pub struct DecisionTreeRegressor<T: RealNumber> { /* private fields */ }Expand description
Decision Tree Regressor
Implementations§
Source§impl<T: RealNumber> DecisionTreeRegressor<T>
impl<T: RealNumber> DecisionTreeRegressor<T>
Sourcepub fn new() -> Self
pub fn new() -> Self
Creates a new instance of the decision tree regressor with default parameters.
Sourcepub fn with_params(
min_samples_split: Option<u16>,
max_depth: Option<u16>,
) -> Result<Self, Box<dyn Error>>
pub fn with_params( min_samples_split: Option<u16>, max_depth: Option<u16>, ) -> Result<Self, Box<dyn Error>>
Creates a new instance of the decision tree regressor with custom parameters.
§Arguments
min_samples_split- The minimum number of samples required to split an internal node.max_depth- The maximum depth of the tree.
§Returns
A new instance of the decision tree regressor with the specified parameters.
§Errors
This method will return an error if the minimum number of samples to split is less than 2 or if the maximum depth is less than 1.
Sourcepub fn set_min_samples_split(
&mut self,
min_samples_split: u16,
) -> Result<(), Box<dyn Error>>
pub fn set_min_samples_split( &mut self, min_samples_split: u16, ) -> Result<(), Box<dyn Error>>
Sourcepub fn min_samples_split(&self) -> u16
pub fn min_samples_split(&self) -> u16
Returns the minimum number of samples required to split an internal node.
Trait Implementations§
Source§impl<T: Clone + RealNumber> Clone for DecisionTreeRegressor<T>
impl<T: Clone + RealNumber> Clone for DecisionTreeRegressor<T>
Source§fn clone(&self) -> DecisionTreeRegressor<T>
fn clone(&self) -> DecisionTreeRegressor<T>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<T: Debug + RealNumber> Debug for DecisionTreeRegressor<T>
impl<T: Debug + RealNumber> Debug for DecisionTreeRegressor<T>
Source§impl<T: RealNumber> Default for DecisionTreeRegressor<T>
impl<T: RealNumber> Default for DecisionTreeRegressor<T>
Source§impl<T: RealNumber> RegressionMetrics<T> for DecisionTreeRegressor<T>
impl<T: RealNumber> RegressionMetrics<T> for DecisionTreeRegressor<T>
Source§fn mse(
&self,
y_true: &DVector<T>,
y_pred: &DVector<T>,
) -> Result<T, Box<dyn Error>>
fn mse( &self, y_true: &DVector<T>, y_pred: &DVector<T>, ) -> Result<T, Box<dyn Error>>
Computes the mean squared error (MSE) between the true values and the predicted values. Read more
Auto Trait Implementations§
impl<T> Freeze for DecisionTreeRegressor<T>
impl<T> RefUnwindSafe for DecisionTreeRegressor<T>where
T: RefUnwindSafe,
impl<T> Send for DecisionTreeRegressor<T>
impl<T> Sync for DecisionTreeRegressor<T>
impl<T> Unpin for DecisionTreeRegressor<T>where
T: Unpin,
impl<T> UnwindSafe for DecisionTreeRegressor<T>where
T: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.