1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
//! RustType is a pure Rust alternative to libraries like FreeType.
//!
//! The current capabilities of RustType:
//!
//! * Reading TrueType formatted fonts and font collections. This includes `*.ttf` as well as a subset
//!   of `*.otf` font files.
//! * Retrieving glyph shapes and commonly used properties for a font and its glyphs.
//! * Laying out glyphs horizontally using horizontal and vertical metrics, and glyph-pair-specific kerning.
//! * Rasterising glyphs with sub-pixel positioning using an accurate analytical algorithm
//!   (not based on sampling).
//! * Managing a font cache on the GPU with the `gpu_cache` module. This keeps recently used glyph renderings
//!   in a dynamic cache in GPU memory to minimise texture uploads per-frame. It also allows you keep the draw
//!   call count for text very low, as all glyphs are kept in one GPU texture.
//!
//! Notable things that RustType does not support *yet*:
//!
//! * OpenType formatted fonts that are not just TrueType fonts (OpenType is a superset of TrueType). Notably
//!   there is no support yet for cubic Bezier curves used in glyphs.
//! * Font hinting.
//! * Ligatures of any kind.
//! * Some less common TrueType sub-formats.
//! * Right-to-left and vertical text layout.
//!
//! # Getting Started
//!
//! Add the following to your Cargo.toml:
//!
//! ```toml
//! [dependencies]
//! rusttype = "0.2.1"
//! ```
//!
//! To hit the ground running with RustType, look at the `simple.rs` example supplied with the crate. It
//! demonstrates loading a font file, rasterising an arbitrary string, and displaying the result as ASCII art.
//! If you prefer to just look at the documentation, the entry point for loading fonts is `FontCollection`,
//! from which you can access individual fonts, then their glyphs.
//!
//! # Glyphs
//!
//! The glyph API uses wrapper structs to augment a glyph with
//! information such as scaling and positioning, making relevant methods that make use of this information
//! available as appropriate. For example, given a `Glyph` `glyph` obtained directly from a `Font`:
//!
//! ```no_run
//! # use rusttype::*;
//! # let glyph: Glyph<'static> = unimplemented!();
//! // One of the few things you can do with an unsized, positionless glyph is get its id.
//! let id = glyph.id();
//! let glyph = glyph.scaled(Scale::uniform(10.0));
//! // Now glyph is a ScaledGlyph, you can do more with it, as well as what you can do with Glyph.
//! // For example, you can access the correctly scaled horizontal metrics for the glyph.
//! let h_metrics = glyph.h_metrics();
//! let glyph = glyph.positioned(point(5.0, 3.0));
//! // Now glyph is a PositionedGlyph, and you can do even more with it, e.g. drawing.
//! glyph.draw(|x, y, v| {}); // In this case the pixel values are not used.
//! ```
//!
//! # Unicode terminology
//!
//! This crate uses terminology for computerised typography as specified by the Unicode standard. If you are
//! not sure of the differences between a code point, a character, and a glyph, you may want to check the
//! [official Unicode glossary](http://unicode.org/glossary/), or alternatively, here's my take on it from a
//! practical perspective:
//!
//! * A character is what you would conventionally call a single symbol, independent of its appearance or
//!   representation in a particular font. Examples include `a`, `A`, `ä`, `å`, `1`, `*`, `Ω`, etc.
//! * A Unicode code point is the particular number that the Unicode standard associates with a particular
//!   character.
//!   Note however that code points also exist for things not conventionally thought of as characters by
//!   themselves, but can be combined to form characters, such as diacritics like accents. These
//!   "characters" are known in Unicode as "combining characters".
//!   E.g., a diaeresis (`¨`) has the code point U+0308. If this code point follows the code point U+0055
//!   (the letter `u`), this sequence represents the character `ü`. Note that there is also a
//!   single codepoint for `ü`, U+00FC. This means that what visually looks like the same string can have
//!   multiple different Unicode representations. Some fonts will have glyphs (see below) for one sequence of
//!   codepoints, but not another that has the same meaning. To deal with this problem it is recommended to use
//!   Unicode normalisation, as provided by, for example, the
//!   [unicode-normalization](http://crates.io/crates/unicode-normalization) crate, to convert to code point
//!   sequences that work with the font in question. Typically a font is more likely to support a single code
//!   point vs. a sequence with the same meaning, so the best normalisation to use is "canonical recomposition",
//!   known as NFC in the normalisation crate.
//! * A glyph is a particular font's shape to draw the character for a particular Unicode code point. This will
//!   have its own identifying number unique to the font, its ID.

#![cfg_attr(feature = "bench", feature(test))]
#[cfg(feature = "bench")]
extern crate test;
#[cfg(test)]
extern crate unicode_normalization;

extern crate arrayvec;
extern crate stb_truetype;
extern crate linked_hash_map;
extern crate ordered_float;

mod geometry;
mod rasterizer;

pub mod gpu_cache;

use std::sync::Arc;

pub use geometry::{Rect, Point, point, Vector, vector, Line, Curve};
use stb_truetype as tt;

/// A collection of fonts read straight from a font file's data. The data in the collection is not validated.
/// This structure may or may not own the font data.
#[derive(Clone, Debug)]
pub struct FontCollection<'a>(SharedBytes<'a>);
/// A single font. This may or may not own the font data.
#[derive(Clone)]
pub struct Font<'a> {
    info: tt::FontInfo<SharedBytes<'a>>
}

/// `SharedBytes` handles the lifetime of font data used in RustType. The data is either a shared
/// reference to externally owned data, or managed by reference counting. `SharedBytes` can be
/// conveniently used with `From` and `Into`, and dereferences to the contained bytes.
#[derive(Clone, Debug)]
pub enum SharedBytes<'a> {
    ByRef(&'a [u8]),
    ByArc(Arc<[u8]>),
}

impl<'a> ::std::ops::Deref for SharedBytes<'a> {
    type Target = [u8];
    fn deref(&self) -> &[u8] {
        match *self {
            SharedBytes::ByRef(bytes) => bytes,
            SharedBytes::ByArc(ref bytes) => &**bytes
        }
    }
}
impl<'a> From<&'a [u8]> for SharedBytes<'a> {
    fn from(bytes: &'a [u8]) -> SharedBytes<'a> {
        SharedBytes::ByRef(bytes)
    }
}
impl From<Arc<[u8]>> for SharedBytes<'static> {
    fn from(bytes: Arc<[u8]>) -> SharedBytes<'static> {
        SharedBytes::ByArc(bytes)
    }
}
impl From<Box<[u8]>> for SharedBytes<'static> {
    fn from(bytes: Box<[u8]>) -> SharedBytes<'static> {
        SharedBytes::ByArc(bytes.into())
    }
}
impl From<Vec<u8>> for SharedBytes<'static> {
    fn from(bytes: Vec<u8>) -> SharedBytes<'static> {
        SharedBytes::ByArc(bytes.into())
    }
}

/// Represents a Unicode code point.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct Codepoint(pub u32);
/// Represents either a Unicode code point, or a glyph identifier for a font.
///
/// This is used as input for functions that can accept code points or glyph identifiers.
///
/// You typically won't construct this type directly, instead relying on `From` and `Into`.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub enum CodepointOrGlyphId {
    Codepoint(Codepoint),
    GlyphId(GlyphId)
}
/// Represents a glyph identifier for a particular font. This identifier will not necessarily correspond to
/// the correct glyph in a font other than the one that it was obtained from.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct GlyphId(pub u32);
/// A single glyph of a font. this may either be a thin wrapper referring to the font and the glyph id, or
/// it may be a standalone glyph that owns the data needed by it.
///
/// A `Glyph` does not have an inherent scale or position associated with it. To augment a glyph with a
/// size, give it a scale using `scaled`. You can then position it using `positioned`.
#[derive(Clone)]
pub struct Glyph<'a> {
    inner: GlyphInner<'a>
}

#[derive(Clone)]
enum GlyphInner<'a> {
    Proxy(Font<'a>, u32),
    Shared(Arc<SharedGlyphData>)
}

#[derive(Debug)]
struct SharedGlyphData {
    id: u32,
    extents: Option<Rect<i32>>,
    scale_for_1_pixel: f32,
    unit_h_metrics: HMetrics,
    shape: Option<Vec<tt::Vertex>>
}
/// The "horizontal metrics" of a glyph. This is useful for calculating the horizontal offset of a glyph
/// from the previous one in a string when laying a string out horizontally.
#[derive(Copy, Clone, Debug, PartialEq, PartialOrd)]
pub struct HMetrics {
    /// The horizontal offset that the origin of the next glyph should be from the origin of this glyph.
    pub advance_width: f32,
    /// The horizontal offset between the origin of this glyph and the leftmost edge/point of the glyph.
    pub left_side_bearing: f32
}
#[derive(Copy, Clone, Debug, PartialEq, PartialOrd)]
/// The "vertical metrics" of a font at a particular scale. This is useful for calculating the amount of
/// vertical space to give a line of text, and for computing the vertical offset between successive lines.
pub struct VMetrics {
    /// The highest point that any glyph in the font extends to above the baseline. Typically positive.
    pub ascent: f32,
    /// The lowest point that any glyph in the font extends to below the baseline. Typically negative.
    pub descent: f32,
    /// The gap to leave between the descent of one line and the ascent of the next. This is of
    /// course only a guideline given by the font's designers.
    pub line_gap: f32
}
/// A glyph augmented with scaling information. You can query such a glyph for information that depends
/// on the scale of the glyph.
#[derive(Clone)]
pub struct ScaledGlyph<'a> {
    g: Glyph<'a>,
    api_scale: Scale,
    scale: Vector<f32>
}
/// A glyph augmented with positioning and scaling information. You can query such a glyph for information
/// that depends on the scale and position of the glyph.
#[derive(Clone)]
pub struct PositionedGlyph<'a> {
    sg: ScaledGlyph<'a>,
    position: Point<f32>,
    bb: Option<Rect<i32>>
}
/// Defines the size of a rendered face of a font, in pixels, horizontally and vertically. A vertical
/// scale of `y` pixels means that the distance betwen the ascent and descent lines (see `VMetrics`) of the
/// face will be `y` pixels. If `x` and `y` are equal the scaling is uniform. Non-uniform scaling by a factor
/// *f* in the horizontal direction is achieved by setting `x` equal to *f* times `y`.
#[derive(Copy, Clone, PartialEq, PartialOrd, Debug)]
pub struct Scale {
    /// Horizontal scale, in pixels.
    pub x: f32,
    /// Vertical scale, in pixels.
    pub y: f32
}

impl Scale {
    /// Uniform scaling, equivalent to `Scale { x: s, y: s }`.
    pub fn uniform(s: f32) -> Scale {
        Scale { x: s, y: s }
    }
}
impl From<char> for Codepoint {
    fn from(c: char) -> Codepoint {
        Codepoint(c as u32)
    }
}
impl From<Codepoint> for CodepointOrGlyphId {
    fn from(c: Codepoint) -> CodepointOrGlyphId {
        CodepointOrGlyphId::Codepoint(c)
    }
}
impl From<GlyphId> for CodepointOrGlyphId {
    fn from(g: GlyphId) -> CodepointOrGlyphId {
        CodepointOrGlyphId::GlyphId(g)
    }
}
impl From<char> for CodepointOrGlyphId {
    fn from(c: char) -> CodepointOrGlyphId {
        Codepoint(c as u32).into()
    }
}
impl<'a> FontCollection<'a> {
    /// Constructs a font collection from an array of bytes, typically loaded from a font file.
    /// This array may be owned (e.g. `Vec<u8>`), or borrowed (`&[u8]`).
    /// As long as `From<T>` is implemented for `Bytes` for some type `T`, `T` can be used as input.
    pub fn from_bytes<B: Into<SharedBytes<'a>>>(bytes: B) -> FontCollection<'a> {
        FontCollection(bytes.into())
    }
    /// In the common case that a font collection consists of only one font, this function
    /// consumes this font collection and turns it into a font. If this is not the case,
    /// or the font is not valid (read: not supported by this library), `None` is returned.
    pub fn into_font(self) -> Option<Font<'a>> {
        if tt::is_font(&self.0) && tt::get_font_offset_for_index(&self.0, 1).is_none() {
            tt::FontInfo::new(self.0, 0).map(
                |info| Font {
                    info: info
                })
        } else {
            None
        }
    }
    /// Gets the font at index `i` in the font collection, if it exists and is valid.
    /// The produced font borrows the font data that is either borrowed or owned by this font collection.
    pub fn font_at(&self, i: usize) -> Option<Font<'a>> {
        tt::get_font_offset_for_index(&self.0, i as i32)
            .and_then(|o| tt::FontInfo::new(self.0.clone(), o as usize))
            .map(|info| Font { info: info })
    }
    /// Converts `self` into an `Iterator` yielding each `Font` that exists within the collection.
    pub fn into_fonts(self) -> IntoFontsIter<'a> {
        IntoFontsIter {
            collection: self,
            next_index: 0,
        }
    }
}
pub struct IntoFontsIter<'a> {
    next_index: usize,
    collection: FontCollection<'a>,
}
impl<'a> Iterator for IntoFontsIter<'a> {
    type Item = Font<'a>;
    fn next(&mut self) -> Option<Self::Item> {
        self.collection.font_at(self.next_index).map(|font| {
            self.next_index += 1;
            font
        })
    }
}
impl<'a> Font<'a> {

    /// The "vertical metrics" for this font at a given scale. These metrics are shared by all of the glyphs
    /// in the font.
    /// See `VMetrics` for more detail.
    pub fn v_metrics(&self, scale: Scale) -> VMetrics {
        let vm = self.info.get_v_metrics();
        let scale = self.info.scale_for_pixel_height(scale.y);
        VMetrics {
            ascent: vm.ascent as f32 * scale,
            descent: vm.descent as f32 * scale,
            line_gap: vm.line_gap as f32 * scale
        }
    }

    /// The number of glyphs present in this font. Glyph identifiers for this font will always be in the range
    /// `0..self.glyph_count()`
    pub fn glyph_count(&self) -> usize {
        self.info.get_num_glyphs() as usize
    }

    /// Returns the corresponding glyph for a Unicode code point or a glyph id for this font.
    /// If id corresponds to a glyph identifier, the identifier must be valid (smaller than `self.glyph_count()`),
    /// otherwise `None` is returned.
    ///
    /// Note that code points without corresponding glyphs in this font map to the "undef" glyph, glyph 0.
    pub fn glyph<C: Into<CodepointOrGlyphId>>(&self, id: C) -> Option<Glyph<'a>> {
        let gid = match id.into() {
            CodepointOrGlyphId::Codepoint(Codepoint(c)) => self.info.find_glyph_index(c),
            CodepointOrGlyphId::GlyphId(GlyphId(gid)) => gid
        };
        // font clone either a reference clone, or arc clone
        Some(Glyph::new(GlyphInner::Proxy(self.clone(), gid)))
    }
    /// A convenience function.
    ///
    /// Returns an iterator that produces the glyphs corresponding to the code points or glyph ids produced
    /// by the given iterator `itr`.
    ///
    /// This is equivalent in behaviour to `itr.map(|c| font.glyph(c).unwrap())`.
    pub fn glyphs_for<I: Iterator>(&self, itr: I) -> GlyphIter<I> where I::Item: Into<CodepointOrGlyphId> {
        GlyphIter {
            font: self,
            itr: itr
        }
    }
    /// A convenience function for laying out glyphs for a string horizontally. It does not take control
    /// characters like line breaks into account, as treatment of these is likely to depend on the application.
    ///
    /// Note that this function does not perform Unicode normalisation. Composite characters (such as ö
    /// constructed from two code points, ¨ and o), will not be normalised to single code points. So if a font
    /// does not contain a glyph for each separate code point, but does contain one for the normalised single
    /// code point (which is common), the desired glyph will not be produced, despite being present in the font.
    /// Deal with this by performing Unicode normalisation on the input string before passing it to `layout`.
    /// The crate [unicode-normalization](http://crates.io/crates/unicode-normalization) is perfect for this
    /// purpose.
    ///
    /// Calling this function is equivalent to a longer sequence of operations involving `glyphs_for`, e.g.
    ///
    /// ```no_run
    /// # use rusttype::*;
    /// # let (scale, start) = (Scale::uniform(0.0), point(0.0, 0.0));
    /// # let font: Font = unimplemented!();
    /// font.layout("Hello World!", scale, start)
    /// # ;
    /// ```
    ///
    /// produces an iterator with behaviour equivalent to the following:
    ///
    /// ```no_run
    /// # use rusttype::*;
    /// # let (scale, start) = (Scale::uniform(0.0), point(0.0, 0.0));
    /// # let font: Font = unimplemented!();
    /// font.glyphs_for("Hello World!".chars())
    ///     .scan((None, 0.0), |&mut (mut last, mut x), g| {
    ///         let g = g.scaled(scale);
    ///         let w = g.h_metrics().advance_width
    ///             + last.map(|last| font.pair_kerning(scale, last, g.id())).unwrap_or(0.0);
    ///         let next = g.positioned(start + vector(x, 0.0));
    ///         last = Some(next.id());
    ///         x += w;
    ///         Some(next)
    ///     })
    /// # ;
    /// ```
    pub fn layout<'b, 'c>(&'b self, s: &'c str, scale: Scale, start: Point<f32>) -> LayoutIter<'b, 'c> {
        LayoutIter {
            font: self,
            chars: s.chars(),
            caret: 0.0,
            scale: scale,
            start: start,
            last_glyph: None
        }
    }
    /// Returns additional kerning to apply as well as that given by HMetrics for a particular pair of glyphs.
    pub fn pair_kerning<A, B>(&self, scale: Scale, first: A, second: B) -> f32
        where A: Into<CodepointOrGlyphId>, B: Into<CodepointOrGlyphId>
    {
        let (first, second) = (self.glyph(first).unwrap(), self.glyph(second).unwrap());
        let factor = self.info.scale_for_pixel_height(scale.y) * (scale.x / scale.y);
        let kern = self.info.get_glyph_kern_advance(first.id().0, second.id().0);
        factor * kern as f32
    }
}
#[derive(Clone)]
pub struct GlyphIter<'a, I: Iterator> where I::Item: Into<CodepointOrGlyphId> {
    font: &'a Font<'a>,
    itr: I
}
impl<'a, I: Iterator> Iterator for GlyphIter<'a, I> where I::Item: Into<CodepointOrGlyphId> {
    type Item = Glyph<'a>;
    fn next(&mut self) -> Option<Glyph<'a>> {
        self.itr.next().map(|c| self.font.glyph(c).unwrap())
    }
}
#[derive(Clone)]
pub struct LayoutIter<'a, 'b> {
    font: &'a Font<'a>,
    chars: ::std::str::Chars<'b>,
    caret: f32,
    scale: Scale,
    start: Point<f32>,
    last_glyph: Option<GlyphId>
}
impl<'a, 'b> Iterator for LayoutIter<'a, 'b> {
    type Item = PositionedGlyph<'a>;
    fn next(&mut self) -> Option<PositionedGlyph<'a>> {
        self.chars.next().map(|c| {
            let g = self.font.glyph(c).unwrap().scaled(self.scale);
            if let Some(last) = self.last_glyph {
                self.caret += self.font.pair_kerning(self.scale, last, g.id());
            }
            let g = g.positioned(point(self.start.x + self.caret, self.start.y));
            self.caret += g.sg.h_metrics().advance_width;
            self.last_glyph = Some(g.id());
            g
        })
    }
}
impl<'a> Glyph<'a> {
    fn new(inner: GlyphInner<'a>) -> Glyph<'a> {
        Glyph { inner }
    }
    /// The font to which this glyph belongs. If the glyph is a standalone glyph that owns its resources,
    /// it no longer has a reference to the font which it was created from (using `standalone()`). In which
    /// case, `None` is returned.
    pub fn font(&self) -> Option<&Font<'a>> {
        match self.inner {
            GlyphInner::Proxy(ref f, _) => Some(f),
            GlyphInner::Shared(_) => None
        }
    }
    /// The glyph identifier for this glyph.
    pub fn id(&self) -> GlyphId {
        match self.inner {
            GlyphInner::Proxy(_, id) => GlyphId(id),
            GlyphInner::Shared(ref data) => GlyphId(data.id),
        }
    }
    /// Augments this glyph with scaling information, making methods that depend on the scale of the glyph
    /// available.
    pub fn scaled(self, scale: Scale) -> ScaledGlyph<'a> {
        let (scale_x, scale_y) = match self.inner {
            GlyphInner::Proxy(ref font, _) => {
                let scale_y = font.info.scale_for_pixel_height(scale.y);
                let scale_x = scale_y * scale.x / scale.y;
                (scale_x, scale_y)
            }
            GlyphInner::Shared(ref data) => {
                let scale_y = data.scale_for_1_pixel * scale.y;
                let scale_x = scale_y * scale.x / scale.y;
                (scale_x, scale_y)
            }
        };
        ScaledGlyph {
            g: self,
            api_scale: scale,
            scale: vector(scale_x, scale_y)
        }
    }
    /// Turns a `Glyph<'a>` into a `Glyph<'static>`. This produces a glyph that owns its resources,
    /// extracted from the font. This glyph can outlive the font that it comes from.
    ///
    /// Calling `standalone()` on a standalone glyph shares the resources, and is equivalent to `clone()`.
    pub fn standalone(&self) -> Glyph<'static> {
        match self.inner {
            GlyphInner::Proxy(ref font, id) => Glyph::new(GlyphInner::Shared(Arc::new(SharedGlyphData {
                id: id,
                scale_for_1_pixel: font.info.scale_for_pixel_height(1.0),
                unit_h_metrics: {
                    let hm = font.info.get_glyph_h_metrics(id);
                    HMetrics {
                        advance_width: hm.advance_width as f32,
                        left_side_bearing: hm.left_side_bearing as f32
                    }
                },
                extents: font.info.get_glyph_box(id).map(|bb| Rect {
                    min: point(bb.x0 as i32, -(bb.y1 as i32)),
                    max: point(bb.x1 as i32, -(bb.y0 as i32))
                }),
                shape: font.info.get_glyph_shape(id)
            }))),
            GlyphInner::Shared(ref data) => Glyph::new(GlyphInner::Shared(data.clone()))
        }
    }
}
/// Part of a `Contour`, either a `Line` or a `Curve`.
#[derive(Copy, Clone, Debug)]
pub enum Segment {
    Line(Line),
    Curve(Curve)
}
/// A closed loop consisting of a sequence of `Segment`s.
#[derive(Clone, Debug)]
pub struct Contour {
    pub segments: Vec<Segment>
}
impl<'a> ScaledGlyph<'a> {
    /// The glyph identifier for this glyph.
    pub fn id(&self) -> GlyphId {
        self.g.id()
    }
    /// The font to which this glyph belongs. If the glyph is a standalone glyph that owns its resources,
    /// it no longer has a reference to the font which it was created from (using `standalone()`). In which
    /// case, `None` is returned.
    pub fn font(&self) -> Option<&Font<'a>> {
        self.g.font()
    }
    /// A reference to this glyph without the scaling
    pub fn into_unscaled(self) -> Glyph<'a> {
        self.g
    }
    /// Removes the scaling from this glyph
    pub fn unscaled(&self) -> &Glyph<'a> {
        &self.g
    }
    /// Augments this glyph with positioning information, making methods that depend on the position of the
    /// glyph available.
    pub fn positioned(self, p: Point<f32>) -> PositionedGlyph<'a> {
        let bb = match self.g.inner {
            GlyphInner::Proxy(ref font, id) => {
                font.info.get_glyph_bitmap_box_subpixel(id,
                                                        self.scale.x, self.scale.y,
                                                        p.x, p.y)
                    .map(|bb| Rect {
                        min: point(bb.x0, bb.y0),
                        max: point(bb.x1, bb.y1)
                    })
            }
            GlyphInner::Shared(ref data) => {
                data.extents.map(|bb| Rect {
                    min: point((bb.min.x as f32 * self.scale.x + p.x).floor() as i32,
                               (bb.min.y as f32 * self.scale.y + p.y).floor() as i32),
                    max: point((bb.max.x as f32 * self.scale.x + p.x).ceil() as i32,
                               (bb.max.y as f32 * self.scale.y + p.y).ceil() as i32)
                })
            }
        };
        PositionedGlyph {
            sg: self,
            position: p,
            bb: bb
        }
    }
    pub fn scale(&self) -> Scale {
        self.api_scale
    }
    /// Retrieves the "horizontal metrics" of this glyph. See `HMetrics` for more detail.
    pub fn h_metrics(&self) -> HMetrics {
        match self.g.inner {
            GlyphInner::Proxy(ref font, id) => {
                let hm = font.info.get_glyph_h_metrics(id);
                HMetrics {
                    advance_width: hm.advance_width as f32 * self.scale.x,
                    left_side_bearing: hm.left_side_bearing as f32 * self.scale.x
                }
            }
            GlyphInner::Shared(ref data) => {
                HMetrics {
                    advance_width: data.unit_h_metrics.advance_width * self.scale.x,
                    left_side_bearing: data.unit_h_metrics.left_side_bearing * self.scale.y
                }
            }
        }
    }
    fn shape_with_offset(&self, offset: Point<f32>) -> Option<Vec<Contour>> {
        use stb_truetype::VertexType;
        use std::mem::replace;
        match self.g.inner {
            GlyphInner::Proxy(ref font, id) => font.info.get_glyph_shape(id),
            GlyphInner::Shared(ref data) => data.shape.clone()
        }.map(|shape| {
            let mut result = Vec::new();
            let mut current = Vec::new();
            let mut last = point(0.0, 0.0);
            for v in shape {
                let end = point(v.x as f32 * self.scale.x + offset.x,
                                v.y as f32 * self.scale.y + offset.y);
                match v.vertex_type() {
                    VertexType::MoveTo if current.len() != 0 => {
                        result.push(Contour {
                            segments: replace(&mut current, Vec::new())
                        })
                    }
                    VertexType::LineTo => {
                        current.push(Segment::Line(Line {
                            p: [last, end]
                        }))
                    }
                    VertexType::CurveTo => {
                        let control = point(v.cx as f32 * self.scale.x + offset.x,
                                            v.cy as f32 * self.scale.y + offset.y);
                        current.push(Segment::Curve(Curve {
                            p: [last, control, end]
                        }))
                    }
                    _ => ()
                }
                last = end;
            }
            if current.len() > 0 {
                result.push(Contour {
                    segments: replace(&mut current, Vec::new())
                });
            }
            result
        })
    }
    /// Produces a list of the contours that make up the shape of this glyph. Each contour consists of
    /// a sequence of segments. Each segment is either a straight `Line` or a `Curve`.
    ///
    /// The winding of the produced contours is clockwise for closed shapes, anticlockwise for holes.
    pub fn shape(&self) -> Option<Vec<Contour>> {
        self.shape_with_offset(point(0.0, 0.0))
    }
    /// The bounding box of the shape of this glyph, not to be confused with `pixel_bounding_box`, the
    /// conservative pixel-boundary bounding box. The coordinates are relative to the glyph's origin.
    pub fn exact_bounding_box(&self) -> Option<Rect<f32>> {
        match self.g.inner {
            GlyphInner::Proxy(ref font, id) => font.info.get_glyph_box(id).map(|bb| {
                Rect {
                    min: point(bb.x0 as f32 * self.scale.x, -bb.y1 as f32 * self.scale.y),
                    max: point(bb.x1 as f32 * self.scale.x, -bb.y0 as f32 * self.scale.y)
                }
            }),
            GlyphInner::Shared(ref data) => data.extents.map(|bb| Rect {
                min: point(bb.min.x as f32 * self.scale.x, bb.min.y as f32 * self.scale.y),
                max: point(bb.max.x as f32 * self.scale.x, bb.max.y as f32 * self.scale.y)
            })
        }
    }
    /// Constructs a glyph that owns its data from this glyph. This is similar to `Glyph::standalone`. See
    /// that function for more details.
    pub fn standalone(&self) -> ScaledGlyph<'static> {
        ScaledGlyph {
            g: self.g.standalone(),
            api_scale: self.api_scale,
            scale: self.scale
        }
    }
}

impl<'a> PositionedGlyph<'a> {
    /// The glyph identifier for this glyph.
    pub fn id(&self) -> GlyphId {
        self.sg.id()
    }
    /// The font to which this glyph belongs. If the glyph is a standalone glyph that owns its resources,
    /// it no longer has a reference to the font which it was created from (using `standalone()`). In which
    /// case, `None` is returned.
    pub fn font(&self) -> Option<&Font<'a>> {
        self.sg.font()
    }
    /// A reference to this glyph without positioning
    pub fn unpositioned(&self) -> &ScaledGlyph<'a> {
        &self.sg
    }
    /// Removes the positioning from this glyph
    pub fn into_unpositioned(self) -> ScaledGlyph<'a> {
        self.sg
    }
    /// The conservative pixel-boundary bounding box for this glyph. This is the smallest rectangle
    /// aligned to pixel boundaries that encloses the shape of this glyph at this position.
    pub fn pixel_bounding_box(&self) -> Option<Rect<i32>> {
        self.bb
    }
    /// Similar to `ScaledGlyph::shape()`, but with the position of the glyph taken into account.
    pub fn shape(&self) -> Option<Vec<Contour>> {
        self.sg.shape_with_offset(self.position)
    }
    pub fn scale(&self) -> Scale {
        self.sg.api_scale
    }
    pub fn position(&self) -> Point<f32> {
        self.position
    }
    /// Rasterises this glyph. For each pixel in the rect given by `pixel_bounding_box()`, `o` is called:
    ///
    /// ```ignore
    /// o(x, y, v)
    /// ```
    ///
    /// where `x` and `y` are the coordinates of the pixel relative to the `min` coordinates of the bounding box,
    /// and `v` is the analytically calculated coverage of the pixel by the shape of the glyph.
    /// Calls to `o` proceed in horizontal scanline order, similar to this pseudo-code:
    ///
    /// ```ignore
    /// let bb = glyph.pixel_bounding_box();
    /// for y in 0..bb.height() {
    ///     for x in 0..bb.width() {
    ///         o(x, y, calc_coverage(&glyph, x, y));
    ///     }
    /// }
    /// ```
    pub fn draw<O: FnMut(u32, u32, f32)>(&self, o: O) {
        use geometry::{Line, Curve};
        use stb_truetype::VertexType;
        let shape = match self.sg.g.inner {
            GlyphInner::Proxy(ref font, id) => font.info.get_glyph_shape(id).unwrap_or_else(|| Vec::new()),
            GlyphInner::Shared(ref data) => data.shape.clone().unwrap_or_else(|| Vec::new())
        };
        let bb = if let Some(bb) = self.bb.as_ref() {
            bb
        } else {
            return
        };
        let offset = vector(bb.min.x as f32, bb.min.y as f32);
        let mut lines = Vec::new();
        let mut curves = Vec::new();
        let mut last = point(0.0, 0.0);
        for v in shape {
            let end = point(v.x as f32 * self.sg.scale.x + self.position.x,
                            -v.y as f32 * self.sg.scale.y + self.position.y)
                - offset;
            match v.vertex_type() {
                VertexType::LineTo => {
                    lines.push(Line {
                        p: [last, end]
                    })
                }
                VertexType::CurveTo => {
                    let control = point(v.cx as f32 * self.sg.scale.x + self.position.x,
                                        -v.cy as f32 * self.sg.scale.y + self.position.y)
                        - offset;
                    curves.push(Curve {
                        p: [last, control, end]
                    })
                }
                VertexType::MoveTo => {}
            }
            last = end;
        }
        rasterizer::rasterize(&lines, &curves,
                              (bb.max.x - bb.min.x) as u32,
                              (bb.max.y - bb.min.y) as u32,
                              o);
    }
    /// Constructs a glyph that owns its data from this glyph. This is similar to `Glyph::standalone`. See
    /// that function for more details.
    pub fn standalone(&self) -> PositionedGlyph<'static> {
        PositionedGlyph {
            sg: self.sg.standalone(),
            bb: self.bb,
            position: self.position
        }
    }
}