1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
//! # rusty_grammar
//!
//! rusty_grammar is a library that makes use of a modified CYK algorithm to define grammars and understand language.
//!
//! # About
//! The rusty_grammar library leverages the [CYK algorithm](https://en.wikipedia.org/wiki/CYK_algorithm). It modifies it to work for words and parts of speech/writing. For example adjectives, nouns, prepositional phrases and etc. Exposes traits to define a WordBank and Grammar set. Of course grammars must be defined in CNF form. For more information on that find it at [Chomsky Normal Form](https://en.wikipedia.org/wiki/Chomsky_normal_form).
//!
//! See the rusty_grammar [website](https://docs.rs/rusty_grammar) for additional documentation and usage examples.
//!
//! # Quick Example
//! ```ignore
//! struct G {}
//! impl<'grammar> Grammar<'grammar> for G {
//!     fn convert(&self) -> Vec<GrammarRule<'grammar>> {
//! 	let mut rules = Vec::new();
//! 	rules.push(GrammarRule{ left_symbol: "ActionSentence", right_symbol: "Verb NounClause | Verb NounClause PrepClause" });
//! 	rules.push(GrammarRule{ left_symbol: "NounClause", right_symbol: "Count ANoun | Adjective Noun" });
//! 	rules.push(GrammarRule{ left_symbol: "PrepClause", right_symbol: "Prep NounClause" });
//! 	rules.push(GrammarRule{ left_symbol: "ANoun", right_symbol: "Adjective Noun" });
//! 	rules.push(GrammarRule{ left_symbol: "Adjective", right_symbol: "adjective" });
//! 	rules.push(GrammarRule{ left_symbol: "Prep", right_symbol: "prep" });
//! 	rules.push(GrammarRule{ left_symbol: "Verb", right_symbol: "verb" });
//! 	rules.push(GrammarRule{ left_symbol: "Noun", right_symbol: "noun" });
//! 	rules.push(GrammarRule{ left_symbol: "Count", right_symbol: "definiteArticle | indefiniteArticle | number" });
//! 	rules
//!     }
//! }
//!
//! struct WB {}
//! impl WordBank for WB {
//!     fn lookup(&self, word: &str) -> &str {
//! 	match word {
//! 	    "examine" => "verb",
//! 	    "sword" => "noun",
//! 	    "rusty" => "adjective",
//! 	    _ => "dne"
//! 	}
//!     }
//! }
//!
//! fn main() {
//!     let g = G{};
//!     let wb = WB{};
//!     let input = "examine rusty sword";
//!     let cyk: CYK<WB> = CYK::new(g, wb);
//!     let res = cyk.memoized_parse(input);
//!     println!("{}", res);
//!     println!("final_res: {:?}", res.get_final());
//! }
//! ```
////////////////////////////////////////////////////////////////////////////////
use std::collections::HashMap;
use std::fmt;
use std::sync::Mutex;
use itertools::{iproduct, join};
use linked_hash_map::LinkedHashMap;

#[derive(Clone, Debug)]
/// The Struct to define a Grammar Rule.
pub struct GrammarRule<'symbol> {
    /// The left side of a grammar rule.
    left_symbol: &'symbol str,
    /// The right side of a grammar rule.
    right_symbol: &'symbol str,
}

/// The trait for a grammar. For a struct to be a grammar it must implement these methods.
pub trait Grammar<'grammar> {
    /// The convert function takes whatever struct you define and generates a Vector of Grammar Rules.
    fn convert(&self) -> Vec<GrammarRule<'grammar>>;
}

/// The trait for a wordbank. For a struct to be a wordbank it must implment these methods.
pub trait WordBank {
    /// The lookup function takes whatever struct you have given a word and looks up the type of word it is. i.e. noun.
    fn lookup(&self, word: &str) -> &str;
}

/// The struct for the CYK algorithm.
pub struct CYK<'rules, W> {
    /// Grammar Rules: the list of grammar rules in CNF form.
    grammar_rules: Vec<GrammarRule<'rules>>,
    /// The struct that implments the WordBank Trait.
    word_bank: W,
}

#[derive(Clone, Debug, Hash, PartialEq)]
/// A struct to represent the poisiton of the CYK rule lookup in a hashmap. i.e. the key of a hashmap.
struct MatrixIndicator {
    x: usize,
    y: usize,
}

impl fmt::Display for MatrixIndicator {
    /// A print method for the MatrixIndicator method.
    ///
    /// # Arguments
    ///
    /// * `f` - A fmt Formatter to be passed to the write macro.
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
	write!(f, "({}, {})", self.x, self.y)
    }
}

// To implment Equality for the MatrixIndicator struct.
impl Eq for MatrixIndicator {}

#[derive(Clone, Debug)]
/// A struct to store the result of the CYK algorithm.
pub struct MatrixResult {
    /// A hashmap to store all the rule conversions done by the algorithm.
    map: HashMap<MatrixIndicator, String>,
    /// The final result of what the given sentence was.
    final_res: Option<String>,
    /// The number of words in the given sentence.
    num_words: usize,
}

impl MatrixResult {
    /// A function to create an instance of the MatrixResult struct.
    fn new() -> Self {
	Self {
	    map: HashMap::new(),
	    final_res: None,
	    num_words: 0
	}
    }

    /// A function to get the final result of the CYK algorithm.
    pub fn get_final(&self) -> Option<String> {
	self.final_res.clone()
    }

    /// A function to set the final result of the CYK algorithm.
    ///
    /// # Arguments
    ///
    /// * `final_res` - The string to set for the final result of CYK algo.
    fn set_final(&mut self, final_res: String) {
	self.final_res = Some(final_res);
    }

    /// A function to insert a result into a position in the map of the result.
    fn insert(&mut self, mi: MatrixIndicator, res: String) {
	self.map.insert(mi, res);
    }

    /// A function to set the number of words in the Matrix Result. Refers to the number of words in the sentence given.
    fn set_num_words(&mut self, size: usize) {
	self.num_words = size;
    }

    /// A function to get the number of words in the Matrix Result. Refers to the number of words in the sentence given.
    pub fn get_num_words(&self) -> usize {
	self.num_words
    }
}

impl fmt::Display for MatrixResult {
    /// Function to display the MatrixResult. Shows the table printed in line by line format.
    ///
    /// # Arguments
    ///
    /// * `f` - A fmt Formatter to be passed to the write macro.
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
	if self.num_words == 0 {
	    return write!(f, "No result caluclated.");
	}

	let mut output = Vec::new();
	output.push("LN# 1:".to_owned());

	for position in 0..self.num_words {
	    output.push(format!("\t({}, {}):", position+1, position+1));
	    let entry = self.map.get(&MatrixIndicator{ x: position, y: position }).expect("Can not be empty");
	    output.push(format!("{}", entry));
	}
	output.push("\n".to_owned());

	let mut line_num = 2;
	for ln in 1..self.num_words {
	    output.push(format!("LN# {}:", line_num));

	    for x in 0..self.num_words-ln {
		let entry = self.map.get(&MatrixIndicator{ x, y: x+ln }).expect("Can not be empty");
		if entry == "" {
		    continue;
		}
		output.push(format!("\t({}, {}):", x, x+ln));
		output.push(format!("{}", entry));
	    }
	    output.push("\n".to_owned());
	    line_num += 1;
	}

	write!(f, "{}", join(&output, ""))
    }
}


lazy_static::lazy_static! {
    /// Used for the memoized version of parse. Memoizes 100 sentences.
    static ref MEMO: Mutex<LinkedHashMap<&'static str, MatrixResult>> = Mutex::new(LinkedHashMap::with_capacity(101));
}

/// A function to join two strings into one.
///
/// # Arguments
///
/// * `str1` - The frist string to be split and combined.
/// * `str2` - The second string to be split and combined.
fn vec_production(str1: &str, str2: &str) -> Vec<String> {
    iproduct!(
	str1.split(" ").collect::<Vec<&str>>(),
	str2.split(" ").collect::<Vec<&str>>())
	.map(|vals| {
	    join(&[vals.0, vals.1], " ")
	})
	.collect::<Vec<String>>()
}

impl<'grammar, W> CYK<'grammar, W> where
    W: WordBank {
    /// Creates a new instance of a CYK algo with a set of rules and a word brank.
    ///
    /// # Arguments
    ///
    /// * `rules` - The object that implements the Grammar Trait.
    /// * `word_bank` - The object that implements the WordBank Trait.
    pub fn new<G>(rules: G, word_bank: W) -> Self where
	G: Grammar<'grammar> {
	Self {
	    grammar_rules: rules.convert(),
	    word_bank
	}
    }

    /// Finding the terminal left side rule for a grammar given a terminal right side rule.
    fn find_terminal_assign(&self, terminal: &str) -> String {
	let mut res = Vec::new();

	for grammar in &self.grammar_rules {
	    for rule in grammar.right_symbol.split(" | ").collect::<Vec<&str>>() {
		if rule == terminal {
		    res.push(grammar.left_symbol.clone());
		}
	    }
	}
	
	join(res, " ")
    }

    /// A function that parses the given sentence for the rules and wordbank in the CYK struct.
    ///
    /// # Arguments
    ///
    /// * `input` - The input string to be parsed and validated.
    pub fn parse<'word>(&self, input: &'word str) -> MatrixResult {
	let mut result: MatrixResult = MatrixResult::new();
	
	let words = input.split_whitespace().collect::<Vec<&str>>();
	let num_words = words.len();
	result.set_num_words(num_words);
	
	for (pos, word) in words.iter().enumerate() {
	    let terminal = self.word_bank.lookup(word);
	    result.insert(MatrixIndicator{ x: pos, y: pos }, self.find_terminal_assign(terminal));
	}

	for l in 1..=num_words {
	    for i in 0..(num_words - l) {
		let j = i + l;

		let mut targets: Vec<String> = Vec::new();
		for k in 1..=j {
		    let empty = String::from("");
		    let fv = result.map.get(&MatrixIndicator{ x: i, y: i+k-1 }).unwrap_or(&empty);
		    let sv = result.map.get(&MatrixIndicator{ x: i+k, y: j }).unwrap_or(&empty);
		    let mut products = vec_production(fv, sv);
		    targets.append(&mut products);
		}

		let mut res = String::from("");
		for target in targets {
		    let target_symbol = self.find_terminal_assign(target.as_str());
		    
		    if !res.contains(&target_symbol) {
			res = match res.as_str() {
			    "" => target_symbol,
			    _ => join(&[res, target_symbol], " ")
			};
		    }
		}

		result.insert(MatrixIndicator{ x: i, y: j }, res);
	    }
	}
	
	let final_result = result.map.get(&MatrixIndicator{ x: 0, y: num_words - 1 }).expect("Can not be empty").to_owned();
	result.set_final(final_result);
	
	return result;
    }

    /// A memoized version of the parse function. i.e. if sentence exists in map just instant return results.
    ///
    /// # Arguments
    ///
    /// * `input` - The input string to be parsed and validated.
    pub fn memoized_parse<'word>(&self, input: &'static str) -> MatrixResult {
	if MEMO.lock().expect("Memo should not be NONE.").contains_key(input) {
	    return MEMO.lock().expect("Memo should not be NONE.").get(input).expect("Should never be none.").clone();
	}

	let res = self.parse(input);
	MEMO.lock().expect("Memo should not be NONE.").insert(input, res.clone());
	if MEMO.lock().expect("Memo should not be NONE.").len() > 100 {
	    MEMO.lock().expect("Memo should not be NONE.").pop_back();
	}

	res
    }


}

#[cfg(test)]
mod tests {
    use super::*;
    
    struct G {}

    impl<'grammar> Grammar<'grammar> for G {
	fn convert(&self) -> Vec<GrammarRule<'grammar>> {
	    let mut rules = Vec::new();
	    rules.push(GrammarRule{ left_symbol: "ActionSentence", right_symbol: "Verb Noun | Verb NounClause | ActionSentence PrepClause" });
	    rules.push(GrammarRule{ left_symbol: "DescriptiveSentence", right_symbol: "Noun Verb Adjective" });
	    rules.push(GrammarRule{ left_symbol: "NounClause", right_symbol: "Count ANoun | Adjective Noun"});
	    rules.push(GrammarRule{ left_symbol: "PrepClause", right_symbol: "Prep Noun" });
	    rules.push(GrammarRule{ left_symbol: "ANoun", right_symbol: "Adjective Noun" });
	    rules.push(GrammarRule{ left_symbol: "Adjective", right_symbol: "adjective" });
	    rules.push(GrammarRule{ left_symbol: "Prep", right_symbol: "prep" });
	    rules.push(GrammarRule{ left_symbol: "Verb", right_symbol: "verb" });
	    rules.push(GrammarRule{ left_symbol: "Noun", right_symbol: "noun" });
	    rules.push(GrammarRule{ left_symbol: "Count", right_symbol: "definiteArticle | indefiniteArticle | number" });
	    rules
	}
    }

    struct WB {}

    impl WordBank for WB {
	fn lookup(&self, word: &str) -> &str {
	    match word {
		"examine" => "verb",
		"sword" => "noun",
		"rusty" => "adjective",
		"google" => "verb",
		// "google" => "verb | noun",
		"is" => "verb",
		"cool" => "adjective",
		"from" => "prep",
		"apple" => "noun",
		"take" => "verb",
		"table" => "noun",
		_ => "fuck"
	    }
	}
    }
    
    #[test]
    fn basic_test() {
	let g = G{};
	let wb = WB{};
	let input = "examine rusty sword";
	let cyk: CYK<WB> = CYK::new(g, wb);
	let res = cyk.parse(input);
	assert_eq!(Some("ActionSentence".to_owned()), res.get_final());
    }

    #[test]
    fn double_meaning_test() {
	let g = G{};
	let wb = WB{};
	let input = "google sword";
	let cyk: CYK<WB> = CYK::new(g, wb);
	let res = cyk.parse(input);
	assert_eq!(Some("ActionSentence".to_owned()), res.get_final());

	// TODO: allow double meaning words 
	// let input2 = "google is cool";
	// let res2 = cyk.parse(input2);
	// assert_eq!(Some("DescriptiveSentence".to_owned()), res.get_final());
    }

    #[test]
    fn complicated_test() {
	let g = G{};
	let wb = WB{};
	let input = "take apple from table";
	let cyk: CYK<WB> = CYK::new(g, wb);
	let res = cyk.parse(input);
	assert_eq!(Some("ActionSentence".to_owned()), res.get_final());
    }
}