1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
// Copyright 2019-2020 the Deno authors. All rights reserved. MIT license.

use std::marker::PhantomData;
use std::mem::size_of;
use std::mem::take;
use std::mem::MaybeUninit;
use std::ptr::NonNull;

use crate::scope_traits::internal::GetRawIsolate;
use crate::Context;
use crate::FunctionCallbackInfo;
use crate::InIsolate;
use crate::Isolate;
use crate::Local;
use crate::PromiseRejectMessage;
use crate::PropertyCallbackInfo;

// Note: the 's lifetime is there to ensure that after entering a scope once,
// the same scope object can't ever be entered again.

/// A trait for defining scoped objects.
pub unsafe trait ScopeDefinition<'s>
where
  Self: Sized,
{
  type Args;
  unsafe fn enter_scope(buf: *mut Self, args: Self::Args);
}

/// A RAII scope wrapper object that will, when the `enter()` method is called,
/// initialize and activate the guarded object.
pub struct Scope<'s, S, P = ()>
where
  S: ScopeDefinition<'s>,
{
  state: ScopeState<'s, S, P>,
}

enum ScopeState<'s, S, P>
where
  S: ScopeDefinition<'s>,
{
  Empty,
  Allocated {
    args: S::Args,
    parent: &'s mut P,
  },
  EnteredUninit {
    data: MaybeUninit<S>,
    enter: MaybeUninit<Entered<'s, S, P>>,
  },
  EnteredReady {
    data: S,
    enter: Entered<'s, S, P>,
  },
}

fn parent_of_root() -> &'static mut () {
  unsafe { &mut *NonNull::<()>::dangling().as_ptr() }
}

impl<'s, S> Scope<'s, S, ()>
where
  S: ScopeDefinition<'s>,
{
  /// Create a new root Scope object in unentered state.
  pub(crate) fn new_root(args: S::Args) -> Self {
    Self::new(args, parent_of_root())
  }
}

impl<'s, S, P> Scope<'s, S, P>
where
  S: ScopeDefinition<'s>,
{
  /// Create a new Scope object in unentered state.
  pub(crate) fn new(args: S::Args, parent: &'s mut P) -> Self {
    Self {
      state: ScopeState::Allocated { args, parent },
    }
  }

  /// Initializes the guarded object and returns a mutable reference to it.
  /// A scope can only be entered once.
  pub fn enter(&'s mut self) -> &'s mut Entered<'s, S, P> {
    assert_eq!(size_of::<S>(), size_of::<MaybeUninit<S>>());

    use ScopeState::*;
    let Self { state } = self;

    let (parent, args) = match take(state) {
      Allocated { parent, args } => (parent, args),
      _ => unreachable!(),
    };

    *state = EnteredUninit {
      data: MaybeUninit::uninit(),
      enter: MaybeUninit::uninit(),
    };
    let data_ptr = match state {
      EnteredUninit { data, .. } => data as *mut _ as *mut S,
      _ => unreachable!(),
    };

    unsafe { S::enter_scope(data_ptr, args) };

    *state = match take(state) {
      EnteredUninit { data, .. } => EnteredReady {
        data: unsafe { data.assume_init() },
        enter: Entered::new(unsafe { &mut *data_ptr }, parent),
      },
      _ => unreachable!(),
    };

    match state {
      EnteredReady { enter, .. } => enter,
      _ => unreachable!(),
    }
  }
}

impl<'s, S, P> Default for ScopeState<'s, S, P>
where
  S: ScopeDefinition<'s>,
{
  fn default() -> Self {
    Self::Empty
  }
}

/// A wrapper around the an instantiated and entered scope object.
#[repr(C)]
pub struct Entered<'s, S, P = ()> {
  data: *mut S,
  parent: &'s mut P,
}

impl<'s, S> Entered<'s, S, ()> {
  pub(crate) fn new_root(data: *mut S) -> Self {
    Self {
      data,
      parent: parent_of_root(),
    }
  }
}

impl<'s, S, P> Entered<'s, S, P> {
  pub(crate) fn new(data: *mut S, parent: &'s mut P) -> Self {
    Self { data, parent }
  }

  pub(crate) fn data(&self) -> &S {
    unsafe { &*self.data }
  }

  pub(crate) fn data_mut(&mut self) -> &mut S {
    unsafe { &mut *self.data }
  }

  pub(crate) fn parent(&self) -> &P {
    &self.parent
  }

  pub(crate) fn parent_mut(&mut self) -> &mut P {
    &mut self.parent
  }
}

/// A CallbackScope can be used to obtain a mutable Isolate reference within
/// a callback that is called by V8 on the thread that already has a Locker
/// on the stack.
///
/// Using a CallbackScope in any other situation is unsafe.
/// Also note that CallbackScope should not be used for function and property
/// accessor callbacks; use FunctionCallbackScope and PropertyCallbackScope
/// instead.
///
/// A CallbackScope can be created from the following inputs:
///   - `Local<Context>`
///   - `Local<Message>`
///   - `Local<Object>`
///   - `Local<Promise>`
///   - `Local<SharedArrayBuffer>`
///   - `&PromiseRejectMessage`
pub struct CallbackScope<X = Contained> {
  isolate: *mut Isolate,
  phantom: PhantomData<X>,
}

pub struct Contained;
pub struct Escapable;

impl<'s> CallbackScope {
  pub fn new<I>(input: I) -> Scope<'s, Self>
  where
    Scope<'s, Self>: From<I>,
  {
    Scope::from(input)
  }
}

impl<'s> CallbackScope<Escapable> {
  pub fn new_escapable<I>(input: I) -> Scope<'s, Self>
  where
    Scope<'s, Self>: From<I>,
  {
    Scope::from(input)
  }
}

impl<X> CallbackScope<X> {
  pub(crate) fn get_raw_isolate_(&self) -> *mut Isolate {
    self.isolate
  }
}

unsafe impl<'s, X> ScopeDefinition<'s> for CallbackScope<X> {
  type Args = *mut Isolate;
  unsafe fn enter_scope(ptr: *mut Self, isolate: Self::Args) {
    let data = Self {
      isolate,
      phantom: PhantomData,
    };
    std::ptr::write(ptr, data);
  }
}

impl<'s, X> From<&'s mut Isolate> for Scope<'s, CallbackScope<X>> {
  fn from(isolate: &'s mut Isolate) -> Self {
    Scope::new_root(isolate as *mut Isolate)
  }
}

impl<'s, X, T> From<Local<'s, T>> for Scope<'s, CallbackScope<X>>
where
  Local<'s, T>: GetRawIsolate,
{
  fn from(local: Local<'s, T>) -> Self {
    Scope::new_root(local.get_raw_isolate())
  }
}

impl<'s, X> From<&'s PromiseRejectMessage<'s>> for Scope<'s, CallbackScope<X>> {
  fn from(msg: &'s PromiseRejectMessage<'s>) -> Self {
    Self::from(msg.get_promise())
  }
}

/// Stack-allocated class which sets the execution context for all operations
/// executed within a local scope.
pub struct ContextScope {
  context: *mut Context,
}

impl<'s> ContextScope {
  pub fn new<P>(
    parent: &'s mut P,
    context: Local<'s, Context>,
  ) -> Scope<'s, Self, P>
  where
    P: InIsolate,
  {
    Scope::new(context, parent)
  }

  pub(crate) unsafe fn get_captured_context(&self) -> Local<'s, Context> {
    Local::from_raw(self.context).unwrap()
  }
}

unsafe impl<'s> ScopeDefinition<'s> for ContextScope {
  type Args = Local<'s, Context>;

  unsafe fn enter_scope(ptr: *mut Self, mut context: Self::Args) {
    context.enter();
    std::ptr::write(
      ptr,
      Self {
        context: &mut *context,
      },
    );
  }
}

impl Drop for ContextScope {
  fn drop(&mut self) {
    unsafe { self.get_captured_context() }.exit()
  }
}

pub type FunctionCallbackScope<'s> = &'s mut Entered<'s, FunctionCallbackInfo>;
pub type PropertyCallbackScope<'s> = &'s mut Entered<'s, PropertyCallbackInfo>;