1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
#[cfg(feature = "async")]
use futures::{
    future::BoxFuture,
    task::{waker_ref, ArcWake},
};
use futures_channel::oneshot;
use futures_executor::block_on;
use std::future::Future;
use std::option::Option;
use std::sync::{
    atomic::{AtomicUsize, Ordering},
    Arc, Condvar, Mutex,
};
#[cfg(feature = "async")]
use std::task::Context;
use std::thread;
use std::time::Duration;

const BITS: usize = std::mem::size_of::<usize>() * 8;
/// The absolute maximum number of workers. This corresponds to the maximum value that can be stored within half the bits of usize,
/// as two counters (total workers and idle workers) are stored in one AtomicUsize.
pub const MAX_SIZE: usize = (1 << (BITS / 2)) - 1;

type Job = Box<dyn FnOnce() + Send + 'static>;

/// Trait to implement for all items that may be executed by the `ThreadPool`.
pub trait Task<R: Send>: Send {
    /// Execute this task and return its result.
    fn run(self) -> R;

    /// Transform this `Task` into a heap allocated `FnOnce` if possible.
    ///
    /// Used by [`ThreadPool::execute`](struct.ThreadPool.html#method.execute) to turn this `Task` into a `Job`
    /// directly without having to create an additional `Job` that calls this `Task`.
    fn into_fn(self) -> Option<Box<dyn FnOnce() -> R + Send + 'static>>;

    /// Return `true` if calling [`Task::into_fn`] on this `Task` returns `Some`.
    fn is_fn(&self) -> bool;
}

/// Implement the `Task` trait for any FnOnce closure that returns a thread-safe result.
impl<R, F> Task<R> for F
where
    R: Send,
    F: FnOnce() -> R + Send + 'static,
{
    fn run(self) -> R {
        self()
    }

    fn into_fn(self) -> Option<Box<dyn FnOnce() -> R + Send + 'static>> {
        Some(Box::new(self))
    }

    fn is_fn(&self) -> bool {
        true
    }
}

/// Handle returned by [`ThreadPool::evaluate`](struct.ThreadPool.html#method.evaluate) and [`ThreadPool::complete`](struct.ThreadPool.html#method.complete)
/// that allows to block the current thread and wait for the result of a submitted task. The returned `JoinHandle` may also be sent to the [`ThreadPool`](struct.ThreadPool.html)
/// to create a task that blocks a worker thread until the task is completed and then does something with the result. This handle communicates with the worker thread
/// using a oneshot channel blocking the thread when [`try_await_complete()`](struct.JoinHandle.html#method.try_await_complete) is called until a message, i.e. the result of the
/// task, is received.
pub struct JoinHandle<T: Send> {
    pub receiver: oneshot::Receiver<T>,
}

impl<T: Send> JoinHandle<T> {
    /// Block the current thread until the result of the task is received.
    ///
    /// # Errors
    ///
    /// This function might return a `oneshot::Canceled` if the channel was broken
    /// before the result was received. This is generally the case if execution of
    /// the task panicked.
    pub fn try_await_complete(self) -> Result<T, oneshot::Canceled> {
        block_on(self.receiver)
    }

    /// Block the current thread until the result of the task is received.
    ///
    /// # Panics
    ///
    /// This function might panic if [`try_await_complete()`](struct.JoinHandle.html#method.try_await_complete) returns `oneshot::Canceled`.
    /// This is generally the case if execution of the task panicked and the sender was dropped before sending a result to the receiver.
    pub fn await_complete(self) -> T {
        self.try_await_complete()
            .expect("could not receive message because channel was cancelled")
    }
}

#[cfg(feature = "async")]
struct AsyncTask {
    future: Mutex<Option<BoxFuture<'static, ()>>>,
    pool: ThreadPool,
}

/// Implement `ArcWake` for `AsyncTask` by re-submitting the `AsyncTask` i.e. the `Future` to the pool.
#[cfg(feature = "async")]
impl ArcWake for AsyncTask {
    fn wake_by_ref(arc_self: &Arc<Self>) {
        let cloned_task = arc_self.clone();
        arc_self
            .pool
            .try_execute(cloned_task)
            .expect("failed to wake future because message could not be sent to pool");
    }
}

/// Implement the `Task` trait for `AsyncTask` in order to make it executable for the pool by
/// creating a waker and polling the future.
#[cfg(feature = "async")]
impl Task<()> for Arc<AsyncTask> {
    fn run(self) {
        let mut future_slot = self.future.lock().expect("failed to acquire mutex");
        if let Some(mut future) = future_slot.take() {
            let waker = waker_ref(&self);
            let context = &mut Context::from_waker(&*waker);
            if future.as_mut().poll(context).is_pending() {
                *future_slot = Some(future);
            }
        }
    }

    fn into_fn(self) -> Option<Box<dyn FnOnce() + Send + 'static>> {
        None
    }

    fn is_fn(&self) -> bool {
        false
    }
}

// assert that Send is implemented
trait ThreadSafe: Send {}

impl<R: Send> ThreadSafe for dyn Task<R> {}

impl<R: Send> ThreadSafe for JoinHandle<R> {}

impl ThreadSafe for ThreadPool {}

/// Self growing / shrinking `ThreadPool` implementation based on crossbeam's
/// multi-producer multi-consumer channels that enables awaiting the result of a
/// task and offers async support.
///
/// This `ThreadPool` has two different pool sizes; a core pool size filled with
/// threads that live for as long as the channel and a max pool size which describes
/// the maximum amount of worker threads that may live at the same time.
/// Those additional non-core threads have a specific keep_alive time described when
/// creating the `ThreadPool` that defines how long such threads may be idle for
/// without receiving any work before giving up and terminating their work loop.
///
/// This `ThreadPool` does not spawn any threads until a task is submitted to it.
/// Then it will create a new thread for each task until the core pool size is full.
/// After that a new thread will only be created upon an `execute()` call if the
/// current pool is lower than the max pool size and there are no idle threads.
///
/// Functions like `evaluate()` and `complete()` return a `JoinHandle` that may be used
/// to await the result of a submitted task or future. JoinHandles may be sent to the
/// thread pool to create a task that blocks a worker thread until it receives the
/// result of the other task and then operates on the result. If the task panics the
/// `JoinHandle` receives a cancellation error. This is implemented using a futures
/// oneshot channel to communicate with the worker thread.
///
/// This `ThreadPool` may be used as a futures executor if the "async" feature is enabled,
/// which is the case by default. The "async" feature includes the `spawn()` and
/// `try_spawn()` functions which create a task that polls the future one by one and
/// creates a waker that re-submits the future to the pool when it can make progress.
/// Without the "async" feature, futures can simply be executed to completion using
/// the `complete` function, which simply blocks a worker thread until the future has
/// been polled to completion.
///
/// The "async" feature can be disabled if not need by adding the following to your
/// Cargo dependency:
/// ```toml
/// [dependencies.rusty_pool]
/// default-features = false
/// version = "*"
/// ```
///
/// When creating a new worker this `ThreadPool` tries to increment the worker count
/// using a compare-and-swap mechanism, if the increment fails because the total worker
/// count has been incremented to the specified limit (the core_size when trying to
/// create a core thread, else the max_size) by another thread, the pool tries to create
/// a non-core worker instead (if previously trying to create a core worker and no idle
/// worker exists) or sends the task to the channel instead. Panicking workers are always
/// cloned and replaced.
///
/// Locks are only used for the join functions to lock the `Condvar`, apart from that
/// this `ThreadPool` implementation fully relies on crossbeam and atomic operations.
/// This `ThreadPool` decides whether it is currently idle (and should fast-return
/// join attempts) by comparing the total worker count to the idle worker count, which
/// are two values stored in one `AtomicUsize` (both half the size of usize) making sure
/// that if both are updated they may be updated in a single atomic operation.
///
/// The thread pool and its crossbeam channel can be destroyed by using the shutdown
/// function, however that does not stop tasks that are already running but will
/// terminate the thread the next time it will try to fetch work from the channel.
/// The channel is only destroyed once all clones of the `ThreadPool` have been
/// shut down / dropped.
///
/// # Usage
/// Create a new `ThreadPool`:
/// ```rust
/// use rusty_pool::Builder;
/// use rusty_pool::ThreadPool;
/// // Create default `ThreadPool` configuration with the number of CPUs as core pool size
/// let pool = ThreadPool::default();
/// // Create a `ThreadPool` with default naming:
/// use std::time::Duration;
/// let pool2 = ThreadPool::new(5, 50, Duration::from_secs(60));
/// // Create a `ThreadPool` with a custom name:
/// let pool3 = ThreadPool::new_named(String::from("my_pool"), 5, 50, Duration::from_secs(60));
/// // using the Builder struct:
/// let pool4 = Builder::new().core_size(5).max_size(50).build();
/// ```
///
/// Submit a closure for execution in the `ThreadPool`:
/// ```rust
/// use rusty_pool::ThreadPool;
/// use std::thread;
/// use std::time::Duration;
/// let pool = ThreadPool::default();
/// pool.execute(|| {
///     thread::sleep(Duration::from_secs(5));
///     print!("hello");
/// });
/// ```
///
/// Submit a task and await the result:
/// ```rust
/// use rusty_pool::ThreadPool;
/// use std::thread;
/// use std::time::Duration;
/// let pool = ThreadPool::default();
/// let handle = pool.evaluate(|| {
///     thread::sleep(Duration::from_secs(5));
///     return 4;
/// });
/// let result = handle.await_complete();
/// assert_eq!(result, 4);
/// ```
///
/// Spawn futures using the `ThreadPool`:
/// ```rust
/// async fn some_async_fn(x: i32, y: i32) -> i32 {
///     x + y
/// }
///
/// async fn other_async_fn(x: i32, y: i32) -> i32 {
///     x - y
/// }
///
/// use rusty_pool::ThreadPool;
/// let pool = ThreadPool::default();
///
/// // simply complete future by blocking a worker until the future has been completed
/// let handle = pool.complete(async {
///     let a = some_async_fn(4, 6).await; // 10
///     let b = some_async_fn(a, 3).await; // 13
///     let c = other_async_fn(b, a).await; // 3
///     some_async_fn(c, 5).await // 8
/// });
/// assert_eq!(handle.await_complete(), 8);
///
/// use std::sync::{Arc, atomic::{AtomicI32, Ordering}};
///
/// // spawn future and create waker that automatically re-submits itself to the threadpool if ready to make progress, this requires the "async" feature which is enabled by default
/// let count = Arc::new(AtomicI32::new(0));
/// let clone = count.clone();
/// pool.spawn(async move {
///     let a = some_async_fn(3, 6).await; // 9
///     let b = other_async_fn(a, 4).await; // 5
///     let c = some_async_fn(b, 7).await; // 12
///     clone.fetch_add(c, Ordering::Relaxed);
/// });
/// pool.join();
/// assert_eq!(count.load(Ordering::Relaxed), 12);
/// ```
///
/// Join and shut down the `ThreadPool`:
/// ```rust
/// use std::thread;
/// use std::time::Duration;
/// use rusty_pool::ThreadPool;
/// use std::sync::{Arc, atomic::{AtomicI32, Ordering}};
///
/// let pool = ThreadPool::default();
/// for _ in 0..10 {
///     pool.execute(|| { thread::sleep(Duration::from_secs(10)) })
/// }
/// // wait for all threads to become idle, i.e. all tasks to be completed including tasks added by other threads after join() is called by this thread or for the timeout to be reached
/// pool.join_timeout(Duration::from_secs(5));
///
/// let count = Arc::new(AtomicI32::new(0));
/// for _ in 0..15 {
///     let clone = count.clone();
///     pool.execute(move || {
///         thread::sleep(Duration::from_secs(5));
///         clone.fetch_add(1, Ordering::Relaxed);
///     });
/// }
///
/// // shut down and drop the only instance of this `ThreadPool` (no clones) causing the channel to be broken leading all workers to exit after completing their current work
/// // and wait for all workers to become idle, i.e. finish their work.
/// pool.shutdown_join();
/// assert_eq!(count.load(Ordering::Relaxed), 15);
/// ```
#[derive(Clone)]
pub struct ThreadPool {
    core_size: usize,
    max_size: usize,
    keep_alive: Duration,
    channel_data: Arc<ChannelData>,
    worker_data: Arc<WorkerData>,
}

impl ThreadPool {
    /// Construct a new `ThreadPool` with the specified core pool size, max pool size
    /// and keep_alive time for non-core threads. This function does not spawn any
    /// threads. This `ThreadPool` will receive a default name in the following format:
    /// "rusty_pool_" + pool number.
    ///
    /// `core_size` specifies the amount of threads to keep alive for as long as
    /// the `ThreadPool` exists and its channel remains connected.
    ///
    /// `max_size` specifies the maximum number of worker threads that may exist
    /// at the same time.
    ///
    /// `keep_alive` specifies the duration for which to keep non-core pool
    /// worker threads alive while they do not receive any work.
    ///
    /// # Panics
    ///
    /// This function will panic if max_size is 0, lower than core_size or exceeds half
    /// the size of usize. This restriction exists because two counters (total workers and
    /// idle counters) are stored within one AtomicUsize.
    pub fn new(core_size: usize, max_size: usize, keep_alive: Duration) -> Self {
        static POOL_COUNTER: AtomicUsize = AtomicUsize::new(1);
        let name = format!(
            "rusty_pool_{}",
            POOL_COUNTER.fetch_add(1, Ordering::Relaxed)
        );
        ThreadPool::new_named(name, core_size, max_size, keep_alive)
    }

    /// Construct a new `ThreadPool` with the specified name, core pool size, max pool size
    /// and keep_alive time for non-core threads. This function does not spawn any
    /// threads.
    ///
    /// `name` the name of the `ThreadPool` that will be used as prefix for each
    /// thread.
    ///
    /// `core_size` specifies the amount of threads to keep alive for as long as
    /// the `ThreadPool` exists and its channel remains connected.
    ///
    /// `max_size` specifies the maximum number of worker threads that may exist
    /// at the same time.
    ///
    /// `keep_alive` specifies the duration for which to keep non-core pool
    /// worker threads alive while they do not receive any work.
    ///
    /// # Panics
    ///
    /// This function will panic if max_size is 0, lower than core_size or exceeds half
    /// the size of usize. This restriction exists because two counters (total workers and
    /// idle counters) are stored within one AtomicUsize.
    pub fn new_named(
        name: String,
        core_size: usize,
        max_size: usize,
        keep_alive: Duration,
    ) -> Self {
        let (sender, receiver) = crossbeam_channel::unbounded();

        if max_size == 0 || max_size < core_size {
            panic!("max_size must be greater than 0 and greater or equal to the core pool size");
        } else if max_size > MAX_SIZE {
            panic!(
                "max_size may not exceed {}, the maximum value that can be stored within half the bits of usize ({} -> {} bits in this case)",
                MAX_SIZE,
                BITS,
                BITS / 2
            );
        }

        let worker_data = WorkerData {
            pool_name: name,
            worker_count_data: WorkerCountData::default(),
            worker_number: AtomicUsize::new(1),
            join_notify_condvar: Condvar::new(),
            join_notify_mutex: Mutex::new(()),
            join_generation: AtomicUsize::new(0),
        };

        let channel_data = ChannelData { sender, receiver };

        Self {
            core_size,
            max_size,
            keep_alive,
            channel_data: Arc::new(channel_data),
            worker_data: Arc::new(worker_data),
        }
    }

    /// Get the number of live workers, includes all workers waiting for work or executing tasks.
    ///
    /// This counter is incremented when creating a new worker. The value is increment just before
    /// the worker starts executing its initial task. Incrementing the worker total might fail
    /// if the total has already reached the specified limit (either core_size or max_size) after
    /// being incremented by another thread, as of rusty_pool 0.5.0 failed attempts to create a worker
    /// no longer skews the worker total as failed attempts to increment the worker total does not
    /// increment the value at all.
    /// This counter is decremented when a worker reaches the end of its working loop, which for non-core
    /// threads might happen if it does not receive any work during its keep alive time,
    /// for core threads this only happens once the channel is disconnected.
    pub fn get_current_worker_count(&self) -> usize {
        self.worker_data.worker_count_data.get_total_worker_count()
    }

    /// Get the number of workers currently waiting for work. Those threads are currently
    /// polling from the crossbeam receiver. Core threads wait indefinitely and might remain
    /// in this state until the `ThreadPool` is dropped. The remaining threads give up after
    /// waiting for the specified keep_alive time.
    pub fn get_idle_worker_count(&self) -> usize {
        self.worker_data.worker_count_data.get_idle_worker_count()
    }

    /// Send a new task to the worker threads. This function is responsible for sending the message through the
    /// channel and creating new workers if needed. If the current worker count is lower than the core pool size
    /// this function will always create a new worker. If the current worker count is equal to or greater than
    /// the core pool size this function only creates a new worker if the worker count is below the max pool size
    /// and there are no idle threads.
    ///
    /// When attempting to increment the total worker count before creating a worker fails due to the
    /// counter reaching the provided limit (core_size when attempting to create core thread, else
    /// max_size) after being incremented by another thread, the pool tries to create
    /// a non-core worker instead (if previously trying to create a core worker and no idle
    /// worker exists) or sends the task to the channel instead. If incrementing the counter succeeded,
    /// either because the current value of the counter matched the expected value or because the
    /// last observed value was still below the limit, the worker starts with the provided task as
    /// initial task and spawns its thread.
    ///
    /// # Panics
    ///
    /// This function might panic if `try_execute` returns an error when the crossbeam channel has been
    /// closed unexpectedly.
    /// This should never occur under normal circumstances using safe code, as shutting down the `ThreadPool`
    /// consumes ownership and the crossbeam channel is never dropped unless dropping the `ThreadPool`.
    pub fn execute<T: Task<()> + 'static>(&self, task: T) {
        if self.try_execute(task).is_err() {
            panic!("the channel of the thread pool has been closed");
        }
    }

    /// Send a new task to the worker threads. This function is responsible for sending the message through the
    /// channel and creating new workers if needed. If the current worker count is lower than the core pool size
    /// this function will always create a new worker. If the current worker count is equal to or greater than
    /// the core pool size this function only creates a new worker if the worker count is below the max pool size
    /// and there are no idle threads.
    ///
    /// When attempting to increment the total worker count before creating a worker fails due to the
    /// counter reaching the provided limit (core_size when attempting to create core thread, else
    /// max_size) after being incremented by another thread, the pool tries to create
    /// a non-core worker instead (if previously trying to create a core worker and no idle
    /// worker exists) or sends the task to the channel instead. If incrementing the counter succeeded,
    /// either because the current value of the counter matched the expected value or because the
    /// last observed value was still below the limit, the worker starts with the provided task as
    /// initial task and spawns its thread.
    ///
    /// # Errors
    ///
    /// This function might return `crossbeam_channel::SendError` if the sender was dropped unexpectedly.
    pub fn try_execute<T: Task<()> + 'static>(
        &self,
        task: T,
    ) -> Result<(), crossbeam_channel::SendError<Job>> {
        if task.is_fn() {
            self.try_execute_task(
                task.into_fn()
                    .expect("Task::into_fn returned None despite is_fn returning true"),
            )
        } else {
            self.try_execute_task(Box::new(move || {
                task.run();
            }))
        }
    }

    /// Send a new task to the worker threads and return a [`JoinHandle`](struct.JoinHandle.html) that may be used to await
    /// the result. This function is responsible for sending the message through the channel and creating new
    /// workers if needed. If the current worker count is lower than the core pool size this function will always
    /// create a new worker. If the current worker count is equal to or greater than the core pool size this
    /// function only creates a new worker if the worker count is below the max pool size and there are no idle
    /// threads.
    ///
    /// When attempting to increment the total worker count before creating a worker fails due to the
    /// counter reaching the provided limit (core_size when attempting to create core thread, else
    /// max_size) after being incremented by another thread, the pool tries to create
    /// a non-core worker instead (if previously trying to create a core worker and no idle
    /// worker exists) or sends the task to the channel instead. If incrementing the counter succeeded,
    /// either because the current value of the counter matched the expected value or because the
    /// last observed value was still below the limit, the worker starts with the provided task as
    /// initial task and spawns its thread.
    ///
    /// # Panics
    ///
    /// This function might panic if `try_execute` returns an error when the crossbeam channel has been
    /// closed unexpectedly.
    /// This should never occur under normal circumstances using safe code, as shutting down the `ThreadPool`
    /// consumes ownership and the crossbeam channel is never dropped unless dropping the `ThreadPool`.
    pub fn evaluate<R: Send + 'static, T: Task<R> + 'static>(&self, task: T) -> JoinHandle<R> {
        match self.try_evaluate(task) {
            Ok(handle) => handle,
            Err(e) => panic!("the channel of the thread pool has been closed: {:?}", e),
        }
    }

    /// Send a new task to the worker threads and return a [`JoinHandle`](struct.JoinHandle.html) that may be used to await
    /// the result. This function is responsible for sending the message through the channel and creating new
    /// workers if needed. If the current worker count is lower than the core pool size this function will always
    /// create a new worker. If the current worker count is equal to or greater than the core pool size this
    /// function only creates a new worker if the worker count is below the max pool size and there are no idle
    /// threads.
    ///
    /// When attempting to increment the total worker count before creating a worker fails due to the
    /// counter reaching the provided limit (core_size when attempting to create core thread, else
    /// max_size) after being incremented by another thread, the pool tries to create
    /// a non-core worker instead (if previously trying to create a core worker and no idle
    /// worker exists) or sends the task to the channel instead. If incrementing the counter succeeded,
    /// either because the current value of the counter matched the expected value or because the
    /// last observed value was still below the limit, the worker starts with the provided task as
    /// initial task and spawns its thread.
    ///
    /// # Errors
    ///
    /// This function might return `crossbeam_channel::SendError` if the sender was dropped unexpectedly.
    pub fn try_evaluate<R: Send + 'static, T: Task<R> + 'static>(
        &self,
        task: T,
    ) -> Result<JoinHandle<R>, crossbeam_channel::SendError<Job>> {
        let (sender, receiver) = oneshot::channel::<R>();
        let join_handle = JoinHandle { receiver };
        let job = || {
            let result = task.run();
            // if the receiver was dropped that means the caller was not interested in the result
            let _ignored_result = sender.send(result);
        };

        let execute_attempt = self.try_execute_task(Box::new(job));
        execute_attempt.map(|_| join_handle)
    }

    /// Send a task to the `ThreadPool` that completes the given `Future` and return a [`JoinHandle`](struct.JoinHandle.html)
    /// that may be used to await the result. This function simply calls [`evaluate()`](struct.ThreadPool.html#method.evaluate)
    /// with a closure that calls `block_on` with the provided future.
    ///
    /// # Panic
    ///
    /// This function panics if the task fails to be sent to the `ThreadPool` due to the channel being broken.
    pub fn complete<R: Send + 'static>(
        &self,
        future: impl Future<Output = R> + 'static + Send,
    ) -> JoinHandle<R> {
        self.evaluate(|| block_on(future))
    }

    /// Send a task to the `ThreadPool` that completes the given `Future` and return a [`JoinHandle`](struct.JoinHandle.html)
    /// that may be used to await the result. This function simply calls [`try_evaluate()`](struct.ThreadPool.html#method.try_evaluate)
    /// with a closure that calls `block_on` with the provided future.
    ///
    /// # Errors
    ///
    /// This function returns `crossbeam_channel::SendError` if the task fails to be sent to the `ThreadPool` due to the channel being broken.
    pub fn try_complete<R: Send + 'static>(
        &self,
        future: impl Future<Output = R> + 'static + Send,
    ) -> Result<JoinHandle<R>, crossbeam_channel::SendError<Job>> {
        self.try_evaluate(|| block_on(future))
    }

    /// Submit a `Future` to be polled by this `ThreadPool`. Unlike [`complete()`](struct.ThreadPool.html#method.complete) this does not
    /// block a worker until the `Future` has been completed but polls the `Future` once at a time and creates a `Waker`
    /// that re-submits the Future to this pool when awakened. Since `Arc<AsyncTask>` implements the [`Task`](trait.Task.html) trait this
    /// function simply constructs the `AsyncTask` and calls [`execute()`](struct.ThreadPool.html#method.execute).
    ///
    /// # Panic
    ///
    /// This function panics if the task fails to be sent to the `ThreadPool` due to the channel being broken.
    #[cfg(feature = "async")]
    pub fn spawn(&self, future: impl Future<Output = ()> + 'static + Send) {
        let future_task = Arc::new(AsyncTask {
            future: Mutex::new(Some(Box::pin(future))),
            pool: self.clone(),
        });

        self.execute(future_task)
    }

    /// Submit a `Future` to be polled by this `ThreadPool`. Unlike [`try_complete()`](struct.ThreadPool.html#method.try_complete) this does not
    /// block a worker until the `Future` has been completed but polls the `Future` once at a time and creates a `Waker`
    /// that re-submits the Future to this pool when awakened. Since `Arc<AsyncTask>` implements the [`Task`](trait.Task.html) trait this
    /// function simply constructs the `AsyncTask` and calls [`try_execute()`](struct.ThreadPool.html#method.try_execute).
    ///
    /// # Errors
    ///
    /// This function returns `crossbeam_channel::SendError` if the task fails to be sent to the `ThreadPool` due to the channel being broken.
    #[cfg(feature = "async")]
    pub fn try_spawn(
        &self,
        future: impl Future<Output = ()> + 'static + Send,
    ) -> Result<(), crossbeam_channel::SendError<Job>> {
        let future_task = Arc::new(AsyncTask {
            future: Mutex::new(Some(Box::pin(future))),
            pool: self.clone(),
        });

        self.try_execute(future_task)
    }

    /// Create a top-level `Future` that awaits the provided `Future` and then sends the result to the
    /// returned [`JoinHandle`](struct.JoinHandle.html). Unlike [`complete()`](struct.ThreadPool.html#method.complete) this does not
    /// block a worker until the `Future` has been completed but polls the `Future` once at a time and creates a `Waker`
    /// that re-submits the Future to this pool when awakened. Since `Arc<AsyncTask>` implements the [`Task`](trait.Task.html) trait this
    /// function simply constructs the `AsyncTask` and calls [`execute()`](struct.ThreadPool.html#method.execute).
    ///
    /// This enables awaiting the final result outside of an async context like [`complete()`](struct.ThreadPool.html#method.complete) while still
    /// polling the future lazily instead of eagerly blocking the worker until the future is done.
    ///
    /// # Panic
    ///
    /// This function panics if the task fails to be sent to the `ThreadPool` due to the channel being broken.
    #[cfg(feature = "async")]
    pub fn spawn_await<R: Send + 'static>(
        &self,
        future: impl Future<Output = R> + 'static + Send,
    ) -> JoinHandle<R> {
        match self.try_spawn_await(future) {
            Ok(handle) => handle,
            Err(e) => panic!("the channel of the thread pool has been closed: {:?}", e),
        }
    }

    /// Create a top-level `Future` that awaits the provided `Future` and then sends the result to the
    /// returned [`JoinHandle`](struct.JoinHandle.html). Unlike [`try_complete()`](struct.ThreadPool.html#method.try_complete) this does not
    /// block a worker until the `Future` has been completed but polls the `Future` once at a time and creates a `Waker`
    /// that re-submits the Future to this pool when awakened. Since `Arc<AsyncTask>` implements the [`Task`](trait.Task.html) trait this
    /// function simply constructs the `AsyncTask` and calls [`try_execute()`](struct.ThreadPool.html#method.try_execute).
    ///
    /// This enables awaiting the final result outside of an async context like [`complete()`](struct.ThreadPool.html#method.complete) while still
    /// polling the future lazily instead of eagerly blocking the worker until the future is done.
    ///
    /// # Errors
    ///
    /// This function returns `crossbeam_channel::SendError` if the task fails to be sent to the `ThreadPool` due to the channel being broken.
    #[cfg(feature = "async")]
    pub fn try_spawn_await<R: Send + 'static>(
        &self,
        future: impl Future<Output = R> + 'static + Send,
    ) -> Result<JoinHandle<R>, crossbeam_channel::SendError<Job>> {
        let (sender, receiver) = oneshot::channel::<R>();
        let join_handle = JoinHandle { receiver };

        self.try_spawn(async {
            let result = future.await;
            // if the receiver was dropped that means the caller was not interested in the result
            let _ignored_result = sender.send(result);
        })
        .map(|_| join_handle)
    }

    #[inline]
    fn try_execute_task(&self, task: Job) -> Result<(), crossbeam_channel::SendError<Job>> {
        // create a new worker either if the current worker count is lower than the core pool size
        // or if there are no idle threads and the current worker count is lower than the max pool size
        let worker_count_data = &self.worker_data.worker_count_data;
        let mut worker_count_val = worker_count_data.worker_count.load(Ordering::Relaxed);
        let (mut curr_worker_count, idle_worker_count) = WorkerCountData::split(worker_count_val);
        let mut curr_idle_count = idle_worker_count;

        // always create a new worker if current pool size is below core size
        if curr_worker_count < self.core_size {
            let witnessed =
                worker_count_data.try_increment_worker_total(worker_count_val, self.core_size);

            // the witnessed value matched the expected value, meaning the initial exchange succeeded, or the final witnessed
            // value is still below the coreSize, meaning the increment eventually succeeded
            if witnessed == worker_count_val
                || WorkerCountData::get_total_count(witnessed) < self.core_size
            {
                let worker = Worker::new(
                    self.channel_data.receiver.clone(),
                    Arc::clone(&self.worker_data),
                    None,
                );

                worker.start(Some(task));
                return Ok(());
            }

            curr_worker_count = WorkerCountData::get_total_count(witnessed);
            curr_idle_count = WorkerCountData::get_idle_count(witnessed);
            worker_count_val = witnessed;
        }

        // create a new worker if the current worker count is below the maxSize and the pool has been observed to be busy
        // (no idle workers) during the invocation of this function
        if curr_worker_count < self.max_size && (idle_worker_count == 0 || curr_idle_count == 0) {
            let witnessed =
                worker_count_data.try_increment_worker_total(worker_count_val, self.max_size);

            if witnessed == worker_count_val
                || WorkerCountData::get_total_count(witnessed) < self.max_size
            {
                let worker = Worker::new(
                    self.channel_data.receiver.clone(),
                    Arc::clone(&self.worker_data),
                    Some(self.keep_alive),
                );

                worker.start(Some(task));
                return Ok(());
            }
        }

        self.send_task_to_channel(task)
    }

    /// Blocks the current thread until there aren't any non-idle threads anymore.
    /// This includes work started after calling this function.
    /// This function blocks until the next time this `ThreadPool` completes all of its work,
    /// except if all threads are idle and the channel is empty at the time of calling this
    /// function, in which case it will fast-return.
    ///
    /// This utilizes a `Condvar` that is notified by workers when they complete a job and notice
    /// that the channel is currently empty and it was the last thread to finish the current
    /// generation of work (i.e. when incrementing the idle worker counter brings the value
    /// up to the total worker counter, meaning it's the last thread to become idle).
    pub fn join(&self) {
        self.inner_join(None);
    }

    /// Blocks the current thread until there aren't any non-idle threads anymore or until the
    /// specified time_out Duration passes, whichever happens first.
    /// This includes work started after calling this function.
    /// This function blocks until the next time this `ThreadPool` completes all of its work,
    /// (or until the time_out is reached) except if all threads are idle and the channel is
    /// empty at the time of calling this function, in which case it will fast-return.
    ///
    /// This utilizes a `Condvar` that is notified by workers when they complete a job and notice
    /// that the channel is currently empty and it was the last thread to finish the current
    /// generation of work (i.e. when incrementing the idle worker counter brings the value
    /// up to the total worker counter, meaning it's the last thread to become idle).
    pub fn join_timeout(&self, time_out: Duration) {
        self.inner_join(Some(time_out));
    }

    /// Destroy this `ThreadPool` by claiming ownership and dropping the value,
    /// causing the `Sender` to drop thus disconnecting the channel.
    /// Threads in this pool that are currently executing a task will finish what
    /// they're doing until they check the channel, discovering that it has been
    /// disconnected from the sender and thus terminate their work loop.
    ///
    /// If other clones of this `ThreadPool` exist the sender will remain intact
    /// and tasks submitted to those clones will succeed, this includes pending
    /// `AsyncTask` instances as they hold an owned clone of the `ThreadPool`
    /// to re-submit awakened futures.
    pub fn shutdown(self) {
        drop(self);
    }

    /// Destroy this `ThreadPool` by claiming ownership and dropping the value,
    /// causing the `Sender` to drop thus disconnecting the channel.
    /// Threads in this pool that are currently executing a task will finish what
    /// they're doing until they check the channel, discovering that it has been
    /// disconnected from the sender and thus terminate their work loop.
    ///
    /// If other clones of this `ThreadPool` exist the sender will remain intact
    /// and tasks submitted to those clones will succeed, this includes pending
    /// `AsyncTask` instances as they hold an owned clone of the `ThreadPool`
    /// to re-submit awakened futures.
    ///
    /// This function additionally joins all workers after dropping the pool to
    /// wait for all work to finish.
    /// Blocks the current thread until there aren't any non-idle threads anymore.
    /// This function blocks until this `ThreadPool` completes all of its work,
    /// except if all threads are idle and the channel is empty at the time of
    /// calling this function, in which case the join will fast-return.
    /// If other live clones of this `ThreadPool` exist this behaves the same as
    /// calling [`join`](struct.ThreadPool.html#method.join) on a live `ThreadPool` as tasks submitted
    /// to one of the clones will be joined as well.
    ///
    /// The join utilizes a `Condvar` that is notified by workers when they complete a job and notice
    /// that the channel is currently empty and it was the last thread to finish the current
    /// generation of work (i.e. when incrementing the idle worker counter brings the value
    /// up to the total worker counter, meaning it's the last thread to become idle).
    pub fn shutdown_join(self) {
        self.inner_shutdown_join(None);
    }

    /// Destroy this `ThreadPool` by claiming ownership and dropping the value,
    /// causing the `Sender` to drop thus disconnecting the channel.
    /// Threads in this pool that are currently executing a task will finish what
    /// they're doing until they check the channel, discovering that it has been
    /// disconnected from the sender and thus terminate their work loop.
    ///
    /// If other clones of this `ThreadPool` exist the sender will remain intact
    /// and tasks submitted to those clones will succeed, this includes pending
    /// `AsyncTask` instances as they hold an owned clone of the `ThreadPool`
    /// to re-submit awakened futures.
    ///
    /// This function additionally joins all workers after dropping the pool to
    /// wait for all work to finish.
    /// Blocks the current thread until there aren't any non-idle threads anymore or until the
    /// specified time_out Duration passes, whichever happens first.
    /// This function blocks until this `ThreadPool` completes all of its work,
    /// (or until the time_out is reached) except if all threads are idle and the channel is
    /// empty at the time of calling this function, in which case the join will fast-return.
    /// If other live clones of this `ThreadPool` exist this behaves the same as
    /// calling [`join`](struct.ThreadPool.html#method.join) on a live `ThreadPool` as tasks submitted
    /// to one of the clones will be joined as well.
    ///
    /// The join utilizes a `Condvar` that is notified by workers when they complete a job and notice
    /// that the channel is currently empty and it was the last thread to finish the current
    /// generation of work (i.e. when incrementing the idle worker counter brings the value
    /// up to the total worker counter, meaning it's the last thread to become idle).
    pub fn shutdown_join_timeout(self, timeout: Duration) {
        self.inner_shutdown_join(Some(timeout));
    }

    /// Return the name of this pool, used as prefix for each worker thread.
    pub fn get_name(&self) -> &str {
        &self.worker_data.pool_name
    }

    /// Starts all core workers by creating core idle workers until the total worker count reaches the core count.
    ///
    /// Returns immediately if the current worker count is already >= core size.
    pub fn start_core_threads(&self) {
        let worker_count_data = &self.worker_data.worker_count_data;

        let core_size = self.core_size;
        let mut curr_worker_count = worker_count_data.worker_count.load(Ordering::Relaxed);
        if WorkerCountData::get_total_count(curr_worker_count) >= core_size {
            return;
        }

        loop {
            let witnessed = worker_count_data.try_increment_worker_count(
                curr_worker_count,
                INCREMENT_TOTAL | INCREMENT_IDLE,
                core_size,
            );

            if WorkerCountData::get_total_count(witnessed) >= core_size {
                return;
            }

            let worker = Worker::new(
                self.channel_data.receiver.clone(),
                Arc::clone(&self.worker_data),
                None,
            );

            worker.start(None);
            curr_worker_count = witnessed;
        }
    }

    #[inline]
    fn send_task_to_channel(&self, task: Job) -> Result<(), crossbeam_channel::SendError<Job>> {
        self.channel_data.sender.send(task)?;

        Ok(())
    }

    #[inline]
    fn inner_join(&self, time_out: Option<Duration>) {
        ThreadPool::_do_join(&self.worker_data, &self.channel_data.receiver, time_out);
    }

    #[inline]
    fn inner_shutdown_join(self, timeout: Option<Duration>) {
        let current_worker_data = self.worker_data.clone();
        let receiver = self.channel_data.receiver.clone();
        drop(self);
        ThreadPool::_do_join(&current_worker_data, &receiver, timeout);
    }

    #[inline]
    fn _do_join(
        current_worker_data: &Arc<WorkerData>,
        receiver: &crossbeam_channel::Receiver<Job>,
        time_out: Option<Duration>,
    ) {
        // no thread is currently doing any work, return
        if ThreadPool::is_idle(current_worker_data, receiver) {
            return;
        }

        let join_generation = current_worker_data.join_generation.load(Ordering::SeqCst);
        let guard = current_worker_data
            .join_notify_mutex
            .lock()
            .expect("could not get join notify mutex lock");

        match time_out {
            Some(time_out) => {
                let _ret_guard = current_worker_data
                    .join_notify_condvar
                    .wait_timeout_while(guard, time_out, |_| {
                        join_generation
                            == current_worker_data.join_generation.load(Ordering::Relaxed)
                            && !ThreadPool::is_idle(current_worker_data, receiver)
                    })
                    .expect("could not wait for join condvar");
            }
            None => {
                let _ret_guard = current_worker_data
                    .join_notify_condvar
                    .wait_while(guard, |_| {
                        join_generation
                            == current_worker_data.join_generation.load(Ordering::Relaxed)
                            && !ThreadPool::is_idle(current_worker_data, receiver)
                    })
                    .expect("could not wait for join condvar");
            }
        };

        // increment generation if current thread is first thread to be awakened from wait in current generation
        let _ = current_worker_data.join_generation.compare_exchange(
            join_generation,
            join_generation.wrapping_add(1),
            Ordering::SeqCst,
            Ordering::SeqCst,
        );
    }

    #[inline]
    fn is_idle(
        current_worker_data: &Arc<WorkerData>,
        receiver: &crossbeam_channel::Receiver<Job>,
    ) -> bool {
        let (current_worker_count, current_idle_count) =
            current_worker_data.worker_count_data.get_both();
        current_idle_count == current_worker_count && receiver.is_empty()
    }
}

impl Default for ThreadPool {
    /// create default ThreadPool with the core pool size being equal to the number of cpus
    /// and the max_size being twice the core size with a 60 second timeout
    fn default() -> Self {
        let num_cpus = num_cpus::get();
        ThreadPool::new(
            num_cpus,
            std::cmp::max(num_cpus, num_cpus * 2),
            Duration::from_secs(60),
        )
    }
}

/// A helper struct to aid creating a new `ThreadPool` using default values where no value was
/// explicitly specified.
#[derive(Default)]
pub struct Builder {
    name: Option<String>,
    core_size: Option<usize>,
    max_size: Option<usize>,
    keep_alive: Option<Duration>,
}

impl Builder {
    /// Create a new `Builder`.
    pub fn new() -> Builder {
        Builder::default()
    }

    /// Specify the name of the `ThreadPool` that will be used as prefix for the name of each worker thread.
    /// By default the name is "rusty_pool_x" with x being a static pool counter.
    pub fn name(mut self, name: String) -> Builder {
        self.name = Some(name);
        self
    }

    /// Specify the core pool size for the `ThreadPool`. The core pool size is the number of threads that stay alive
    /// for the entire lifetime of the `ThreadPool` or, to be more precise, its channel. These threads are spawned if
    /// a task is submitted to the `ThreadPool` and the current worker count is below the core pool size.
    pub fn core_size(mut self, size: usize) -> Builder {
        self.core_size = Some(size);
        self
    }

    /// Specify the maximum pool size this `ThreadPool` may scale up to. This numbers represents the maximum number
    /// of threads that may be alive at the same time within this pool. Additional threads above the core pool size
    /// only remain idle for the duration specified by the `keep_alive` parameter before terminating. If the core pool
    /// is full, the current pool size is below the max size and there are no idle threads then additional threads
    /// will be spawned.
    pub fn max_size(mut self, size: usize) -> Builder {
        self.max_size = Some(size);
        self
    }

    /// Specify the duration for which additional threads outside the core pool remain alive while not receiving any
    /// work before giving up and terminating.
    pub fn keep_alive(mut self, keep_alive: Duration) -> Builder {
        self.keep_alive = Some(keep_alive);
        self
    }

    /// Build the `ThreadPool` using the parameters previously supplied to this `Builder` using the number of CPUs as
    /// default core size if none provided, twice the core size as max size if none provided, 60 seconds keep_alive
    /// if none provided and the default naming (rusty_pool_{pool_number}) if none provided.
    /// This function calls [`ThreadPool::new`](struct.ThreadPool.html#method.new) or
    /// [`ThreadPool::new_named`](struct.ThreadPool.html#method.new_named) depending on whether a name was provided.
    ///
    /// # Panics
    ///
    /// Building might panic if the `max_size` is 0 or lower than `core_size` or exceeds half
    /// the size of usize. This restriction exists because two counters (total workers and
    /// idle counters) are stored within one AtomicUsize.
    pub fn build(self) -> ThreadPool {
        use std::cmp::{max, min};

        let core_size = self.core_size.unwrap_or_else(|| {
            let num_cpus = num_cpus::get();
            if let Some(max_size) = self.max_size {
                min(MAX_SIZE, min(num_cpus, max_size))
            } else {
                min(MAX_SIZE, num_cpus)
            }
        });
        // handle potential overflow: try using twice the core_size or return core_size
        let max_size = self
            .max_size
            .unwrap_or_else(|| min(MAX_SIZE, max(core_size, core_size * 2)));
        let keep_alive = self.keep_alive.unwrap_or_else(|| Duration::from_secs(60));

        if let Some(name) = self.name {
            ThreadPool::new_named(name, core_size, max_size, keep_alive)
        } else {
            ThreadPool::new(core_size, max_size, keep_alive)
        }
    }
}

#[derive(Clone)]
struct Worker {
    receiver: crossbeam_channel::Receiver<Job>,
    worker_data: Arc<WorkerData>,
    keep_alive: Option<Duration>,
}

impl Worker {
    fn new(
        receiver: crossbeam_channel::Receiver<Job>,
        worker_data: Arc<WorkerData>,
        keep_alive: Option<Duration>,
    ) -> Self {
        Worker {
            receiver,
            worker_data,
            keep_alive,
        }
    }

    fn start(self, task: Option<Job>) {
        let worker_name = format!(
            "{}_thread_{}",
            self.worker_data.pool_name,
            self.worker_data
                .worker_number
                .fetch_add(1, Ordering::Relaxed)
        );

        thread::Builder::new()
            .name(worker_name)
            .spawn(move || {
                let mut sentinel = Sentinel::new(&self);

                if let Some(task) = task {
                    self.exec_task_and_notify(&mut sentinel, task);
                }

                loop {
                    // the two functions return different error types, but since the error type doesn't matter it is mapped to unit to make them compatible
                    let received_task: Result<Job, _> = match self.keep_alive {
                        Some(keep_alive) => self.receiver.recv_timeout(keep_alive).map_err(|_| ()),
                        None => self.receiver.recv().map_err(|_| ()),
                    };

                    match received_task {
                        Ok(task) => {
                            // mark current as no longer idle and execute task
                            self.worker_data.worker_count_data.decrement_worker_idle();
                            self.exec_task_and_notify(&mut sentinel, task);
                        }
                        Err(_) => {
                            // either channel was broken because the sender disconnected or, if can_timeout is true, the Worker has not received any work during
                            // its keep_alive period and will now terminate, break working loop
                            break;
                        }
                    }
                }

                // can decrement both at once as the thread only gets here from an idle state
                // (if waiting for work and receiving an error)
                self.worker_data.worker_count_data.decrement_both();
            })
            .expect("could not spawn thread");
    }

    #[inline]
    fn exec_task_and_notify(&self, sentinel: &mut Sentinel, task: Job) {
        sentinel.is_working = true;
        task();
        sentinel.is_working = false;
        // can already mark as idle as this thread will continue the work loop
        self.mark_idle_and_notify_joiners_if_no_work();
    }

    #[inline]
    fn mark_idle_and_notify_joiners_if_no_work(&self) {
        let (old_total_count, old_idle_count) = self
            .worker_data
            .worker_count_data
            .increment_worker_idle_ret_both();
        // if the last task was the last one in the current generation,
        // i.e. if incrementing the idle count leads to the idle count
        // being equal to the total worker count, notify joiners
        if old_total_count == old_idle_count + 1 && self.receiver.is_empty() {
            let _lock = self
                .worker_data
                .join_notify_mutex
                .lock()
                .expect("could not get join notify mutex lock");
            self.worker_data.join_notify_condvar.notify_all();
        }
    }
}

/// Type that exists to manage worker exit on panic.
///
/// This type is constructed once per `Worker` and implements `Drop` to handle proper worker exit
/// in case the worker panics when executing the current task or anywhere else in its work loop.
/// If the `Sentinel` is dropped at the end of the worker's work loop and the current thread is
/// panicking, handle worker exit the same way as if the task completed normally (if the worker
/// panicked while executing a submitted task) then clone the worker and start it with an initial
/// task of `None`.
struct Sentinel<'s> {
    is_working: bool,
    worker_ref: &'s Worker,
}

impl Sentinel<'_> {
    fn new(worker_ref: &Worker) -> Sentinel<'_> {
        Sentinel {
            is_working: false,
            worker_ref,
        }
    }
}

impl Drop for Sentinel<'_> {
    fn drop(&mut self) {
        if thread::panicking() {
            if self.is_working {
                // worker thread panicked in the process of executing a submitted task,
                // run the same logic as if the task completed normally and mark it as
                // idle, since a clone of this worker will start the work loop as idle
                // thread
                self.worker_ref.mark_idle_and_notify_joiners_if_no_work();
            }

            let worker = self.worker_ref.clone();
            worker.start(None);
        }
    }
}

const WORKER_IDLE_MASK: usize = MAX_SIZE;
const INCREMENT_TOTAL: usize = 1 << (BITS / 2);
const INCREMENT_IDLE: usize = 1;

/// Struct that stores and handles an `AtomicUsize` that stores the total worker count
/// in the higher half of bits and the idle worker count in the lower half of bits.
/// This allows to to increment / decrement both counters in a single atomic operation.
#[derive(Default)]
struct WorkerCountData {
    worker_count: AtomicUsize,
}

impl WorkerCountData {
    fn get_total_worker_count(&self) -> usize {
        let curr_val = self.worker_count.load(Ordering::Relaxed);
        WorkerCountData::get_total_count(curr_val)
    }

    fn get_idle_worker_count(&self) -> usize {
        let curr_val = self.worker_count.load(Ordering::Relaxed);
        WorkerCountData::get_idle_count(curr_val)
    }

    fn get_both(&self) -> (usize, usize) {
        let curr_val = self.worker_count.load(Ordering::Relaxed);
        WorkerCountData::split(curr_val)
    }

    // keep for testing and completion's sake
    #[allow(dead_code)]
    fn increment_both(&self) -> (usize, usize) {
        let old_val = self
            .worker_count
            .fetch_add(INCREMENT_TOTAL | INCREMENT_IDLE, Ordering::Relaxed);
        WorkerCountData::split(old_val)
    }

    fn decrement_both(&self) -> (usize, usize) {
        let old_val = self
            .worker_count
            .fetch_sub(INCREMENT_TOTAL | INCREMENT_IDLE, Ordering::Relaxed);
        WorkerCountData::split(old_val)
    }

    fn try_increment_worker_total(&self, expected: usize, max_total: usize) -> usize {
        self.try_increment_worker_count(expected, INCREMENT_TOTAL, max_total)
    }

    fn try_increment_worker_count(
        &self,
        mut expected: usize,
        increment: usize,
        max_total: usize,
    ) -> usize {
        loop {
            match self.worker_count.compare_exchange_weak(
                expected,
                expected + increment,
                Ordering::Relaxed,
                Ordering::Relaxed,
            ) {
                Ok(witnessed) => return witnessed,
                Err(witnessed) if WorkerCountData::get_total_count(witnessed) >= max_total => {
                    return witnessed
                }
                Err(witnessed) => expected = witnessed,
            }
        }
    }

    // keep for testing and completion's sake
    #[allow(dead_code)]
    fn increment_worker_total(&self) -> usize {
        let old_val = self
            .worker_count
            .fetch_add(INCREMENT_TOTAL, Ordering::Relaxed);
        WorkerCountData::get_total_count(old_val)
    }

    // keep for testing and completion's sake
    #[allow(dead_code)]
    fn increment_worker_total_ret_both(&self) -> (usize, usize) {
        let old_val = self
            .worker_count
            .fetch_add(INCREMENT_TOTAL, Ordering::Relaxed);
        WorkerCountData::split(old_val)
    }

    // keep for testing and completion's sake
    #[allow(dead_code)]
    fn decrement_worker_total(&self) -> usize {
        let old_val = self
            .worker_count
            .fetch_sub(INCREMENT_TOTAL, Ordering::Relaxed);
        WorkerCountData::get_total_count(old_val)
    }

    // keep for testing and completion's sake
    #[allow(dead_code)]
    fn decrement_worker_total_ret_both(&self) -> (usize, usize) {
        let old_val = self
            .worker_count
            .fetch_sub(INCREMENT_TOTAL, Ordering::Relaxed);
        WorkerCountData::split(old_val)
    }

    // keep for testing and completion's sake
    #[allow(dead_code)]
    fn increment_worker_idle(&self) -> usize {
        let old_val = self
            .worker_count
            .fetch_add(INCREMENT_IDLE, Ordering::Relaxed);
        WorkerCountData::get_idle_count(old_val)
    }

    fn increment_worker_idle_ret_both(&self) -> (usize, usize) {
        let old_val = self
            .worker_count
            .fetch_add(INCREMENT_IDLE, Ordering::Relaxed);
        WorkerCountData::split(old_val)
    }

    fn decrement_worker_idle(&self) -> usize {
        let old_val = self
            .worker_count
            .fetch_sub(INCREMENT_IDLE, Ordering::Relaxed);
        WorkerCountData::get_idle_count(old_val)
    }

    // keep for testing and completion's sake
    #[allow(dead_code)]
    fn decrement_worker_idle_ret_both(&self) -> (usize, usize) {
        let old_val = self
            .worker_count
            .fetch_sub(INCREMENT_IDLE, Ordering::Relaxed);
        WorkerCountData::split(old_val)
    }

    #[inline]
    fn split(val: usize) -> (usize, usize) {
        let total_count = val >> (BITS / 2);
        let idle_count = val & WORKER_IDLE_MASK;
        (total_count, idle_count)
    }

    #[inline]
    fn get_total_count(val: usize) -> usize {
        val >> (BITS / 2)
    }

    #[inline]
    fn get_idle_count(val: usize) -> usize {
        val & WORKER_IDLE_MASK
    }
}

/// struct containing data shared between workers
struct WorkerData {
    pool_name: String,
    worker_count_data: WorkerCountData,
    worker_number: AtomicUsize,
    join_notify_condvar: Condvar,
    join_notify_mutex: Mutex<()>,
    join_generation: AtomicUsize,
}

struct ChannelData {
    sender: crossbeam_channel::Sender<Job>,
    receiver: crossbeam_channel::Receiver<Job>,
}

#[cfg(test)]
mod tests {

    use std::sync::{
        atomic::{AtomicUsize, Ordering},
        Arc,
    };
    use std::thread;
    use std::time::Duration;

    use super::Builder;
    use super::ThreadPool;
    use super::WorkerCountData;

    #[test]
    fn it_works() {
        let pool = ThreadPool::new(2, 10, Duration::from_secs(5));
        let count = Arc::new(AtomicUsize::new(0));

        let count1 = count.clone();
        pool.execute(move || {
            count1.fetch_add(1, Ordering::Relaxed);
            thread::sleep(std::time::Duration::from_secs(4));
        });
        let count2 = count.clone();
        pool.execute(move || {
            count2.fetch_add(1, Ordering::Relaxed);
            thread::sleep(std::time::Duration::from_secs(4));
        });
        let count3 = count.clone();
        pool.execute(move || {
            count3.fetch_add(1, Ordering::Relaxed);
            thread::sleep(std::time::Duration::from_secs(4));
        });
        let count4 = count.clone();
        pool.execute(move || {
            count4.fetch_add(1, Ordering::Relaxed);
            thread::sleep(std::time::Duration::from_secs(4));
        });
        thread::sleep(std::time::Duration::from_secs(20));
        let count5 = count.clone();
        pool.execute(move || {
            count5.fetch_add(1, Ordering::Relaxed);
            thread::sleep(std::time::Duration::from_secs(4));
        });
        let count6 = count.clone();
        pool.execute(move || {
            count6.fetch_add(1, Ordering::Relaxed);
            thread::sleep(std::time::Duration::from_secs(4));
        });
        let count7 = count.clone();
        pool.execute(move || {
            count7.fetch_add(1, Ordering::Relaxed);
            thread::sleep(std::time::Duration::from_secs(4));
        });
        let count8 = count.clone();
        pool.execute(move || {
            count8.fetch_add(1, Ordering::Relaxed);
            thread::sleep(std::time::Duration::from_secs(4));
        });
        thread::sleep(std::time::Duration::from_secs(20));

        let count = count.load(Ordering::Relaxed);
        let worker_count = pool.get_current_worker_count();

        assert_eq!(count, 8);
        // assert that non-core threads were dropped
        assert_eq!(worker_count, 2);
        assert_eq!(pool.get_idle_worker_count(), 2);
    }

    #[test]
    #[ignore]
    fn stress_test() {
        let pool = Arc::new(ThreadPool::new(3, 50, Duration::from_secs(30)));
        let counter = Arc::new(AtomicUsize::new(0));

        for _ in 0..5 {
            let pool_1 = pool.clone();
            let clone = counter.clone();
            pool.execute(move || {
                for _ in 0..160 {
                    let clone = clone.clone();
                    pool_1.execute(move || {
                        clone.fetch_add(1, Ordering::Relaxed);
                        thread::sleep(Duration::from_secs(10));
                    });
                }

                thread::sleep(Duration::from_secs(20));

                for _ in 0..160 {
                    let clone = clone.clone();
                    pool_1.execute(move || {
                        clone.fetch_add(1, Ordering::Relaxed);
                        thread::sleep(Duration::from_secs(10));
                    });
                }
            });
        }

        thread::sleep(Duration::from_secs(10));
        assert_eq!(pool.get_current_worker_count(), 50);

        pool.join();
        assert_eq!(counter.load(Ordering::Relaxed), 1600);
        thread::sleep(Duration::from_secs(31));
        assert_eq!(pool.get_current_worker_count(), 3);
    }

    #[test]
    fn test_join() {
        // use a thread pool with one thread max to make sure the second task starts after
        // pool.join() is called to make sure it joins future tasks as well
        let pool = ThreadPool::new(0, 1, Duration::from_secs(5));
        let counter = Arc::new(AtomicUsize::new(0));

        let clone_1 = counter.clone();
        pool.execute(move || {
            thread::sleep(Duration::from_secs(5));
            clone_1.fetch_add(1, Ordering::Relaxed);
        });

        let clone_2 = counter.clone();
        pool.execute(move || {
            thread::sleep(Duration::from_secs(5));
            clone_2.fetch_add(1, Ordering::Relaxed);
        });

        pool.join();

        assert_eq!(counter.load(Ordering::Relaxed), 2);
    }

    #[test]
    fn test_join_timeout() {
        let pool = ThreadPool::new(0, 1, Duration::from_secs(5));
        let counter = Arc::new(AtomicUsize::new(0));

        let clone = counter.clone();
        pool.execute(move || {
            thread::sleep(Duration::from_secs(10));
            clone.fetch_add(1, Ordering::Relaxed);
        });

        pool.join_timeout(Duration::from_secs(5));
        assert_eq!(counter.load(Ordering::Relaxed), 0);
        pool.join();
        assert_eq!(counter.load(Ordering::Relaxed), 1);
    }

    #[test]
    fn test_shutdown() {
        let pool = ThreadPool::new(1, 3, Duration::from_secs(5));
        let counter = Arc::new(AtomicUsize::new(0));

        let clone_1 = counter.clone();
        pool.execute(move || {
            thread::sleep(Duration::from_secs(5));
            clone_1.fetch_add(1, Ordering::Relaxed);
        });

        let clone_2 = counter.clone();
        pool.execute(move || {
            thread::sleep(Duration::from_secs(5));
            clone_2.fetch_add(1, Ordering::Relaxed);
        });

        let clone_3 = counter.clone();
        pool.execute(move || {
            thread::sleep(Duration::from_secs(5));
            clone_3.fetch_add(1, Ordering::Relaxed);
        });

        // since the pool only allows three threads this won't get the chance to run
        let clone_4 = counter.clone();
        pool.execute(move || {
            thread::sleep(Duration::from_secs(5));
            clone_4.fetch_add(1, Ordering::Relaxed);
        });

        pool.join_timeout(Duration::from_secs(2));
        pool.shutdown();

        thread::sleep(Duration::from_secs(5));

        assert_eq!(counter.load(Ordering::Relaxed), 3);
    }

    #[should_panic(
        expected = "max_size must be greater than 0 and greater or equal to the core pool size"
    )]
    #[test]
    fn test_panic_on_0_max_pool_size() {
        ThreadPool::new(0, 0, Duration::from_secs(2));
    }

    #[should_panic(
        expected = "max_size must be greater than 0 and greater or equal to the core pool size"
    )]
    #[test]
    fn test_panic_on_smaller_max_than_core_pool_size() {
        ThreadPool::new(10, 4, Duration::from_secs(2));
    }

    #[should_panic(expected = "max_size may not exceed")]
    #[test]
    fn test_panic_on_max_size_exceeds_half_usize() {
        ThreadPool::new(
            10,
            1 << ((std::mem::size_of::<usize>() * 8) / 2),
            Duration::from_secs(2),
        );
    }

    #[test]
    fn test_empty_join() {
        let pool = ThreadPool::new(3, 10, Duration::from_secs(10));
        pool.join();
    }

    #[test]
    fn test_join_when_complete() {
        let pool = ThreadPool::new(3, 10, Duration::from_secs(5));

        pool.execute(|| {
            thread::sleep(Duration::from_millis(5000));
        });

        thread::sleep(Duration::from_millis(5000));
        pool.join();
    }

    #[test]
    fn test_full_usage() {
        let pool = ThreadPool::new(5, 50, Duration::from_secs(10));

        for _ in 0..100 {
            pool.execute(|| {
                thread::sleep(Duration::from_secs(30));
            });
        }

        thread::sleep(Duration::from_secs(10));
        assert_eq!(pool.get_current_worker_count(), 50);

        pool.join();
        thread::sleep(Duration::from_secs(15));
        assert_eq!(pool.get_current_worker_count(), 5);
    }

    #[test]
    fn test_shutdown_join() {
        let pool = ThreadPool::new(1, 1, Duration::from_secs(5));
        let counter = Arc::new(AtomicUsize::new(0));

        let clone = counter.clone();
        pool.execute(move || {
            thread::sleep(Duration::from_secs(10));
            clone.fetch_add(1, Ordering::Relaxed);
        });

        pool.shutdown_join();
        assert_eq!(counter.load(Ordering::Relaxed), 1);
    }

    #[test]
    fn test_shutdown_join_timeout() {
        let pool = ThreadPool::new(1, 1, Duration::from_secs(5));
        let counter = Arc::new(AtomicUsize::new(0));

        let clone = counter.clone();
        pool.execute(move || {
            thread::sleep(Duration::from_secs(10));
            clone.fetch_add(1, Ordering::Relaxed);
        });

        pool.shutdown_join_timeout(Duration::from_secs(5));
        assert_eq!(counter.load(Ordering::Relaxed), 0);
    }

    #[test]
    fn test_empty_shutdown_join() {
        let pool = ThreadPool::new(1, 5, Duration::from_secs(5));
        pool.shutdown_join();
    }

    #[test]
    fn test_shutdown_core_pool() {
        let pool = ThreadPool::new(5, 5, Duration::from_secs(1));
        let counter = Arc::new(AtomicUsize::new(0));
        let worker_data = pool.worker_data.clone();

        for _ in 0..7 {
            let clone = counter.clone();
            pool.execute(move || {
                thread::sleep(Duration::from_secs(2));
                clone.fetch_add(1, Ordering::Relaxed);
            });
        }

        assert_eq!(pool.get_current_worker_count(), 5);
        assert_eq!(pool.get_idle_worker_count(), 0);
        pool.shutdown_join();
        assert_eq!(counter.load(Ordering::Relaxed), 7);

        // give the workers time to exit
        thread::sleep(Duration::from_millis(50));
        assert_eq!(worker_data.worker_count_data.get_total_worker_count(), 0);
        assert_eq!(worker_data.worker_count_data.get_idle_worker_count(), 0);
    }

    #[test]
    fn test_shutdown_idle_core_pool() {
        let pool = ThreadPool::new(5, 5, Duration::from_secs(1));
        let counter = Arc::new(AtomicUsize::new(0));
        let worker_data = pool.worker_data.clone();

        for _ in 0..5 {
            let clone = counter.clone();
            pool.execute(move || {
                clone.fetch_add(1, Ordering::Relaxed);
            });
        }

        pool.shutdown_join();
        assert_eq!(counter.load(Ordering::Relaxed), 5);

        // give the workers time to exit
        thread::sleep(Duration::from_millis(50));
        assert_eq!(worker_data.worker_count_data.get_total_worker_count(), 0);
        assert_eq!(worker_data.worker_count_data.get_idle_worker_count(), 0);
    }

    #[test]
    fn test_shutdown_on_complete() {
        let pool = ThreadPool::new(3, 10, Duration::from_secs(5));

        pool.execute(|| {
            thread::sleep(Duration::from_millis(5000));
        });

        thread::sleep(Duration::from_millis(5000));
        pool.shutdown_join();
    }

    #[test]
    fn test_shutdown_after_complete() {
        let pool = ThreadPool::new(3, 10, Duration::from_secs(5));

        pool.execute(|| {
            thread::sleep(Duration::from_millis(5000));
        });

        thread::sleep(Duration::from_millis(7000));
        pool.shutdown_join();
    }

    #[test]
    fn worker_count_test() {
        let worker_count_data = WorkerCountData::default();

        assert_eq!(worker_count_data.get_total_worker_count(), 0);
        assert_eq!(worker_count_data.get_idle_worker_count(), 0);

        worker_count_data.increment_both();

        assert_eq!(worker_count_data.get_total_worker_count(), 1);
        assert_eq!(worker_count_data.get_idle_worker_count(), 1);

        for _ in 0..10 {
            worker_count_data.increment_both();
        }

        assert_eq!(worker_count_data.get_total_worker_count(), 11);
        assert_eq!(worker_count_data.get_idle_worker_count(), 11);

        for _ in 0..15 {
            worker_count_data.increment_worker_total();
        }

        for _ in 0..7 {
            worker_count_data.increment_worker_idle();
        }

        assert_eq!(worker_count_data.get_total_worker_count(), 26);
        assert_eq!(worker_count_data.get_idle_worker_count(), 18);
        assert_eq!(worker_count_data.get_both(), (26, 18));

        for _ in 0..5 {
            worker_count_data.decrement_both();
        }

        assert_eq!(worker_count_data.get_total_worker_count(), 21);
        assert_eq!(worker_count_data.get_idle_worker_count(), 13);

        for _ in 0..13 {
            worker_count_data.decrement_worker_total();
        }

        for _ in 0..4 {
            worker_count_data.decrement_worker_idle();
        }

        assert_eq!(worker_count_data.get_total_worker_count(), 8);
        assert_eq!(worker_count_data.get_idle_worker_count(), 9);

        for _ in 0..456789 {
            worker_count_data.increment_worker_total();
        }

        assert_eq!(worker_count_data.get_total_worker_count(), 456797);
        assert_eq!(worker_count_data.get_idle_worker_count(), 9);
        assert_eq!(worker_count_data.get_both(), (456797, 9));

        for _ in 0..23456 {
            worker_count_data.increment_worker_idle();
        }

        assert_eq!(worker_count_data.get_total_worker_count(), 456797);
        assert_eq!(worker_count_data.get_idle_worker_count(), 23465);

        for _ in 0..150000 {
            worker_count_data.decrement_worker_total();
        }

        assert_eq!(worker_count_data.get_total_worker_count(), 306797);
        assert_eq!(worker_count_data.get_idle_worker_count(), 23465);

        for _ in 0..10000 {
            worker_count_data.decrement_worker_idle();
        }

        assert_eq!(worker_count_data.get_total_worker_count(), 306797);
        assert_eq!(worker_count_data.get_idle_worker_count(), 13465);
    }

    #[test]
    fn test_try_increment_worker_total() {
        let worker_count_data = WorkerCountData::default();

        let witness = worker_count_data.try_increment_worker_total(0, 5);
        assert_eq!(witness, 0);
        assert_eq!(worker_count_data.get_total_worker_count(), 1);
        assert_eq!(worker_count_data.get_idle_worker_count(), 0);

        let witness = worker_count_data.try_increment_worker_total(0, 5);
        assert_eq!(witness, 0x0000_0001_0000_0000);
        assert_eq!(worker_count_data.get_total_worker_count(), 2);
        assert_eq!(worker_count_data.get_idle_worker_count(), 0);

        worker_count_data.try_increment_worker_total(2, 5);
        worker_count_data.try_increment_worker_total(2, 5);
        worker_count_data.try_increment_worker_total(4, 5);
        worker_count_data.try_increment_worker_total(4, 5);
        let witness = worker_count_data.try_increment_worker_total(2, 5);
        assert_eq!(WorkerCountData::get_total_count(witness), 5);
        assert_eq!(WorkerCountData::get_idle_count(witness), 0);
        assert_eq!(worker_count_data.get_total_worker_count(), 5);
        assert_eq!(worker_count_data.get_idle_worker_count(), 0);

        let worker_count_data = Arc::new(worker_count_data);

        let mut join_handles = Vec::with_capacity(5);
        for _ in 0..5 {
            let worker_count_data = worker_count_data.clone();
            let join_handle = thread::spawn(move || {
                for i in 0..5 {
                    worker_count_data.try_increment_worker_total(5 + i, 15);
                }
            });

            join_handles.push(join_handle);
        }

        for join_handle in join_handles {
            join_handle.join().unwrap();
        }

        assert_eq!(worker_count_data.get_total_worker_count(), 15);
        assert_eq!(worker_count_data.get_idle_worker_count(), 0);
    }

    #[test]
    fn test_join_enqueued_task() {
        let pool = ThreadPool::new(3, 50, Duration::from_secs(20));
        let counter = Arc::new(AtomicUsize::new(0));

        for _ in 0..160 {
            let clone = counter.clone();
            pool.execute(move || {
                thread::sleep(Duration::from_secs(10));
                clone.fetch_add(1, Ordering::Relaxed);
            });
        }

        thread::sleep(Duration::from_secs(5));
        assert_eq!(pool.get_current_worker_count(), 50);

        pool.join();
        assert_eq!(counter.load(Ordering::Relaxed), 160);
        thread::sleep(Duration::from_secs(21));
        assert_eq!(pool.get_current_worker_count(), 3);
    }

    #[test]
    fn test_panic_all() {
        let pool = ThreadPool::new(3, 10, Duration::from_secs(2));

        for _ in 0..10 {
            pool.execute(|| {
                panic!("test");
            })
        }

        pool.join();
        thread::sleep(Duration::from_secs(5));
        assert_eq!(pool.get_current_worker_count(), 3);
        assert_eq!(pool.get_idle_worker_count(), 3);
    }

    #[test]
    fn test_panic_some() {
        let pool = ThreadPool::new(3, 10, Duration::from_secs(5));
        let counter = Arc::new(AtomicUsize::new(0));

        for i in 0..10 {
            let clone = counter.clone();
            pool.execute(move || {
                if i < 3 || i % 2 == 0 {
                    thread::sleep(Duration::from_secs(5));
                    clone.fetch_add(1, Ordering::Relaxed);
                } else {
                    thread::sleep(Duration::from_secs(5));
                    panic!("test");
                }
            })
        }

        pool.join();
        assert_eq!(counter.load(Ordering::Relaxed), 6);
        assert_eq!(pool.get_current_worker_count(), 10);
        assert_eq!(pool.get_idle_worker_count(), 10);
        thread::sleep(Duration::from_secs(10));
        assert_eq!(pool.get_current_worker_count(), 3);
        assert_eq!(pool.get_idle_worker_count(), 3);
    }

    #[test]
    fn test_panic_all_core_threads() {
        let pool = ThreadPool::new(3, 3, Duration::from_secs(1));
        let counter = Arc::new(AtomicUsize::new(0));

        for _ in 0..3 {
            pool.execute(|| {
                panic!("test");
            })
        }

        pool.join();

        for i in 0..10 {
            let clone = counter.clone();
            pool.execute(move || {
                if i < 3 || i % 2 == 0 {
                    clone.fetch_add(1, Ordering::Relaxed);
                } else {
                    thread::sleep(Duration::from_secs(5));
                    panic!("test");
                }
            })
        }

        pool.join();
        assert_eq!(counter.load(Ordering::Relaxed), 6);
        assert_eq!(pool.get_current_worker_count(), 3);
        assert_eq!(pool.get_idle_worker_count(), 3);
    }

    #[test]
    fn test_drop_all_receivers() {
        let pool = ThreadPool::new(0, 3, Duration::from_secs(5));
        let counter = Arc::new(AtomicUsize::new(0));

        for _ in 0..3 {
            let clone = counter.clone();
            pool.execute(move || {
                clone.fetch_add(1, Ordering::Relaxed);
            })
        }

        pool.join();
        assert_eq!(counter.load(Ordering::Relaxed), 3);
        thread::sleep(Duration::from_secs(10));
        assert_eq!(pool.get_current_worker_count(), 0);

        for _ in 0..3 {
            let clone = counter.clone();
            pool.execute(move || {
                clone.fetch_add(1, Ordering::Relaxed);
            })
        }

        pool.join();
        assert_eq!(counter.load(Ordering::Relaxed), 6);
    }

    #[test]
    fn test_evaluate() {
        let pool = ThreadPool::new(0, 3, Duration::from_secs(5));

        let count = AtomicUsize::new(0);

        let handle = pool.evaluate(move || {
            count.fetch_add(1, Ordering::Relaxed);
            thread::sleep(Duration::from_secs(5));
            count.fetch_add(1, Ordering::Relaxed)
        });

        let result = handle.await_complete();
        assert_eq!(result, 1);
    }

    #[test]
    fn test_multiple_evaluate() {
        let pool = ThreadPool::new(0, 3, Duration::from_secs(5));

        let count = AtomicUsize::new(0);
        let handle_1 = pool.evaluate(move || {
            for _ in 0..10000 {
                count.fetch_add(1, Ordering::Relaxed);
            }

            thread::sleep(Duration::from_secs(5));

            for _ in 0..10000 {
                count.fetch_add(1, Ordering::Relaxed);
            }

            count.load(Ordering::Relaxed)
        });

        let handle_2 = pool.evaluate(move || {
            let result = handle_1.await_complete();
            let mut count = result;

            count += 15000;

            thread::sleep(Duration::from_secs(5));

            count += 20000;

            count
        });

        let result = handle_2.await_complete();
        assert_eq!(result, 55000);
    }

    #[should_panic(expected = "could not receive message because channel was cancelled")]
    #[test]
    fn test_evaluate_panic() {
        let pool = Builder::new().core_size(5).max_size(50).build();

        let handle = pool.evaluate(|| {
            let x = 3;

            if x == 3 {
                panic!("expected panic")
            }

            return x;
        });

        handle.await_complete();
    }

    #[test]
    fn test_complete_fut() {
        let pool = ThreadPool::new(0, 3, Duration::from_secs(5));

        async fn async_fn() -> i8 {
            8
        }

        let fut = async_fn();
        let handle = pool.complete(fut);

        assert_eq!(handle.await_complete(), 8);
    }

    #[cfg(feature = "async")]
    #[test]
    fn test_spawn() {
        let pool = ThreadPool::default();

        async fn add(x: i32, y: i32) -> i32 {
            x + y
        }

        async fn multiply(x: i32, y: i32) -> i32 {
            x * y
        }

        let count = Arc::new(AtomicUsize::new(0));
        let clone = count.clone();
        pool.spawn(async move {
            let a = add(2, 3).await; // 5
            let b = add(2, a).await; // 7
            let c = multiply(2, b).await; // 14
            let d = multiply(a, add(2, 1).await).await; // 15
            let e = add(c, d).await; // 29

            clone.fetch_add(e as usize, Ordering::Relaxed);
        });

        pool.join();
        assert_eq!(count.load(Ordering::Relaxed), 29);
    }

    #[cfg(feature = "async")]
    #[test]
    fn test_spawn_await() {
        let pool = ThreadPool::default();

        async fn sub(x: i32, y: i32) -> i32 {
            x - y
        }

        async fn div(x: i32, y: i32) -> i32 {
            x / y
        }

        let handle = pool.spawn_await(async {
            let a = sub(120, 10).await; // 110
            let b = div(sub(a, 10).await, 4).await; // 25
            div(sub(b, div(10, 2).await).await, 5).await // 4
        });

        assert_eq!(handle.await_complete(), 4)
    }

    #[test]
    fn test_drop_oneshot_receiver() {
        let pool = Builder::new().core_size(1).max_size(1).build();

        let handle = pool.evaluate(|| {
            thread::sleep(Duration::from_secs(5));
            5
        });

        drop(handle);
        thread::sleep(Duration::from_secs(10));
        let current_thread_index = pool.worker_data.worker_number.load(Ordering::Relaxed);
        // current worker number of 2 means that one worker has started (initial number is 1 -> first worker gets and increments number)
        // indicating that the worker did not panic else it would have been replaced.
        assert_eq!(current_thread_index, 2);
    }

    #[test]
    fn test_builder_max_size() {
        Builder::new().max_size(1).build();
    }

    #[test]
    fn test_multi_thread_join() {
        let pool = ThreadPool::default();
        let count = Arc::new(AtomicUsize::new(0));

        let clone1 = count.clone();
        pool.execute(move || {
            thread::sleep(Duration::from_secs(10));
            clone1.fetch_add(1, Ordering::Relaxed);
        });

        let clone2 = count.clone();
        pool.execute(move || {
            thread::sleep(Duration::from_secs(10));
            clone2.fetch_add(1, Ordering::Relaxed);
        });

        let clone3 = count.clone();
        pool.execute(move || {
            thread::sleep(Duration::from_secs(10));
            clone3.fetch_add(1, Ordering::Relaxed);
        });

        let pool2 = pool.clone();
        let clone4 = count.clone();
        thread::spawn(move || {
            thread::sleep(Duration::from_secs(5));
            pool2.execute(move || {
                thread::sleep(Duration::from_secs(15));
                clone4.fetch_add(2, Ordering::Relaxed);
            });
        });

        let pool3 = pool.clone();
        let pool4 = pool.clone();
        let pool5 = pool.clone();
        let h1 = thread::spawn(move || {
            pool3.join();
        });
        let h2 = thread::spawn(move || {
            pool4.join();
        });
        let h3 = thread::spawn(move || {
            pool5.join();
        });
        h1.join().unwrap();
        h2.join().unwrap();
        h3.join().unwrap();

        assert_eq!(count.load(Ordering::Relaxed), 5);
    }

    #[test]
    fn test_start_core_threads() {
        let pool = Builder::new().core_size(5).build();
        pool.start_core_threads();
        assert_eq!(pool.get_current_worker_count(), 5);
        assert_eq!(pool.get_idle_worker_count(), 5);
    }

    #[test]
    fn test_start_and_use_core_threads() {
        let pool = Builder::new()
            .core_size(5)
            .max_size(10)
            .keep_alive(Duration::from_secs(u64::MAX))
            .build();
        pool.start_core_threads();
        let result = pool.evaluate(|| 5 + 5).await_complete();
        assert_eq!(result, 10);
        assert_eq!(pool.get_current_worker_count(), 5);
    }
}