;
use crate::Message;
use crate::Object;
use crate::OwnedIsolate;
use crate::Primitive;
use crate::PromiseRejectMessage;
use crate::Value;

/// Stack-allocated class which sets the execution context for all operations
/// executed within a local scope. After entering a context, all code compiled
/// and run is compiled and run in this context.
pub struct ContextScope<'s, P> {
  data: NonNull<data::ScopeData>,
  _phantom: PhantomData<&'s mut P>,
}

impl<'s, P: param::NewContextScope<'s>> ContextScope<'s, P> {
  #[allow(clippy::new_ret_no_self)]
  pub fn new(param: &'s mut P, context: Local<Context>) -> P::NewScope {
    let scope_data = param.get_scope_data_mut();
    if scope_data.get_isolate_ptr()
      != unsafe { raw::v8__Context__GetIsolate(&*context) }
    {
      panic!(
        "{} and Context do not belong to the same Isolate",
        type_name::<P>()
      )
    }
    let new_scope_data = scope_data.new_context_scope_data(context);
    new_scope_data.as_scope()
  }
}

/// A stack-allocated class that governs a number of local handles.
/// After a handle scope has been created, all local handles will be
/// allocated within that handle scope until either the handle scope is
/// deleted or another handle scope is created.  If there is already a
/// handle scope and a new one is created, all allocations will take
/// place in the new handle scope until it is deleted.  After that,
/// new handles will again be allocated in the original handle scope.
///
/// After the handle scope of a local handle has been deleted the
/// garbage collector will no longer track the object stored in the
/// handle and may deallocate it.  The behavior of accessing a handle
/// for which the handle scope has been deleted is undefined.
pub struct HandleScope<'s, C = Context> {
  data: NonNull<data::ScopeData>,
  _phantom: PhantomData<&'s mut C>,
}

impl<'s> HandleScope<'s> {
  #[allow(clippy::new_ret_no_self)]
  pub fn new<P: param::NewHandleScope<'s>>(param: &'s mut P) -> P::NewScope {
    param
      .get_scope_data_mut()
      .new_handle_scope_data()
      .as_scope()
  }

  /// Returns the context of the currently running JavaScript, or the context
  /// on the top of the stack if no JavaScript is running.
  pub fn get_current_context(&self) -> Local<'s, Context> {
    let context_ptr = data::ScopeData::get(self).get_current_context();
    unsafe { Local::from_raw(context_ptr) }.unwrap()
  }

  /// Returns either the last context entered through V8's C++ API, or the
  /// context of the currently running microtask while processing microtasks.
  /// If a context is entered while executing a microtask, that context is
  /// returned.
  pub fn get_entered_or_microtask_context(&self) -> Local<'s, Context> {
    let data = data::ScopeData::get(self);
    let isolate_ptr = data.get_isolate_ptr();
    let context_ptr =
      unsafe { raw::v8__Isolate__GetEnteredOrMicrotaskContext(isolate_ptr) };
    unsafe { Local::from_raw(context_ptr) }.unwrap()
  }
}

impl<'s> HandleScope<'s, ()> {
  /// Schedules an exception to be thrown when returning to JavaScript. When
  /// an exception has been scheduled it is illegal to invoke any
  /// JavaScript operation; the caller must return immediately and only
  /// after the exception has been handled does it become legal to invoke
  /// JavaScript operations.
  ///
  /// This function always returns the `undefined` value.
  pub fn throw_exception(
    &mut self,
    exception: Local<Value>,
  ) -> Local<'s, Value> {
    unsafe {
      self.cast_local(|sd| {
        raw::v8__Isolate__ThrowException(sd.get_isolate_ptr(), &*exception)
      })
    }
    .unwrap()
  }

  pub(crate) unsafe fn cast_local<T>(
    &mut self,
    f: impl FnOnce(&mut data::ScopeData) -> *const T,
  ) -> Option<Local<'s, T>> {
    Local::from_raw(f(data::ScopeData::get_mut(self)))
  }

  pub(crate) fn get_isolate_ptr(&self) -> *mut Isolate {
    data::ScopeData::get(self).get_isolate_ptr()
  }
}

/// A HandleScope which first allocates a handle in the current scope
/// which will be later filled with the escape value.
// TODO(piscisaureus): type parameter `C` is not very useful in practice; being
// a source of complexity and potential confusion, it is desirable to
// eventually remove it. Blocker at the time of writing is that there are some
// tests that enter an `EscapableHandleScope` without creating a `ContextScope`
// at all. These tests need to updated first.
pub struct EscapableHandleScope<'s, 'e: 's, C = Context> {
  data: NonNull<data::ScopeData>,
  _phantom:
    PhantomData<(&'s mut raw::HandleScope, &'e mut raw::EscapeSlot, &'s C)>,
}

impl<'s, 'e: 's> EscapableHandleScope<'s, 'e> {
  #[allow(clippy::new_ret_no_self)]
  pub fn new<P: param::NewEscapableHandleScope<'s, 'e>>(
    param: &'s mut P,
  ) -> P::NewScope {
    param
      .get_scope_data_mut()
      .new_escapable_handle_scope_data()
      .as_scope()
  }
}

impl<'s, 'e: 's, C> EscapableHandleScope<'s, 'e, C> {
  /// Pushes the value into the previous scope and returns a handle to it.
  /// Cannot be called twice.
  pub fn escape<T>(&mut self, value: Local<T>) -> Local<'e, T>
  where
    for<'l> Local<'l, T>: Into<Local<'l, Data>>,
  {
    let escape_slot = data::ScopeData::get_mut(self)
      .get_escape_slot_mut()
      .expect("internal error: EscapableHandleScope has no escape slot")
      .take()
      .expect("EscapableHandleScope::escape() called twice");
    escape_slot.escape(value)
  }
}

/// An external exception handler.
pub struct TryCatch<'s, P> {
  data: NonNull<data::ScopeData>,
  _phantom: PhantomData<&'s mut P>,
}

impl<'s, P: param::NewTryCatch<'s>> TryCatch<'s, P> {
  #[allow(clippy::new_ret_no_self)]
  pub fn new(param: &'s mut P) -> P::NewScope {
    param.get_scope_data_mut().new_try_catch_data().as_scope()
  }
}

impl<'s, P> TryCatch<'s, P> {
  /// Returns true if an exception has been caught by this try/catch block.
  pub fn has_caught(&self) -> bool {
    unsafe { raw::v8__TryCatch__HasCaught(self.get_raw()) }
  }

  /// For certain types of exceptions, it makes no sense to continue execution.
  ///
  /// If CanContinue returns false, the correct action is to perform any C++
  /// cleanup needed and then return. If CanContinue returns false and
  /// HasTerminated returns true, it is possible to call
  /// CancelTerminateExecution in order to continue calling into the engine.
  pub fn can_continue(&self) -> bool {
    unsafe { raw::v8__TryCatch__CanContinue(self.get_raw()) }
  }

  /// Returns true if an exception has been caught due to script execution
  /// being terminated.
  ///
  /// There is no JavaScript representation of an execution termination
  /// exception. Such exceptions are thrown when the TerminateExecution
  /// methods are called to terminate a long-running script.
  ///
  /// If such an exception has been thrown, HasTerminated will return true,
  /// indicating that it is possible to call CancelTerminateExecution in order
  /// to continue calling into the engine.
  pub fn has_terminated(&self) -> bool {
    unsafe { raw::v8__TryCatch__HasTerminated(self.get_raw()) }
  }

  /// Returns true if verbosity is enabled.
  pub fn is_verbose(&self) -> bool {
    unsafe { raw::v8__TryCatch__IsVerbose(self.get_raw()) }
  }

  /// Set verbosity of the external exception handler.
  ///
  /// By default, exceptions that are caught by an external exception
  /// handler are not reported. Call SetVerbose with true on an
  /// external exception handler to have exceptions caught by the
  /// handler reported as if they were not caught.
  pub fn set_verbose(&mut self, value: bool) {
    unsafe { raw::v8__TryCatch__SetVerbose(self.get_raw_mut(), value) };
  }

  /// Set whether or not this TryCatch should capture a Message object
  /// which holds source information about where the exception
  /// occurred. True by default.
  pub fn set_capture_message(&mut self, value: bool) {
    unsafe { raw::v8__TryCatch__SetCaptureMessage(self.get_raw_mut(), value) };
  }

  /// Clears any exceptions that may have been caught by this try/catch block.
  /// After this method has been called, HasCaught() will return false. Cancels
  /// the scheduled exception if it is caught and ReThrow() is not called
  /// before.
  ///
  /// It is not necessary to clear a try/catch block before using it again; if
  /// another exception is thrown the previously caught exception will just be
  /// overwritten. However, it is often a good idea since it makes it easier
  /// to determine which operation threw a given exception.
  pub fn reset(&mut self) {
    unsafe { raw::v8__TryCatch__Reset(self.get_raw_mut()) };
  }

  fn get_raw(&self) -> &raw::TryCatch {
    data::ScopeData::get(self).get_try_catch()
  }

  fn get_raw_mut(&mut self) -> &mut raw::TryCatch {
    data::ScopeData::get_mut(self).get_try_catch_mut()
  }
}

impl<'s, 'p: 's, P> TryCatch<'s, P>
where
  Self: AsMut<HandleScope<'p, ()>>,
{
  /// Returns the exception caught by this try/catch block. If no exception has
  /// been caught an empty handle is returned.
  ///
  /// Note: v8.h states that "the returned handle is valid until this TryCatch
  /// block has been destroyed". This is incorrect; the return value lives
  /// no longer and no shorter than the active HandleScope at the time this
  /// method is called. An issue has been opened about this in the V8 bug
  /// tracker: https://bugs.chromium.org/p/v8/issues/detail?id=10537.
  pub fn exception(&mut self) -> Option<Local<'p, Value>> {
    unsafe {
      self
        .as_mut()
        .cast_local(|sd| raw::v8__TryCatch__Exception(sd.get_try_catch()))
    }
  }

  /// Returns the message associated with this exception. If there is
  /// no message associated an empty handle is returned.
  ///
  /// Note: the remark about the lifetime for the `exception()` return value
  /// applies here too.
  pub fn message(&mut self) -> Option<Local<'p, Message>> {
    unsafe {
      self
        .as_mut()
        .cast_local(|sd| raw::v8__TryCatch__Message(sd.get_try_catch()))
    }
  }

  /// Throws the exception caught by this TryCatch in a way that avoids
  /// it being caught again by this same TryCatch. As with ThrowException
  /// it is illegal to execute any JavaScript operations after calling
  /// ReThrow; the caller must return immediately to where the exception
  /// is caught.
  ///
  /// This function returns the `undefined` value when successful, or `None` if
  /// no exception was caught and therefore there was nothing to rethrow.
  pub fn rethrow(&mut self) -> Option<Local<'_, Value>> {
    unsafe {
      self
        .as_mut()
        .cast_local(|sd| raw::v8__TryCatch__ReThrow(sd.get_try_catch_mut()))
    }
  }
}

impl<'s, 'p: 's, P> TryCatch<'s, P>
where
  Self: AsMut<HandleScope<'p>>,
{
  /// Returns the .stack property of the thrown object. If no .stack
  /// property is present an empty handle is returned.
  pub fn stack_trace(&mut self) -> Option<Local<'p, Value>> {
    unsafe {
      self.as_mut().cast_local(|sd| {
        raw::v8__TryCatch__StackTrace(
          sd.get_try_catch(),
          sd.get_current_context(),
        )
      })
    }
  }
}

/// A `CallbackScope` can be used to bootstrap a `HandleScope` and
/// `ContextScope` inside a callback function that gets called by V8.
/// Bootstrapping a scope inside a callback is the only valid use case of this
/// type; using it in other places leads to undefined behavior, which is also
/// the reason `CallbackScope::new()` is marked as being an unsafe function.
///
/// For some callback types, rusty_v8 internally creates a scope and passes it
/// as an argument to to embedder callback. Eventually we intend to wrap all
/// callbacks in this fashion, so the embedder would never needs to construct
/// a CallbackScope.
///
/// A CallbackScope can be created from the following inputs:
///   - `Local<Context>`
///   - `Local<Message>`
///   - `Local<Object>`
///   - `Local<Promise>`
///   - `Local<SharedArrayBuffer>`
///   - `&FunctionCallbackInfo`
///   - `&PropertyCallbackInfo`
///   - `&PromiseRejectMessage`
pub struct CallbackScope<'s> {
  data: NonNull<data::ScopeData>,
  _phantom: PhantomData<&'s mut HandleScope<'s>>,
}

impl<'s> CallbackScope<'s> {
  pub unsafe fn new<P: param::NewCallbackScope<'s>>(param: P) -> Self {
    data::ScopeData::get_current_mut(param.get_isolate_mut())
      .new_callback_scope_data(param.maybe_get_current_context())
      .as_scope()
  }
}

macro_rules! impl_as {
  // Implements `AsRef<Isolate>` and AsMut<Isolate>` on a scope type.
  (<$($params:tt),+> $src_type:ty as Isolate) => {
    impl<$($params),*> AsRef<Isolate> for $src_type {
      fn as_ref(&self) -> &Isolate {
        data::ScopeData::get(self).get_isolate()
      }
    }

    impl<$($params),*> AsMut<Isolate> for $src_type {
      fn as_mut(&mut self) -> &mut Isolate {
        data::ScopeData::get_mut(self).get_isolate_mut()
      }
    }
  };

  // Implements `AsRef` and `AsMut` traits for the purpose of converting a
  // a scope reference to a scope reference with a different but compatible type.
  (<$($params:tt),+> $src_type:ty as $tgt_type:ty) => {
    impl<$($params),*> AsRef<$tgt_type> for $src_type {
      fn as_ref(&self) -> &$tgt_type {
        self.cast_ref()
      }
    }

    impl<$($params),*> AsMut< $tgt_type> for $src_type {
      fn as_mut(&mut self) -> &mut $tgt_type {
        self.cast_mut()
      }
    }
  };
}

impl_as!(<'s, 'p, P> ContextScope<'s, P> as Isolate);
impl_as!(<'s, C> HandleScope<'s, C> as Isolate);
impl_as!(<'s, 'e, C> EscapableHandleScope<'s, 'e, C> as Isolate);
impl_as!(<'s, P> TryCatch<'s, P> as Isolate);
impl_as!(<'s> CallbackScope<'s> as Isolate);

impl_as!(<'s, 'p> ContextScope<'s, HandleScope<'p>> as HandleScope<'p, ()>);
impl_as!(<'s, 'p, 'e> ContextScope<'s, EscapableHandleScope<'p, 'e>> as HandleScope<'p, ()>);
impl_as!(<'s, C> HandleScope<'s, C> as HandleScope<'s, ()>);
impl_as!(<'s, 'e, C> EscapableHandleScope<'s, 'e, C> as HandleScope<'s, ()>);
impl_as!(<'s, 'p, C> TryCatch<'s, HandleScope<'p, C>> as HandleScope<'p, ()>);
impl_as!(<'s, 'p, 'e, C> TryCatch<'s, EscapableHandleScope<'p, 'e, C>> as HandleScope<'p, ()>);
impl_as!(<'s> CallbackScope<'s> as HandleScope<'s, ()>);

impl_as!(<'s, 'p> ContextScope<'s, HandleScope<'p>> as HandleScope<'p>);
impl_as!(<'s, 'p, 'e> ContextScope<'s, EscapableHandleScope<'p, 'e>> as HandleScope<'p>);
impl_as!(<'s> HandleScope<'s> as HandleScope<'s>);
impl_as!(<'s, 'e> EscapableHandleScope<'s, 'e> as HandleScope<'s>);
impl_as!(<'s, 'p> TryCatch<'s, HandleScope<'p>> as HandleScope<'p>);
impl_as!(<'s, 'p, 'e> TryCatch<'s, EscapableHandleScope<'p, 'e>> as HandleScope<'p>);
impl_as!(<'s> CallbackScope<'s> as HandleScope<'s>);

impl_as!(<'s, 'p, 'e> ContextScope<'s, EscapableHandleScope<'p, 'e>> as EscapableHandleScope<'p, 'e, ()>);
impl_as!(<'s, 'e, C> EscapableHandleScope<'s, 'e, C> as EscapableHandleScope<'s, 'e, ()>);
impl_as!(<'s, 'p, 'e, C> TryCatch<'s, EscapableHandleScope<'p, 'e, C>> as EscapableHandleScope<'p, 'e, ()>);

impl_as!(<'s, 'p, 'e> ContextScope<'s, EscapableHandleScope<'p, 'e>> as EscapableHandleScope<'p, 'e>);
impl_as!(<'s, 'e> EscapableHandleScope<'s, 'e> as EscapableHandleScope<'s, 'e>);
impl_as!(<'s, 'p, 'e> TryCatch<'s, EscapableHandleScope<'p, 'e>> as EscapableHandleScope<'p, 'e>);

impl_as!(<'s, 'p, C> TryCatch<'s, HandleScope<'p, C>> as TryCatch<'s, HandleScope<'p, ()>>);
impl_as!(<'s, 'p, 'e, C> TryCatch<'s, EscapableHandleScope<'p, 'e, C>> as TryCatch<'s, HandleScope<'p, ()>>);
impl_as!(<'s, 'p, 'e, C> TryCatch<'s, EscapableHandleScope<'p, 'e, C>> as TryCatch<'s, EscapableHandleScope<'p, 'e, ()>>);

impl_as!(<'s, 'p> TryCatch<'s, HandleScope<'p>> as TryCatch<'s, HandleScope<'p>>);
impl_as!(<'s, 'p, 'e> TryCatch<'s, EscapableHandleScope<'p, 'e>> as TryCatch<'s, HandleScope<'p>>);
impl_as!(<'s, 'p, 'e> TryCatch<'s, EscapableHandleScope<'p, 'e>> as TryCatch<'s, EscapableHandleScope<'p, 'e>>);

macro_rules! impl_deref {
  (<$($params:tt),+> $src_type:ty as $tgt_type:ty) => {
    impl<$($params),*> Deref for $src_type {
      type Target = $tgt_type;
      fn deref(&self) -> &Self::Target {
        self.as_ref()
      }
    }

    impl<$($params),*> DerefMut for $src_type {
      fn deref_mut(&mut self) -> &mut Self::Target {
        self.as_mut()
      }
    }
  };
}

impl_deref!(<'s, 'p> ContextScope<'s, HandleScope<'p>> as HandleScope<'p>);
impl_deref!(<'s, 'p, 'e> ContextScope<'s, EscapableHandleScope<'p, 'e>> as EscapableHandleScope<'p, 'e>);

impl_deref!(<'s> HandleScope<'s,()> as Isolate);
impl_deref!(<'s> HandleScope<'s> as HandleScope<'s, ()>);

impl_deref!(<'s, 'e> EscapableHandleScope<'s, 'e, ()> as HandleScope<'s, ()>);
impl_deref!(<'s, 'e> EscapableHandleScope<'s, 'e> as HandleScope<'s>);

impl_deref!(<'s, 'p> TryCatch<'s, HandleScope<'p, ()>> as HandleScope<'p, ()>);
impl_deref!(<'s, 'p> TryCatch<'s, HandleScope<'p>> as HandleScope<'p>);
impl_deref!(<'s, 'p, 'e> TryCatch<'s, EscapableHandleScope<'p, 'e, ()>> as EscapableHandleScope<'p, 'e, ()>);
impl_deref!(<'s, 'p, 'e> TryCatch<'s, EscapableHandleScope<'p, 'e>> as EscapableHandleScope<'p, 'e>);

impl_deref!(<'s> CallbackScope<'s> as HandleScope<'s>);

macro_rules! impl_scope_drop {
  (<$($params:tt),+> $type:ty) => {
    unsafe impl<$($params),*> Scope for $type {}

    impl<$($params),*> Drop for $type {
      fn drop(&mut self) {
        data::ScopeData::get_mut(self).notify_scope_dropped();
      }
    }
  };
}

impl_scope_drop!(<'s, 'p, P> ContextScope<'s, P>);
impl_scope_drop!(<'s, C> HandleScope<'s, C> );
impl_scope_drop!(<'s, 'e, C> EscapableHandleScope<'s, 'e, C> );
impl_scope_drop!(<'s, P> TryCatch<'s, P> );
impl_scope_drop!(<'s> CallbackScope<'s> );

pub unsafe trait Scope: Sized {}

trait ScopeCast: Sized {
  fn cast_ref<S: Scope>(&self) -> &S;
  fn cast_mut<S: Scope>(&mut self) -> &mut S;
}

impl<T: Scope> ScopeCast for T {
  fn cast_ref<S: Scope>(&self) -> &S {
    assert_eq!(Layout::new::<Self>(), Layout::new::<S>());
    unsafe { &*(self as *const _ as *const S) }
  }

  fn cast_mut<S: Scope>(&mut self) -> &mut S {
    assert_eq!(Layout::new::<Self>(), Layout::new::<S>());
    unsafe { &mut *(self as *mut _ as *mut S) }
  }
}

/// Scopes are typically constructed as the child of another scope. The scope
/// that is returned from `«Child»Scope::new(parent: &mut «Parent»Scope)` does
/// not necessarily have type `«Child»Scope`, but rather its type is a merger of
/// both the the parent and child scope types.
///
/// For example: a `ContextScope` created inside `HandleScope<'a, ()>` does not
/// produce a `ContextScope`, but rather a `HandleScope<'a, Context>`, which
/// describes a scope that is both a `HandleScope` _and_ a `ContextScope`.  
///  
/// The Traits in the (private) `param` module define which types can be passed
/// as a parameter to the `«Some»Scope::new()` constructor, and what the
/// actual, merged scope type will be that `new()` returns for a specific
/// parameter type.
mod param {
  use super::*;

  pub trait NewContextScope<'s>: data::GetScopeData {
    type NewScope: Scope;
  }

  impl<'s, 'p: 's, P: Scope> NewContextScope<'s> for ContextScope<'p, P> {
    type NewScope = ContextScope<'s, P>;
  }

  impl<'s, 'p: 's, C> NewContextScope<'s> for HandleScope<'p, C> {
    type NewScope = ContextScope<'s, HandleScope<'p>>;
  }

  impl<'s, 'p: 's, 'e: 'p, C> NewContextScope<'s>
    for EscapableHandleScope<'p, 'e, C>
  {
    type NewScope = ContextScope<'s, EscapableHandleScope<'p, 'e>>;
  }

  impl<'s, 'p: 's, P: NewContextScope<'s>> NewContextScope<'s>
    for TryCatch<'p, P>
  {
    type NewScope = <P as NewContextScope<'s>>::NewScope;
  }

  impl<'s, 'p: 's> NewContextScope<'s> for CallbackScope<'p> {
    type NewScope = ContextScope<'s, HandleScope<'p>>;
  }

  pub trait NewHandleScope<'s>: data::GetScopeData {
    type NewScope: Scope;
  }

  impl<'s> NewHandleScope<'s> for Isolate {
    type NewScope = HandleScope<'s, ()>;
  }

  impl<'s> NewHandleScope<'s> for OwnedIsolate {
    type NewScope = HandleScope<'s, ()>;
  }

  impl<'s, 'p: 's, P: NewHandleScope<'s>> NewHandleScope<'s>
    for ContextScope<'p, P>
  {
    type NewScope = <P as NewHandleScope<'s>>::NewScope;
  }

  impl<'s, 'p: 's, C> NewHandleScope<'s> for HandleScope<'p, C> {
    type NewScope = HandleScope<'s, C>;
  }

  impl<'s, 'p: 's, 'e: 'p, C> NewHandleScope<'s>
    for EscapableHandleScope<'p, 'e, C>
  {
    type NewScope = EscapableHandleScope<'s, 'e, C>;
  }

  impl<'s, 'p: 's, P: NewHandleScope<'s>> NewHandleScope<'s> for TryCatch<'p, P> {
    type NewScope = <P as NewHandleScope<'s>>::NewScope;
  }

  impl<'s, 'p: 's> NewHandleScope<'s> for CallbackScope<'p> {
    type NewScope = HandleScope<'s>;
  }

  pub trait NewEscapableHandleScope<'s, 'e: 's>: data::GetScopeData {
    type NewScope: Scope;
  }

  impl<'s, 'p: 's, 'e: 'p, P: NewEscapableHandleScope<'s, 'e>>
    NewEscapableHandleScope<'s, 'e> for ContextScope<'p, P>
  {
    type NewScope = <P as NewEscapableHandleScope<'s, 'e>>::NewScope;
  }

  impl<'s, 'p: 's, C> NewEscapableHandleScope<'s, 'p> for HandleScope<'p, C> {
    type NewScope = EscapableHandleScope<'s, 'p, C>;
  }

  impl<'s, 'p: 's, 'e: 'p, C> NewEscapableHandleScope<'s, 'p>
    for EscapableHandleScope<'p, 'e, C>
  {
    type NewScope = EscapableHandleScope<'s, 'p, C>;
  }

  impl<'s, 'p: 's, 'e: 'p, P: NewEscapableHandleScope<'s, 'e>>
    NewEscapableHandleScope<'s, 'e> for TryCatch<'p, P>
  {
    type NewScope = <P as NewEscapableHandleScope<'s, 'e>>::NewScope;
  }

  impl<'s, 'p: 's> NewEscapableHandleScope<'s, 'p> for CallbackScope<'p> {
    type NewScope = EscapableHandleScope<'s, 'p>;
  }

  pub trait NewTryCatch<'s>: data::GetScopeData {
    type NewScope: Scope;
  }

  impl<'s, 'p: 's, P: NewTryCatch<'s>> NewTryCatch<'s> for ContextScope<'p, P> {
    type NewScope = <P as NewTryCatch<'s>>::NewScope;
  }

  impl<'s, 'p: 's, C> NewTryCatch<'s> for HandleScope<'p, C> {
    type NewScope = TryCatch<'s, HandleScope<'p, C>>;
  }

  impl<'s, 'p: 's, 'e: 'p, C> NewTryCatch<'s>
    for EscapableHandleScope<'p, 'e, C>
  {
    type NewScope = TryCatch<'s, EscapableHandleScope<'p, 'e, C>>;
  }

  impl<'s, 'p: 's, P> NewTryCatch<'s> for TryCatch<'p, P> {
    type NewScope = TryCatch<'s, P>;
  }

  impl<'s, 'p: 's> NewTryCatch<'s> for CallbackScope<'p> {
    type NewScope = TryCatch<'s, HandleScope<'p>>;
  }

  pub trait NewCallbackScope<'s>: Copy + Sized {
    fn maybe_get_current_context(self) -> Option<Local<'s, Context>> {
      None
    }
    fn get_isolate_mut(self) -> &'s mut Isolate;
  }

  impl<'s> NewCallbackScope<'s> for Local<'s, Context> {
    fn maybe_get_current_context(self) -> Option<Local<'s, Context>> {
      Some(self)
    }

    fn get_isolate_mut(self) -> &'s mut Isolate {
      unsafe { &mut *raw::v8__Context__GetIsolate(&*self) }
    }
  }

  impl<'s> NewCallbackScope<'s> for Local<'s, Message> {
    fn get_isolate_mut(self) -> &'s mut Isolate {
      unsafe { &mut *raw::v8__Message__GetIsolate(&*self) }
    }
  }

  impl<'s, T> NewCallbackScope<'s> for T
  where
    T: Copy + Into<Local<'s, Object>>,
  {
    fn get_isolate_mut(self) -> &'s mut Isolate {
      let object: Local<Object> = self.into();
      unsafe { &mut *raw::v8__Object__GetIsolate(&*object) }
    }
  }

  impl<'s> NewCallbackScope<'s> for &'s PromiseRejectMessage<'s> {
    fn get_isolate_mut(self) -> &'s mut Isolate {
      let object: Local<Object> = self.get_promise().into();
      unsafe { &mut *raw::v8__Object__GetIsolate(&*object) }
    }
  }

  impl<'s> NewCallbackScope<'s> for &'s FunctionCallbackInfo {
    fn get_isolate_mut(self) -> &'s mut Isolate {
      unsafe { &mut *raw::v8__FunctionCallbackInfo__GetIsolate(self) }
    }
  }

  impl<'s> NewCallbackScope<'s> for &'s PropertyCallbackInfo {
    fn get_isolate_mut(self) -> &'s mut Isolate {
      unsafe { &mut *raw::v8__PropertyCallbackInfo__GetIsolate(self) }
    }
  }
}

/// All publicly exported `«Some»Scope` types are essentially wrapping a pointer
/// to a heap-allocated struct `ScopeData`. This module contains the definition
/// for `ScopeData` and its inner types, as well as related helper traits.
pub(crate) mod data {
  use super::*;

  pub struct ScopeData {
    // The first four fields are always valid - even when the `Box<ScopeData>`
    // struct is free (does not contain data related to an actual scope).
    // The `previous` and `isolate` fields never change; the `next` field is
    // set to `None` initially when the struct is created, but it may later be
    // assigned a `Some(Box<ScopeData>)` value, after which this field never
    // changes again.
    isolate: NonNull<Isolate>,
    previous: Option<NonNull<ScopeData>>,
    next: Option<Box<ScopeData>>,
    // The 'status' field is also always valid (but does change).
    status: Cell<ScopeStatus>,
    // The following fields are only valid when this ScopeData object is in use
    // (eiter current or shadowed -- not free).
    context: Cell<Option<NonNull<Context>>>,
    escape_slot: Option<NonNull<Option<raw::EscapeSlot>>>,
    try_catch: Option<NonNull<raw::TryCatch>>,
    scope_type_specific_data: ScopeTypeSpecificData,
  }

  impl ScopeData {
    /// Returns a mutable reference to the data associated with topmost scope
    /// on the scope stack. This function does not automatically exit zombie
    /// scopes, so it might return a zombie ScopeData reference.
    pub(crate) fn get_current_mut(isolate: &mut Isolate) -> &mut Self {
      let self_mut = isolate
        .get_current_scope_data()
        .map(NonNull::as_ptr)
        .map(|p| unsafe { &mut *p })
        .unwrap();
      match self_mut.status.get() {
        ScopeStatus::Current { .. } => self_mut,
        _ => unreachable!(),
      }
    }

    /// Initializes the scope stack by creating a 'dummy' `ScopeData` at the
    /// very bottom. This makes it possible to store the freelist of reusable
    /// ScopeData objects even when no scope is entered.
    pub(crate) fn new_root(isolate: &mut Isolate) {
      let root = Box::leak(Self::boxed(isolate.into()));
      root.status = ScopeStatus::Current { zombie: false }.into();
      debug_assert!(isolate.get_current_scope_data().is_none());
      isolate.set_current_scope_data(Some(root.into()));
    }

    /// Activates and returns the 'root' `ScopeData` object that is created when
    /// the isolate is initialized. In order to do so, any zombie scopes that
    /// remain on the scope stack are cleaned up.
    ///
    /// # Panics
    ///
    /// This function panics if the root can't be activated because there are
    /// still other scopes on the stack and they're not zombies.
    pub(crate) fn get_root_mut(isolate: &mut Isolate) -> &mut Self {
      let mut current_scope_data = Self::get_current_mut(isolate);
      loop {
        current_scope_data = match current_scope_data {
          root if root.previous.is_none() => break root,
          data => data.try_exit_scope(),
        };
      }
    }

    /// Drops the scope stack and releases all `Box<ScopeData>` allocations.
    /// This function should be called only when an Isolate is being disposed.
    pub(crate) fn drop_root(isolate: &mut Isolate) {
      let root = Self::get_root_mut(isolate);
      unsafe { Box::from_raw(root) };
      isolate.set_current_scope_data(None);
    }

    pub(super) fn new_context_scope_data<'s>(
      &'s mut self,
      context: Local<'s, Context>,
    ) -> &'s mut Self {
      self.new_scope_data_with(move |data| {
        data.scope_type_specific_data.init_with(|| {
          ScopeTypeSpecificData::ContextScope {
            raw_context_scope: raw::ContextScope::new(context),
          }
        });
        data.context.set(Some(context.as_non_null()));
      })
    }

    pub(super) fn new_handle_scope_data(&mut self) -> &mut Self {
      self.new_scope_data_with(|data| {
        let isolate = data.isolate;
        data.scope_type_specific_data.init_with(|| {
          ScopeTypeSpecificData::HandleScope {
            raw_handle_scope: unsafe { raw::HandleScope::uninit() },
          }
        });
        match &mut data.scope_type_specific_data {
          ScopeTypeSpecificData::HandleScope { raw_handle_scope } => {
            unsafe { raw_handle_scope.init(isolate) };
          }
          _ => unreachable!(),
        }
      })
    }

    pub(super) fn new_escapable_handle_scope_data(&mut self) -> &mut Self {
      self.new_scope_data_with(|data| {
        // Note: the `raw_escape_slot` field must be initialized _before_ the
        // `raw_handle_scope` field, otherwise the escaped local handle ends up
        // inside the `EscapableHandleScope` that's being constructed here,
        // rather than escaping from it.
        let isolate = data.isolate;
        data.scope_type_specific_data.init_with(|| {
          ScopeTypeSpecificData::EscapableHandleScope {
            raw_handle_scope: unsafe { raw::HandleScope::uninit() },
            raw_escape_slot: Some(raw::EscapeSlot::new(isolate)),
          }
        });
        match &mut data.scope_type_specific_data {
          ScopeTypeSpecificData::EscapableHandleScope {
            raw_handle_scope,
            raw_escape_slot,
          } => {
            unsafe { raw_handle_scope.init(isolate) };
            data.escape_slot.replace(raw_escape_slot.into());
          }
          _ => unreachable!(),
        }
      })
    }

    pub(super) fn new_try_catch_data(&mut self) -> &mut Self {
      self.new_scope_data_with(|data| {
        let isolate = data.isolate;
        data.scope_type_specific_data.init_with(|| {
          ScopeTypeSpecificData::TryCatch {
            raw_try_catch: unsafe { raw::TryCatch::uninit() },
          }
        });
        match &mut data.scope_type_specific_data {
          ScopeTypeSpecificData::TryCatch { raw_try_catch } => {
            unsafe { raw_try_catch.init(isolate) };
            data.try_catch.replace(raw_try_catch.into());
          }
          _ => unreachable!(),
        }
      })
    }

    pub(super) fn new_callback_scope_data<'s>(
      &'s mut self,
      maybe_current_context: Option<Local<'s, Context>>,
    ) -> &'s mut Self {
      self.new_scope_data_with(|data| {
        debug_assert!(data.scope_type_specific_data.is_none());
        data
          .context
          .set(maybe_current_context.map(|cx| cx.as_non_null()));
      })
    }

    fn new_scope_data_with(
      &mut self,
      init_fn: impl FnOnce(&mut Self),
    ) -> &mut Self {
      // Mark this scope (the parent of the newly created scope) as 'shadowed';
      self.status.set(match self.status.get() {
        ScopeStatus::Current { zombie } => ScopeStatus::Shadowed { zombie },
        _ => unreachable!(),
      });
      // Copy fields that that will be inherited by the new scope.
      let context = self.context.get().into();
      let escape_slot = self.escape_slot;
      // Initialize the `struct ScopeData` for the new scope.
      let new_scope_data = self.allocate_or_reuse_scope_data();
      // In debug builds, `zombie` is initially set to `true`, and the flag is
      // later cleared in the `as_scope()` method, to verify that we're
      // always creating exactly one scope from any `ScopeData` object.
      // For performance reasons this check is not performed in release builds.
      new_scope_data.status = Cell::new(ScopeStatus::Current {
        zombie: cfg!(debug_assertions),
      });
      // Store fields inherited from the parent scope.
      new_scope_data.context = context;
      new_scope_data.escape_slot = escape_slot;
      (init_fn)(new_scope_data);
      // Make the newly created scope the 'current' scope for this isolate.
      let new_scope_nn = unsafe { NonNull::new_unchecked(new_scope_data) };
      new_scope_data
        .get_isolate_mut()
        .set_current_scope_data(Some(new_scope_nn));
      new_scope_data
    }

    /// Either returns an free `Box<ScopeData>` that is available for reuse,
    /// or allocates a new one on the heap.
    fn allocate_or_reuse_scope_data(&mut self) -> &mut Self {
      let self_nn = NonNull::new(self);
      match &mut self.next {
        Some(next_box) => {
          // Reuse a free `Box<ScopeData>` allocation.
          debug_assert_eq!(next_box.isolate, self.isolate);
          debug_assert_eq!(next_box.previous, self_nn);
          debug_assert_eq!(next_box.status.get(), ScopeStatus::Free);
          debug_assert!(next_box.scope_type_specific_data.is_none());
          next_box.as_mut()
        }
        next_field @ None => {
          // Allocate a new `Box<ScopeData>`.
          let mut next_box = Self::boxed(self.isolate);
          next_box.previous = self_nn;
          next_field.replace(next_box);
          next_field.as_mut().unwrap()
        }
      }
    }

    pub(super) fn as_scope<S: Scope>(&mut self) -> S {
      assert_eq!(Layout::new::<&mut Self>(), Layout::new::<S>());
      // In debug builds, a new initialized `ScopeStatus` will have the `zombie`
      // flag set, so we have to reset it. In release builds, new `ScopeStatus`
      // objects come with the `zombie` flag cleared, so no update is necessary.
      if cfg!(debug_assertions) {
        assert_eq!(self.status.get(), ScopeStatus::Current { zombie: true });
        self.status.set(ScopeStatus::Current { zombie: false });
      }
      let self_nn = NonNull::from(self);
      unsafe { ptr::read(&self_nn as *const _ as *const S) }
    }

    pub(super) fn get<S: Scope>(scope: &S) -> &Self {
      let self_mut = unsafe {
        (*(scope as *const S as *mut S as *mut NonNull<Self>)).as_mut()
      };
      self_mut.try_activate_scope();
      self_mut
    }

    pub(super) fn get_mut<S: Scope>(scope: &mut S) -> &mut Self {
      let self_mut =
        unsafe { (*(scope as *mut S as *mut NonNull<Self>)).as_mut() };
      self_mut.try_activate_scope();
      self_mut
    }

    #[inline(always)]
    fn try_activate_scope(mut self: &mut Self) -> &mut Self {
      self = match self.status.get() {
        ScopeStatus::Current { zombie: false } => self,
        ScopeStatus::Shadowed { zombie: false } => {
          self.next.as_mut().unwrap().try_exit_scope()
        }
        _ => unreachable!(),
      };
      debug_assert_eq!(
        self.get_isolate().get_current_scope_data(),
        NonNull::new(self as *mut _)
      );
      self
    }

    fn try_exit_scope(mut self: &mut Self) -> &mut Self {
      loop {
        self = match self.status.get() {
          ScopeStatus::Shadowed { .. } => {
            self.next.as_mut().unwrap().try_exit_scope()
          }
          ScopeStatus::Current { zombie: true } => break self.exit_scope(),
          ScopeStatus::Current { zombie: false } => {
            panic!("active scope can't be dropped")
          }
          _ => unreachable!(),
        }
      }
    }

    fn exit_scope(&mut self) -> &mut Self {
      // Clear out the scope type specific data field. None of the other fields
      // have a destructor, and there's no need to do any cleanup on them.
      self.scope_type_specific_data = Default::default();
      // Change the ScopeData's status field from 'Current' to 'Free', which
      // means that it is not associated with a scope and can be reused.
      self.status.set(ScopeStatus::Free);

      // Point the Isolate's current scope data slot at our parent scope.
      let previous_nn = self.previous.unwrap();
      self
        .get_isolate_mut()
        .set_current_scope_data(Some(previous_nn));
      // Update the parent scope's status field to reflect that it is now
      // 'Current' again an no longer 'Shadowed'.
      let previous_mut = unsafe { &mut *previous_nn.as_ptr() };
      previous_mut.status.set(match previous_mut.status.get() {
        ScopeStatus::Shadowed { zombie } => ScopeStatus::Current { zombie },
        _ => unreachable!(),
      });

      previous_mut
    }

    /// This function is called when any of the public scope objects (e.g
    /// `HandleScope`, `ContextScope`, etc.) are dropped.
    ///
    /// The Rust borrow checker allows values of type `HandleScope<'a>` and
    /// `EscapableHandleScope<'a, 'e>` to be dropped before their maximum
    /// lifetime ('a) is up. This creates a potential problem because any local
    /// handles that are created while these scopes are active are bound to
    /// that 'a lifetime. This means that we run the risk of creating local
    /// handles that outlive their creation scope.
    ///
    /// Therefore, we don't immediately exit the current scope at the very
    /// moment the user drops their Escapable/HandleScope handle.
    /// Instead, the current scope is marked as being a 'zombie': the scope
    /// itself is gone, but its data still on the stack. The zombie's data will
    /// be dropped when the user touches the parent scope; when that happens, it
    /// is certain that there are no accessible `Local<'a, T>` handles left,
    /// because the 'a lifetime ends there.
    ///
    /// Scope types that do no store local handles are exited immediately.
    pub(super) fn notify_scope_dropped(&mut self) {
      match &self.scope_type_specific_data {
        ScopeTypeSpecificData::HandleScope { .. }
        | ScopeTypeSpecificData::EscapableHandleScope { .. } => {
          // Defer scope exit until the parent scope is touched.
          self.status.set(match self.status.get() {
            ScopeStatus::Current { zombie: false } => {
              ScopeStatus::Current { zombie: true }
            }
            _ => unreachable!(),
          })
        }
        _ => {
          // Regular, immediate exit.
          self.exit_scope();
        }
      }
    }

    pub(crate) fn get_isolate(&self) -> &Isolate {
      unsafe { self.isolate.as_ref() }
    }

    pub(crate) fn get_isolate_mut(&mut self) -> &mut Isolate {
      unsafe { self.isolate.as_mut() }
    }

    pub(crate) fn get_isolate_ptr(&self) -> *mut Isolate {
      self.isolate.as_ptr()
    }

    pub(crate) fn get_current_context(&self) -> *const Context {
      // To avoid creating a new Local every time `get_current_context() is
      // called, the current context is usually cached in the `context` field.
      // If the `context` field contains `None`, this might mean that this cache
      // field never got populated, so we'll do that here when necessary.
      let get_current_context_from_isolate = || unsafe {
        raw::v8__Isolate__GetCurrentContext(self.get_isolate_ptr())
      };
      match self.context.get().map(|nn| nn.as_ptr() as *const _) {
        Some(context) => {
          debug_assert!(unsafe {
            raw::v8__Context__EQ(context, get_current_context_from_isolate())
          });
          context
        }
        None => {
          let context = get_current_context_from_isolate();
          self.context.set(NonNull::new(context as *mut _));
          context
        }
      }
    }

    pub(super) fn get_escape_slot_mut(
      &mut self,
    ) -> Option<&mut Option<raw::EscapeSlot>> {
      self
        .escape_slot
        .as_mut()
        .map(|escape_slot_nn| unsafe { escape_slot_nn.as_mut() })
    }

    pub(super) fn get_try_catch(&self) -> &raw::TryCatch {
      self
        .try_catch
        .as_ref()
        .map(|try_catch_nn| unsafe { try_catch_nn.as_ref() })
        .unwrap()
    }

    pub(super) fn get_try_catch_mut(&mut self) -> &mut raw::TryCatch {
      self
        .try_catch
        .as_mut()
        .map(|try_catch_nn| unsafe { try_catch_nn.as_mut() })
        .unwrap()
    }

    /// Returns a new `Box<ScopeData>` with the `isolate` field set as specified
    /// by the first parameter, and the other fields initialized to their
    /// default values. This function exists solely because it turns out that
    /// Rust doesn't optimize `Box::new(Self{ .. })` very well (a.k.a. not at
    /// all) in this case, which is why `std::alloc::alloc()` is used directly.
    fn boxed(isolate: NonNull<Isolate>) -> Box<Self> {
      unsafe {
        #[allow(clippy::cast_ptr_alignment)]
        let self_ptr = alloc(Layout::new::<Self>()) as *mut Self;
        ptr::write(
          self_ptr,
          Self {
            isolate,
            previous: Default::default(),
            next: Default::default(),
            status: Default::default(),
            context: Default::default(),
            escape_slot: Default::default(),
            try_catch: Default::default(),
            scope_type_specific_data: Default::default(),
          },
        );
        Box::from_raw(self_ptr)
      }
    }
  }

  #[derive(Debug, Clone, Copy, Eq, PartialEq)]
  enum ScopeStatus {
    Free,
    Current { zombie: bool },
    Shadowed { zombie: bool },
  }

  impl Default for ScopeStatus {
    fn default() -> Self {
      Self::Free
    }
  }

  enum ScopeTypeSpecificData {
    None,
    ContextScope {
      raw_context_scope: raw::ContextScope,
    },
    HandleScope {
      raw_handle_scope: raw::HandleScope,
    },
    EscapableHandleScope {
      raw_handle_scope: raw::HandleScope,
      raw_escape_slot: Option<raw::EscapeSlot>,
    },
    TryCatch {
      raw_try_catch: raw::TryCatch,
    },
  }

  impl Default for ScopeTypeSpecificData {
    fn default() -> Self {
      Self::None
    }
  }

  impl ScopeTypeSpecificData {
    pub fn is_none(&self) -> bool {
      match self {
        Self::None => true,
        _ => false,
      }
    }

    /// Replaces a `ScopeTypeSpecificData::None` value with the value returned
    /// from the specified closure. This function exists because initializing
    /// scopes is performance critical, and `ptr::write()` produces more
    /// efficient code than using a regular assign statement, which will try to
    /// drop the old value and move the new value into place, even after
    /// asserting `self.is_none()`.
    pub fn init_with(&mut self, init_fn: impl FnOnce() -> Self) {
      assert!(self.is_none());
      unsafe { ptr::write(self, (init_fn)()) }
    }
  }

  pub trait GetScopeData {
    fn get_scope_data_mut(&mut self) -> &mut data::ScopeData;
  }

  impl<T: Scope> GetScopeData for T {
    fn get_scope_data_mut(&mut self) -> &mut data::ScopeData {
      data::ScopeData::get_mut(self)
    }
  }

  impl GetScopeData for Isolate {
    fn get_scope_data_mut(&mut self) -> &mut data::ScopeData {
      data::ScopeData::get_root_mut(self)
    }
  }

  impl GetScopeData for OwnedIsolate {
    fn get_scope_data_mut(&mut self) -> &mut data::ScopeData {
      data::ScopeData::get_root_mut(self)
    }
  }
}

/// The `raw` module contains prototypes for all the `extern C` functions that
/// are used in this file, as well as definitions for the types they operate on.
mod raw {
  use super::*;

  #[derive(Clone, Copy)]
  #[repr(transparent)]
  pub(super) struct Address(NonZeroUsize);

  pub(super) struct ContextScope {
    entered_context: *const Context,
  }

  impl ContextScope {
    pub fn new(context: Local<Context>) -> Self {
      unsafe { v8__Context__Enter(&*context) };
      Self {
        entered_context: &*context,
      }
    }
  }

  impl Drop for ContextScope {
    fn drop(&mut self) {
      debug_assert!(!self.entered_context.is_null());
      unsafe { v8__Context__Exit(self.entered_context) };
    }
  }

  #[repr(C)]
  pub(super) struct HandleScope([usize; 3]);

  impl HandleScope {
    /// This function is marked unsafe because the caller must ensure that the
    /// returned value isn't dropped before `init()` has been called.
    pub unsafe fn uninit() -> Self {
      // This is safe because there is no combination of bits that would produce
      // an invalid `[usize; 3]`.
      #[allow(clippy::uninit_assumed_init)]
      Self(MaybeUninit::uninit().assume_init())
    }

    /// This function is marked unsafe because `init()` must be called exactly
    /// once, no more and no less, after creating a `HandleScope` value with
    /// `HandleScope::uninit()`.
    pub unsafe fn init(&mut self, isolate: NonNull<Isolate>) {
      let buf = NonNull::from(self).cast();
      v8__HandleScope__CONSTRUCT(buf.as_ptr(), isolate.as_ptr());
    }
  }

  impl Drop for HandleScope {
    fn drop(&mut self) {
      unsafe { v8__HandleScope__DESTRUCT(self) };
    }
  }

  #[repr(transparent)]
  pub(super) struct EscapeSlot(NonNull<raw::Address>);

  impl EscapeSlot {
    pub fn new(isolate: NonNull<Isolate>) -> Self {
      unsafe {
        let undefined = raw::v8__Undefined(isolate.as_ptr()) as *const _;
        let local = raw::v8__Local__New(isolate.as_ptr(), undefined);
        let slot_address_ptr = local as *const Address as *mut _;
        let slot_address_nn = NonNull::new_unchecked(slot_address_ptr);
        Self(slot_address_nn)
      }
    }

    pub fn escape<'e, T>(self, value: Local<'_, T>) -> Local<'e, T>
    where
      for<'l> Local<'l, T>: Into<Local<'l, Data>>,
    {
      assert_eq!(Layout::new::<Self>(), Layout::new::<Local<T>>());
      unsafe {
        let undefined = Local::<Value>::from_non_null(self.0.cast());
        debug_assert!(undefined.is_undefined());
        let value_address = *(&*value as *const T as *const Address);
        ptr::write(self.0.as_ptr(), value_address);
        Local::from_non_null(self.0.cast())
      }
    }
  }

  #[repr(C)]
  pub(super) struct TryCatch([usize; 6]);

  impl TryCatch {
    /// This function is marked unsafe because the caller must ensure that the
    /// returned value isn't dropped before `init()` has been called.
    pub unsafe fn uninit() -> Self {
      // This is safe because there is no combination of bits that would produce
      // an invalid `[usize; 6]`.
      #[allow(clippy::uninit_assumed_init)]
      Self(MaybeUninit::uninit().assume_init())
    }

    /// This function is marked unsafe because `init()` must be called exactly
    /// once, no more and no less, after creating a `TryCatch` value with
    /// `TryCatch::uninit()`.
    pub unsafe fn init(&mut self, isolate: NonNull<Isolate>) {
      let buf = NonNull::from(self).cast();
      v8__TryCatch__CONSTRUCT(buf.as_ptr(), isolate.as_ptr());
    }
  }

  impl Drop for TryCatch {
    fn drop(&mut self) {
      unsafe { v8__TryCatch__DESTRUCT(self) };
    }
  }

  extern "C" {
    pub(super) fn v8__Isolate__GetCurrentContext(
      isolate: *mut Isolate,
    ) -> *const Context;
    pub(super) fn v8__Isolate__GetEnteredOrMicrotaskContext(
      isolate: *mut Isolate,
    ) -> *const Context;
    pub(super) fn v8__Isolate__ThrowException(
      isolate: *mut Isolate,
      exception: *const Value,
    ) -> *const Value;

    pub(super) fn v8__Context__EQ(
      this: *const Context,
      other: *const Context,
    ) -> bool;
    pub(super) fn v8__Context__Enter(this: *const Context);
    pub(super) fn v8__Context__Exit(this: *const Context);
    pub(super) fn v8__Context__GetIsolate(this: *const Context)
      -> *mut Isolate;

    pub(super) fn v8__HandleScope__CONSTRUCT(
      buf: *mut MaybeUninit<HandleScope>,
      isolate: *mut Isolate,
    );
    pub(super) fn v8__HandleScope__DESTRUCT(this: *mut HandleScope);

    pub(super) fn v8__Local__New(
      isolate: *mut Isolate,
      other: *const Data,
    ) -> *const Data;
    pub(super) fn v8__Undefined(isolate: *mut Isolate) -> *const Primitive;

    pub(super) fn v8__TryCatch__CONSTRUCT(
      buf: *mut MaybeUninit<TryCatch>,
      isolate: *mut Isolate,
    );
    pub(super) fn v8__TryCatch__DESTRUCT(this: *mut TryCatch);
    pub(super) fn v8__TryCatch__HasCaught(this: *const TryCatch) -> bool;
    pub(super) fn v8__TryCatch__CanContinue(this: *const TryCatch) -> bool;
    pub(super) fn v8__TryCatch__HasTerminated(this: *const TryCatch) -> bool;
    pub(super) fn v8__TryCatch__IsVerbose(this: *const TryCatch) -> bool;
    pub(super) fn v8__TryCatch__SetVerbose(this: *mut TryCatch, value: bool);
    pub(super) fn v8__TryCatch__SetCaptureMessage(
      this: *mut TryCatch,
      value: bool,
    );
    pub(super) fn v8__TryCatch__Reset(this: *mut TryCatch);
    pub(super) fn v8__TryCatch__Exception(
      this: *const TryCatch,
    ) -> *const Value;
    pub(super) fn v8__TryCatch__StackTrace(
      this: *const TryCatch,
      context: *const Context,
    ) -> *const Value;
    pub(super) fn v8__TryCatch__Message(
      this: *const TryCatch,
    ) -> *const Message;
    pub(super) fn v8__TryCatch__ReThrow(this: *mut TryCatch) -> *const Value;

    pub(super) fn v8__Message__GetIsolate(this: *const Message)
      -> *mut Isolate;
    pub(super) fn v8__Object__GetIsolate(this: *const Object) -> *mut Isolate;
    pub(super) fn v8__FunctionCallbackInfo__GetIsolate(
      this: *const FunctionCallbackInfo,
    ) -> *mut Isolate;
    pub(super) fn v8__PropertyCallbackInfo__GetIsolate(
      this: *const PropertyCallbackInfo,
    ) -> *mut Isolate;
  }
}

#[cfg(test)]
mod tests {
  use super::*;
  use crate::new_default_platform;
  use crate::V8;
  use std::any::type_name;
  use std::sync::Once;

  trait SameType {}
  impl<A> SameType for (A, A) {}

  /// `AssertTypeOf` facilitates comparing types. The important difference with
  /// assigning a value to a variable with an explicitly stated type is that the
  /// latter allows coercions and dereferencing to change the type, whereas
  /// `AssertTypeOf` requires the compared types to match exactly.
  struct AssertTypeOf<'a, T>(pub &'a T);
  impl<'a, T> AssertTypeOf<'a, T> {
    pub fn is<A>(self)
    where
      (A, T): SameType,
    {
      assert_eq!(type_name::<A>(), type_name::<T>());
    }
  }

  fn initialize_v8() {
    static INIT: Once = Once::new();
    INIT.call_once(|| {
      V8::initialize_platform(new_default_platform().unwrap());
      V8::initialize();
    });
  }

  #[test]
  fn deref_types() {
    initialize_v8();
    let isolate = &mut Isolate::new(Default::default());
    AssertTypeOf(isolate).is::<OwnedIsolate>();
    let l1_hs = &mut HandleScope::new(isolate);
    AssertTypeOf(l1_hs).is::<HandleScope<()>>();
    let context = Context::new(l1_hs);
    {
      let l2_cxs = &mut ContextScope::new(l1_hs, context);
      AssertTypeOf(l2_cxs).is::<ContextScope<HandleScope>>();
      {
        let d = l2_cxs.deref_mut();
        AssertTypeOf(d).is::<HandleScope>();
        let d = d.deref_mut();
        AssertTypeOf(d).is::<HandleScope<()>>();
        let d = d.deref_mut();
        AssertTypeOf(d).is::<Isolate>();
      }
      {
        let l3_tc = &mut TryCatch::new(l2_cxs);
        AssertTypeOf(l3_tc).is::<TryCatch<HandleScope>>();
        let d = l3_tc.deref_mut();
        AssertTypeOf(d).is::<HandleScope>();
        let d = d.deref_mut();
        AssertTypeOf(d).is::<HandleScope<()>>();
        let d = d.deref_mut();
        AssertTypeOf(d).is::<Isolate>();
      }
      {
        let l3_ehs = &mut EscapableHandleScope::new(l2_cxs);
        AssertTypeOf(l3_ehs).is::<EscapableHandleScope>();
        {
          let l4_cxs = &mut ContextScope::new(l3_ehs, context);
          AssertTypeOf(l4_cxs).is::<ContextScope<EscapableHandleScope>>();
          let d = l4_cxs.deref_mut();
          AssertTypeOf(d).is::<EscapableHandleScope>();
          let d = d.deref_mut();
          AssertTypeOf(d).is::<HandleScope>();
          let d = d.deref_mut();
          AssertTypeOf(d).is::<HandleScope<()>>();
          let d = d.deref_mut();
          AssertTypeOf(d).is::<Isolate>();
        }
        {
          let l4_tc = &mut TryCatch::new(l3_ehs);
          AssertTypeOf(l4_tc).is::<TryCatch<EscapableHandleScope>>();
          let d = l4_tc.deref_mut();
          AssertTypeOf(d).is::<EscapableHandleScope>();
          let d = d.deref_mut();
          AssertTypeOf(d).is::<HandleScope>();
          let d = d.deref_mut();
          AssertTypeOf(d).is::<HandleScope<()>>();
          let d = d.deref_mut();
          AssertTypeOf(d).is::<Isolate>();
        }
      }
    }
    {
      let l2_tc = &mut TryCatch::new(l1_hs);
      AssertTypeOf(l2_tc).is::<TryCatch<HandleScope<()>>>();
      let d = l2_tc.deref_mut();
      AssertTypeOf(d).is::<HandleScope<()>>();
      let d = d.deref_mut();
      AssertTypeOf(d).is::<Isolate>();
    }
    {
      let l2_ehs = &mut EscapableHandleScope::new(l1_hs);
      AssertTypeOf(l2_ehs).is::<EscapableHandleScope<()>>();
      let l3_tc = &mut TryCatch::new(l2_ehs);
      AssertTypeOf(l3_tc).is::<TryCatch<EscapableHandleScope<()>>>();
      let d = l3_tc.deref_mut();
      AssertTypeOf(d).is::<EscapableHandleScope<()>>();
      let d = d.deref_mut();
      AssertTypeOf(d).is::<HandleScope<()>>();
      let d = d.deref_mut();
      AssertTypeOf(d).is::<Isolate>();
    }
    {
      // `CallbackScope` is meant to be used inside V8 API callback functions
      // only. It assumes that a `HandleScope` already exists on the stack, and
      // that a context has been entered. Push a `ContextScope` onto the stack
      // to also meet the second expectation.
      let _ = ContextScope::new(l1_hs, context);
      let l2_cbs = &mut unsafe { CallbackScope::new(context) };
      AssertTypeOf(l2_cbs).is::<CallbackScope>();
      let d = l2_cbs.deref_mut();
      AssertTypeOf(d).is::<HandleScope>();
      let d = d.deref_mut();
      AssertTypeOf(d).is::<HandleScope<()>>();
      let d = d.deref_mut();
      AssertTypeOf(d).is::<Isolate>();
    }
  }

  #[test]
  fn new_scope_types() {
    initialize_v8();
    let isolate = &mut Isolate::new(Default::default());
    AssertTypeOf(isolate).is::<OwnedIsolate>();
    let l1_hs = &mut HandleScope::new(isolate);
    AssertTypeOf(l1_hs).is::<HandleScope<()>>();
    let context = Context::new(l1_hs);
    AssertTypeOf(&HandleScope::new(l1_hs)).is::<HandleScope<()>>();
    {
      let l2_cxs = &mut ContextScope::new(l1_hs, context);
      AssertTypeOf(l2_cxs).is::<ContextScope<HandleScope>>();
      AssertTypeOf(&ContextScope::new(l2_cxs, context))
        .is::<ContextScope<HandleScope>>();
      AssertTypeOf(&HandleScope::new(l2_cxs)).is::<HandleScope>();
      AssertTypeOf(&EscapableHandleScope::new(l2_cxs))
        .is::<EscapableHandleScope>();
      AssertTypeOf(&TryCatch::new(l2_cxs)).is::<TryCatch<HandleScope>>();
    }
    {
      let l2_ehs = &mut EscapableHandleScope::new(l1_hs);
      AssertTypeOf(l2_ehs).is::<EscapableHandleScope<()>>();
      AssertTypeOf(&HandleScope::new(l2_ehs)).is::<EscapableHandleScope<()>>();
      AssertTypeOf(&EscapableHandleScope::new(l2_ehs))
        .is::<EscapableHandleScope<()>>();
      {
        let l3_cxs = &mut ContextScope::new(l2_ehs, context);
        AssertTypeOf(l3_cxs).is::<ContextScope<EscapableHandleScope>>();
        AssertTypeOf(&ContextScope::new(l3_cxs, context))
          .is::<ContextScope<EscapableHandleScope>>();
        AssertTypeOf(&HandleScope::new(l3_cxs)).is::<EscapableHandleScope>();
        AssertTypeOf(&EscapableHandleScope::new(l3_cxs))
          .is::<EscapableHandleScope>();
        {
          let l4_tc = &mut TryCatch::new(l3_cxs);
          AssertTypeOf(l4_tc).is::<TryCatch<EscapableHandleScope>>();
          AssertTypeOf(&ContextScope::new(l4_tc, context))
            .is::<ContextScope<EscapableHandleScope>>();
          AssertTypeOf(&HandleScope::new(l4_tc)).is::<EscapableHandleScope>();
          AssertTypeOf(&EscapableHandleScope::new(l4_tc))
            .is::<EscapableHandleScope>();
          AssertTypeOf(&TryCatch::new(l4_tc))
            .is::<TryCatch<EscapableHandleScope>>();
        }
      }
      {
        let l3_tc = &mut TryCatch::new(l2_ehs);
        AssertTypeOf(l3_tc).is::<TryCatch<EscapableHandleScope<()>>>();
        AssertTypeOf(&ContextScope::new(l3_tc, context))
          .is::<ContextScope<EscapableHandleScope>>();
        AssertTypeOf(&HandleScope::new(l3_tc)).is::<EscapableHandleScope<()>>();
        AssertTypeOf(&EscapableHandleScope::new(l3_tc))
          .is::<EscapableHandleScope<()>>();
        AssertTypeOf(&TryCatch::new(l3_tc))
          .is::<TryCatch<EscapableHandleScope<()>>>();
      }
    }
    {
      let l2_tc = &mut TryCatch::new(l1_hs);
      AssertTypeOf(l2_tc).is::<TryCatch<HandleScope<()>>>();
      AssertTypeOf(&ContextScope::new(l2_tc, context))
        .is::<ContextScope<HandleScope>>();
      AssertTypeOf(&HandleScope::new(l2_tc)).is::<HandleScope<()>>();
      AssertTypeOf(&EscapableHandleScope::new(l2_tc))
        .is::<EscapableHandleScope<()>>();
      AssertTypeOf(&TryCatch::new(l2_tc)).is::<TryCatch<HandleScope<()>>>();
    }
    {
      let l2_cbs = &mut unsafe { CallbackScope::new(context) };
      AssertTypeOf(l2_cbs).is::<CallbackScope>();
      AssertTypeOf(&ContextScope::new(l2_cbs, context))
        .is::<ContextScope<HandleScope>>();
      {
        let l3_hs = &mut HandleScope::new(l2_cbs);
        AssertTypeOf(l3_hs).is::<HandleScope>();
        AssertTypeOf(&ContextScope::new(l3_hs, context))
          .is::<ContextScope<HandleScope>>();
        AssertTypeOf(&HandleScope::new(l3_hs)).is::<HandleScope>();
        AssertTypeOf(&EscapableHandleScope::new(l3_hs))
          .is::<EscapableHandleScope>();
        AssertTypeOf(&TryCatch::new(l3_hs)).is::<TryCatch<HandleScope>>();
      }
      {
        let l3_ehs = &mut EscapableHandleScope::new(l2_cbs);
        AssertTypeOf(l3_ehs).is::<EscapableHandleScope>();
        AssertTypeOf(&ContextScope::new(l3_ehs, context))
          .is::<ContextScope<EscapableHandleScope>>();
        AssertTypeOf(&HandleScope::new(l3_ehs)).is::<EscapableHandleScope>();
        AssertTypeOf(&EscapableHandleScope::new(l3_ehs))
          .is::<EscapableHandleScope>();
        AssertTypeOf(&TryCatch::new(l3_ehs))
          .is::<TryCatch<EscapableHandleScope>>();
      }
      {
        let l3_tc = &mut TryCatch::new(l2_cbs);
        AssertTypeOf(l3_tc).is::<TryCatch<HandleScope>>();
        AssertTypeOf(&ContextScope::new(l3_tc, context))
          .is::<ContextScope<HandleScope>>();
        AssertTypeOf(&HandleScope::new(l3_tc)).is::<HandleScope>();
        AssertTypeOf(&EscapableHandleScope::new(l3_tc))
          .is::<EscapableHandleScope>();
        AssertTypeOf(&TryCatch::new(l3_tc)).is::<TryCatch<HandleScope>>();
      }
    }
  }
}