1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
use msgs::enums::CipherSuite;
use msgs::enums::{AlertDescription, HandshakeType, ExtensionType};
use session::{Session, SessionSecrets, SessionRandoms, SessionCommon};
use suites::{SupportedCipherSuite, ALL_CIPHERSUITES};
use msgs::handshake::{CertificatePayload, DigitallySignedStruct, SessionID};
use msgs::enums::SignatureScheme;
use msgs::enums::{ContentType, ProtocolVersion};
use msgs::message::Message;
use msgs::persist;
use client_hs;
use hash_hs;
use verify;
use anchors;
use sign;
use suites;
use error::TLSError;
use key;

use std::collections;
use std::sync::{Arc, Mutex};
use std::io;

/// A trait for the ability to store client session data.
/// The keys and values are opaque.
///
/// Both the keys and values should be treated as
/// **highly sensitive data**, containing enough key material
/// to break all security of the corresponding session.
pub trait StoresClientSessions : Send + Sync {
    /// Stores a new `value` for `key`.  Returns `true`
    /// if the value was stored.
    fn put(&mut self, key: Vec<u8>, value: Vec<u8>) -> bool;

    /// Returns the latest value for `key`.  Returns `None`
    /// if there's no such value.
    fn get(&mut self, key: &[u8]) -> Option<Vec<u8>>;
}

/// An implementor of `StoresClientSessions` which does nothing.
struct NoSessionStorage {}

impl StoresClientSessions for NoSessionStorage {
    fn put(&mut self, _key: Vec<u8>, _value: Vec<u8>) -> bool {
        false
    }

    fn get(&mut self, _key: &[u8]) -> Option<Vec<u8>> {
        None
    }
}

/// An implementor of `StoresClientSessions` that stores everything
/// in memory.  It enforces a limit on the number of sessions
/// to bound memory usage.
pub struct ClientSessionMemoryCache {
    cache: collections::HashMap<Vec<u8>, Vec<u8>>,
    max_entries: usize,
}

impl ClientSessionMemoryCache {
    /// Make a new ClientSessionMemoryCache.  `size` is the
    /// maximum number of stored sessions.
    pub fn new(size: usize) -> Box<ClientSessionMemoryCache> {
        debug_assert!(size > 0);
        Box::new(ClientSessionMemoryCache {
            cache: collections::HashMap::new(),
            max_entries: size,
        })
    }

    fn limit_size(&mut self) {
        while self.cache.len() > self.max_entries {
            let k = self.cache.keys().next().unwrap().clone();
            self.cache.remove(&k);
        }
    }
}

impl StoresClientSessions for ClientSessionMemoryCache {
    fn put(&mut self, key: Vec<u8>, value: Vec<u8>) -> bool {
        self.cache.insert(key, value);
        self.limit_size();
        true
    }

    fn get(&mut self, key: &[u8]) -> Option<Vec<u8>> {
        self.cache.get(key).cloned()
    }
}

/// A trait for the ability to choose a certificate chain and
/// private key for the purposes of client authentication.
pub trait ResolvesClientCert : Send + Sync {
    /// With the server-supplied acceptable issuers in `acceptable_issuers`,
    /// the server's supported signature schemes in `sigschemes`,
    /// return a certificate chain and signing key to authenticate.
    ///
    /// `acceptable_issuers` is undecoded and unverified by the rustls
    /// library, but it should be expected to contain a DER encodings
    /// of X501 NAMEs.
    ///
    /// Return None to continue the handshake without any client
    /// authentication.  The server may reject the handshake later
    /// if it requires authentication.
    fn resolve(&self,
               acceptable_issuers: &[&[u8]],
               sigschemes: &[SignatureScheme])
               -> Option<sign::CertChainAndSigner>;

    /// Return true if any certificates at all are available.
    fn has_certs(&self) -> bool;
}

struct FailResolveClientCert {}

impl ResolvesClientCert for FailResolveClientCert {
    fn resolve(&self,
               _acceptable_issuers: &[&[u8]],
               _sigschemes: &[SignatureScheme])
               -> Option<sign::CertChainAndSigner> {
        None
    }

    fn has_certs(&self) -> bool {
        false
    }
}

struct AlwaysResolvesClientCert {
    chain: Vec<key::Certificate>,
    key: Arc<Box<sign::Signer>>,
}

impl AlwaysResolvesClientCert {
    fn new_rsa(chain: Vec<key::Certificate>,
               priv_key: &key::PrivateKey)
               -> AlwaysResolvesClientCert {
        let key = sign::RSASigner::new(priv_key).expect("Invalid RSA private key");
        AlwaysResolvesClientCert {
            chain: chain,
            key: Arc::new(Box::new(key)),
        }
    }
}

impl ResolvesClientCert for AlwaysResolvesClientCert {
    fn resolve(&self,
               _acceptable_issuers: &[&[u8]],
               _sigschemes: &[SignatureScheme])
               -> Option<sign::CertChainAndSigner> {
        Some((self.chain.clone(), self.key.clone()))
    }

    fn has_certs(&self) -> bool {
        true
    }
}

/// Common configuration for (typically) all connections made by
/// a program.
///
/// Making one of these can be expensive, and should be
/// once per process rather than once per connection.
pub struct ClientConfig {
    /// List of ciphersuites, in preference order.
    pub ciphersuites: Vec<&'static SupportedCipherSuite>,

    /// Collection of root certificates.
    pub root_store: anchors::RootCertStore,

    /// Which ALPN protocols we include in our client hello.
    /// If empty, no ALPN extension is sent.
    pub alpn_protocols: Vec<String>,

    /// How we store session data or tickets.
    pub session_persistence: Mutex<Box<StoresClientSessions>>,

    /// Our MTU.  If None, we don't limit TLS message sizes.
    pub mtu: Option<usize>,

    /// How to decide what client auth certificate/keys to use.
    pub client_auth_cert_resolver: Box<ResolvesClientCert>,

    /// Whether to support RFC5077 tickets.  You must provide a working
    /// `session_persistence` member for this to have any meaningful
    /// effect.
    ///
    /// The default is true.
    pub enable_tickets: bool,

    /// Supported versions, in no particular order.  The default
    /// is all supported versions.
    pub versions: Vec<ProtocolVersion>,

    /// How to verify the server certificate chain.
    verifier: Box<verify::ServerCertVerifier>,
}

impl ClientConfig {
    /// Make a `ClientConfig` with a default set of ciphersuites,
    /// no root certificates, no ALPN protocols, no
    /// session persistence, and no client auth.
    pub fn new() -> ClientConfig {
        ClientConfig {
            ciphersuites: ALL_CIPHERSUITES.to_vec(),
            root_store: anchors::RootCertStore::empty(),
            alpn_protocols: Vec::new(),
            session_persistence: Mutex::new(Box::new(NoSessionStorage {})),
            mtu: None,
            client_auth_cert_resolver: Box::new(FailResolveClientCert {}),
            enable_tickets: true,
            versions: vec![ProtocolVersion::TLSv1_3, ProtocolVersion::TLSv1_2],
            verifier: Box::new(verify::WebPKIVerifier {})
        }
    }

    #[doc(hidden)]
    pub fn get_verifier(&self) -> &verify::ServerCertVerifier {
        self.verifier.as_ref()
    }

    /// Set the ALPN protocol list to the given protocol names.
    /// Overwrites any existing configured protocols.
    /// The first element in the `protocols` list is the most
    /// preferred, the last is the least preferred.
    pub fn set_protocols(&mut self, protocols: &[String]) {
        self.alpn_protocols.clear();
        self.alpn_protocols.extend_from_slice(protocols);
    }

    /// Sets persistence layer to `persist`.
    pub fn set_persistence(&mut self, persist: Box<StoresClientSessions>) {
        self.session_persistence = Mutex::new(persist);
    }

    /// Sets MTU to `mtu`.  If None, the default is used.
    /// If Some(x) then x must be greater than 5 bytes.
    pub fn set_mtu(&mut self, mtu: &Option<usize>) {
        // Internally our MTU relates to fragment size, and does
        // not include the TLS header overhead.
        //
        // Externally the MTU is the whole packet size.  The difference
        // is PACKET_OVERHEAD.
        if let Some(x) = *mtu {
            use msgs::fragmenter;
            debug_assert!(x > fragmenter::PACKET_OVERHEAD);
            self.mtu = Some(x - fragmenter::PACKET_OVERHEAD);
        } else {
            self.mtu = None;
        }
    }

    /// Sets a single client authentication certificate and private key.
    /// This is blindly used for all servers that ask for client auth.
    ///
    /// `cert_chain` is a vector of DER-encoded certificates,
    /// `key_der` is a DER-encoded RSA private key.
    pub fn set_single_client_cert(&mut self,
                                  cert_chain: Vec<key::Certificate>,
                                  key_der: key::PrivateKey) {
        self.client_auth_cert_resolver = Box::new(AlwaysResolvesClientCert::new_rsa(cert_chain,
                                                                                    &key_der));
    }

    /// Access configuration options whose use is dangerous and requires
    /// extra care.
    #[cfg(feature = "dangerous_configuration")]
    pub fn dangerous(&mut self) -> danger::DangerousClientConfig {
        danger::DangerousClientConfig { cfg: self }
    }
}

/// Container for unsafe APIs
#[cfg(feature = "dangerous_configuration")]
pub mod danger {
    use super::ClientConfig;
    use super::verify::ServerCertVerifier;

    /// Accessor for dangerous configuration options.
    pub struct DangerousClientConfig<'a> {
        /// The underlying ClientConfig
        pub cfg: &'a mut ClientConfig
    }

    impl<'a> DangerousClientConfig<'a> {
        /// Overrides the default `ServerCertVerifier` with something else.
        pub fn set_certificate_verifier(&mut self,
                                        verifier: Box<ServerCertVerifier>) {
            self.cfg.verifier = verifier;
        }
    }
}

pub struct ClientHandshakeData {
    pub server_cert_chain: CertificatePayload,
    pub dns_name: String,
    pub session_id: SessionID,
    pub sent_extensions: Vec<ExtensionType>,
    pub server_kx_params: Vec<u8>,
    pub server_kx_sig: Option<DigitallySignedStruct>,
    pub transcript: hash_hs::HandshakeHash,
    pub resuming_session: Option<persist::ClientSessionValue>,
    pub randoms: SessionRandoms,
    pub must_issue_new_ticket: bool,
    pub using_ems: bool,
    pub new_ticket: Vec<u8>,
    pub new_ticket_lifetime: u32,
    pub doing_client_auth: bool,
    pub client_auth_sigscheme: Option<SignatureScheme>,
    pub client_auth_cert: Option<CertificatePayload>,
    pub client_auth_key: Option<Arc<Box<sign::Signer>>>,
    pub client_auth_context: Option<Vec<u8>>,
    pub offered_key_shares: Vec<suites::KeyExchange>,
}

impl ClientHandshakeData {
    fn new(host_name: &str) -> ClientHandshakeData {
        ClientHandshakeData {
            server_cert_chain: Vec::new(),
            dns_name: host_name.to_string(),
            session_id: SessionID::empty(),
            sent_extensions: Vec::new(),
            server_kx_params: Vec::new(),
            server_kx_sig: None,
            transcript: hash_hs::HandshakeHash::new(),
            resuming_session: None,
            randoms: SessionRandoms::for_client(),
            must_issue_new_ticket: false,
            using_ems: false,
            new_ticket: Vec::new(),
            new_ticket_lifetime: 0,
            doing_client_auth: false,
            client_auth_sigscheme: None,
            client_auth_cert: None,
            client_auth_key: None,
            client_auth_context: None,
            offered_key_shares: Vec::new(),
        }
    }
}

pub struct ClientSessionImpl {
    pub config: Arc<ClientConfig>,
    pub handshake_data: ClientHandshakeData,
    pub secrets: Option<SessionSecrets>,
    pub alpn_protocol: Option<String>,
    pub common: SessionCommon,
    pub error: Option<TLSError>,
    pub state: &'static client_hs::State,
}

impl ClientSessionImpl {
    pub fn new(config: &Arc<ClientConfig>, hostname: &str) -> ClientSessionImpl {
        let mut cs = ClientSessionImpl {
            config: config.clone(),
            handshake_data: ClientHandshakeData::new(hostname),
            secrets: None,
            alpn_protocol: None,
            common: SessionCommon::new(config.mtu, true),
            error: None,
            state: &client_hs::EXPECT_SERVER_HELLO,
        };

        if cs.config.client_auth_cert_resolver.has_certs() {
            cs.handshake_data.transcript.set_client_auth_enabled();
        }

        cs.state = client_hs::emit_client_hello(&mut cs);
        cs
    }

    pub fn get_cipher_suites(&self) -> Vec<CipherSuite> {
        let mut ret = Vec::new();

        for cs in &self.config.ciphersuites {
            ret.push(cs.suite);
        }

        // We don't do renegotation at all, in fact.
        ret.push(CipherSuite::TLS_EMPTY_RENEGOTIATION_INFO_SCSV);

        ret
    }

    pub fn start_encryption_tls12(&mut self) {
        self.common.start_encryption_tls12(self.secrets.as_ref().unwrap());
    }

    pub fn find_cipher_suite(&self, suite: CipherSuite) -> Option<&'static SupportedCipherSuite> {
        for scs in &self.config.ciphersuites {
            if scs.suite == suite {
                return Some(scs);
            }
        }

        None
    }

    pub fn wants_read(&self) -> bool {
        // We want to read more data all the time, except when we
        // have unprocessed plaintext.  This provides back-pressure
        // to the TCP buffers.
        //
        // This also covers the handshake case, because we don't have
        // readable plaintext before handshake has completed.
        !self.common.has_readable_plaintext()
    }

    pub fn wants_write(&self) -> bool {
        !self.common.sendable_tls.is_empty()
    }

    pub fn is_handshaking(&self) -> bool {
        !self.common.traffic
    }

    pub fn set_buffer_limit(&mut self, len: usize) {
        self.common.set_buffer_limit(len)
    }

    pub fn process_msg(&mut self, mut msg: Message) -> Result<(), TLSError> {
        // Decrypt if demanded by current state.
        if self.common.peer_encrypting {
            let dm = self.common.decrypt_incoming(msg)?;
            msg = dm;
        }

        // For handshake messages, we need to join them before parsing
        // and processing.
        if self.common.handshake_joiner.want_message(&msg) {
            self.common
                .handshake_joiner
                .take_message(msg)
                .ok_or_else(|| {
                            self.common.send_fatal_alert(AlertDescription::DecodeError);
                            TLSError::CorruptMessagePayload(ContentType::Handshake)
                            })?;
            return self.process_new_handshake_messages();
        }

        // Now we can fully parse the message payload.
        if !msg.decode_payload() {
            return Err(TLSError::CorruptMessagePayload(msg.typ));
        }

        // For alerts, we have separate logic.
        if msg.is_content_type(ContentType::Alert) {
            return self.common.process_alert(msg);
        }

        self.process_main_protocol(msg)
    }

    fn process_new_handshake_messages(&mut self) -> Result<(), TLSError> {
        while let Some(msg) = self.common.handshake_joiner.frames.pop_front() {
            self.process_main_protocol(msg)?;
        }

        Ok(())
    }

    fn queue_unexpected_alert(&mut self) {
        self.common.send_fatal_alert(AlertDescription::UnexpectedMessage);
    }

    /// Detect and drop/reject HelloRequests.  This is needed irrespective
    /// of the current protocol state, which should illustrate how badly
    /// TLS renegotiation is designed.
    fn process_hello_req(&mut self) {
        // If we're post handshake, send a refusal alert.
        // Otherwise, drop it silently.
        if !self.is_handshaking() {
            self.common.send_warning_alert(AlertDescription::NoRenegotiation);
        }
    }

    /// Process `msg`.  First, we get the current state.  Then we ask what messages
    /// that state expects, enforced via a `Expectation`.  Finally, we ask the handler
    /// to handle the message.
    fn process_main_protocol(&mut self, msg: Message) -> Result<(), TLSError> {
        if msg.is_handshake_type(HandshakeType::HelloRequest) && !self.common.is_tls13() {
            self.process_hello_req();
            return Ok(());
        }

        self.state.expect
            .check_message(&msg)
            .map_err(|err| {
                self.queue_unexpected_alert();
                err
            })?;
        let new_state = (self.state.handle)(self, msg)?;
        self.state = new_state;

        Ok(())
    }

    pub fn process_new_packets(&mut self) -> Result<(), TLSError> {
        if let Some(ref err) = self.error {
            return Err(err.clone());
        }

        if self.common.message_deframer.desynced {
            return Err(TLSError::CorruptMessage);
        }

        while let Some(msg) = self.common.message_deframer.frames.pop_front() {
            match self.process_msg(msg) {
                Ok(_) => {}
                Err(err) => {
                    self.error = Some(err.clone());
                    return Err(err);
                }
            }
        }

        Ok(())
    }

    pub fn get_peer_certificates(&self) -> Option<Vec<key::Certificate>> {
        if self.handshake_data.server_cert_chain.is_empty() {
            return None;
        }

        let mut r = Vec::new();
        for cert in &self.handshake_data.server_cert_chain {
            r.push(cert.clone());
        }

        Some(r)
    }

    pub fn get_alpn_protocol(&self) -> Option<String> {
        self.alpn_protocol.clone()
    }

    pub fn get_protocol_version(&self) -> Option<ProtocolVersion> {
        self.common.negotiated_version
    }
}

/// This represents a single TLS client session.
pub struct ClientSession {
    // We use the pimpl idiom to hide unimportant details.
    imp: ClientSessionImpl,
}

impl ClientSession {
    /// Make a new ClientSession.  `config` controls how
    /// we behave in the TLS protocol, `hostname` is the
    /// hostname of who we want to talk to.
    pub fn new(config: &Arc<ClientConfig>, hostname: &str) -> ClientSession {
        ClientSession { imp: ClientSessionImpl::new(config, hostname) }
    }
}

impl Session for ClientSession {
    fn read_tls(&mut self, rd: &mut io::Read) -> io::Result<usize> {
        self.imp.common.read_tls(rd)
    }

    /// Writes TLS messages to `wr`.
    fn write_tls(&mut self, wr: &mut io::Write) -> io::Result<usize> {
        self.imp.common.write_tls(wr)
    }

    fn process_new_packets(&mut self) -> Result<(), TLSError> {
        self.imp.process_new_packets()
    }

    fn wants_read(&self) -> bool {
        self.imp.wants_read()
    }

    fn wants_write(&self) -> bool {
        self.imp.wants_write()
    }

    fn is_handshaking(&self) -> bool {
        self.imp.is_handshaking()
    }

    fn set_buffer_limit(&mut self, len: usize) {
        self.imp.set_buffer_limit(len)
    }

    fn send_close_notify(&mut self) {
        self.imp.common.send_close_notify()
    }

    fn get_peer_certificates(&self) -> Option<Vec<key::Certificate>> {
        self.imp.get_peer_certificates()
    }

    fn get_alpn_protocol(&self) -> Option<String> {
        self.imp.get_alpn_protocol()
    }

    fn get_protocol_version(&self) -> Option<ProtocolVersion> {
        self.imp.get_protocol_version()
    }
}

impl io::Read for ClientSession {
    /// Obtain plaintext data received from the peer over
    /// this TLS connection.
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        self.imp.common.read(buf)
    }
}

impl io::Write for ClientSession {
    /// Send the plaintext `buf` to the peer, encrypting
    /// and authenticating it.  Once this function succeeds
    /// you should call `write_tls` which will output the
    /// corresponding TLS records.
    ///
    /// This function buffers plaintext sent before the
    /// TLS handshake completes, and sends it as soon
    /// as it can.  This buffer is of *unlimited size* so
    /// writing much data before it can be sent will
    /// cause excess memory usage.
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        self.imp.common.send_some_plaintext(buf)
    }

    fn flush(&mut self) -> io::Result<()> {
        self.imp.common.flush_plaintext();
        Ok(())
    }
}