1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
use crate::crypto::cipher::{MessageDecrypter, MessageEncrypter};
use crate::error::Error;
use crate::msgs::message::{BorrowedPlainMessage, OpaqueMessage, PlainMessage};

#[cfg(feature = "logging")]
use crate::log::trace;

use alloc::boxed::Box;

static SEQ_SOFT_LIMIT: u64 = 0xffff_ffff_ffff_0000u64;
static SEQ_HARD_LIMIT: u64 = 0xffff_ffff_ffff_fffeu64;

#[derive(PartialEq)]
enum DirectionState {
    /// No keying material.
    Invalid,

    /// Keying material present, but not yet in use.
    Prepared,

    /// Keying material in use.
    Active,
}

/// Record layer that tracks decryption and encryption keys.
pub struct RecordLayer {
    message_encrypter: Box<dyn MessageEncrypter>,
    message_decrypter: Box<dyn MessageDecrypter>,
    write_seq: u64,
    read_seq: u64,
    has_decrypted: bool,
    encrypt_state: DirectionState,
    decrypt_state: DirectionState,

    // Message encrypted with other keys may be encountered, so failures
    // should be swallowed by the caller.  This struct tracks the amount
    // of message size this is allowed for.
    trial_decryption_len: Option<usize>,
}

impl RecordLayer {
    /// Create new record layer with no keys.
    pub fn new() -> Self {
        Self {
            message_encrypter: <dyn MessageEncrypter>::invalid(),
            message_decrypter: <dyn MessageDecrypter>::invalid(),
            write_seq: 0,
            read_seq: 0,
            has_decrypted: false,
            encrypt_state: DirectionState::Invalid,
            decrypt_state: DirectionState::Invalid,
            trial_decryption_len: None,
        }
    }

    /// Decrypt a TLS message.
    ///
    /// `encr` is a decoded message allegedly received from the peer.
    /// If it can be decrypted, its decryption is returned.  Otherwise,
    /// an error is returned.
    pub(crate) fn decrypt_incoming(
        &mut self,
        encr: OpaqueMessage,
    ) -> Result<Option<Decrypted>, Error> {
        if self.decrypt_state != DirectionState::Active {
            return Ok(Some(Decrypted {
                want_close_before_decrypt: false,
                plaintext: encr.into_plain_message(),
            }));
        }

        // Set to `true` if the peer appears to getting close to encrypting
        // too many messages with this key.
        //
        // Perhaps if we send an alert well before their counter wraps, a
        // buggy peer won't make a terrible mistake here?
        //
        // Note that there's no reason to refuse to decrypt: the security
        // failure has already happened.
        let want_close_before_decrypt = self.read_seq == SEQ_SOFT_LIMIT;

        let encrypted_len = encr.payload().len();
        match self
            .message_decrypter
            .decrypt(encr, self.read_seq)
        {
            Ok(plaintext) => {
                self.read_seq += 1;
                if !self.has_decrypted {
                    self.has_decrypted = true;
                }
                Ok(Some(Decrypted {
                    want_close_before_decrypt,
                    plaintext,
                }))
            }
            Err(Error::DecryptError) if self.doing_trial_decryption(encrypted_len) => {
                trace!("Dropping undecryptable message after aborted early_data");
                Ok(None)
            }
            Err(err) => Err(err),
        }
    }

    /// Encrypt a TLS message.
    ///
    /// `plain` is a TLS message we'd like to send.  This function
    /// panics if the requisite keying material hasn't been established yet.
    pub(crate) fn encrypt_outgoing(&mut self, plain: BorrowedPlainMessage) -> OpaqueMessage {
        debug_assert!(self.encrypt_state == DirectionState::Active);
        assert!(!self.encrypt_exhausted());
        let seq = self.write_seq;
        self.write_seq += 1;
        self.message_encrypter
            .encrypt(plain, seq)
            .unwrap()
    }

    /// Prepare to use the given `MessageEncrypter` for future message encryption.
    /// It is not used until you call `start_encrypting`.
    pub(crate) fn prepare_message_encrypter(&mut self, cipher: Box<dyn MessageEncrypter>) {
        self.message_encrypter = cipher;
        self.write_seq = 0;
        self.encrypt_state = DirectionState::Prepared;
    }

    /// Prepare to use the given `MessageDecrypter` for future message decryption.
    /// It is not used until you call `start_decrypting`.
    pub(crate) fn prepare_message_decrypter(&mut self, cipher: Box<dyn MessageDecrypter>) {
        self.message_decrypter = cipher;
        self.read_seq = 0;
        self.decrypt_state = DirectionState::Prepared;
    }

    /// Start using the `MessageEncrypter` previously provided to the previous
    /// call to `prepare_message_encrypter`.
    pub(crate) fn start_encrypting(&mut self) {
        debug_assert!(self.encrypt_state == DirectionState::Prepared);
        self.encrypt_state = DirectionState::Active;
    }

    /// Start using the `MessageDecrypter` previously provided to the previous
    /// call to `prepare_message_decrypter`.
    pub(crate) fn start_decrypting(&mut self) {
        debug_assert!(self.decrypt_state == DirectionState::Prepared);
        self.decrypt_state = DirectionState::Active;
    }

    /// Set and start using the given `MessageEncrypter` for future outgoing
    /// message encryption.
    pub(crate) fn set_message_encrypter(&mut self, cipher: Box<dyn MessageEncrypter>) {
        self.prepare_message_encrypter(cipher);
        self.start_encrypting();
    }

    /// Set and start using the given `MessageDecrypter` for future incoming
    /// message decryption.
    pub(crate) fn set_message_decrypter(&mut self, cipher: Box<dyn MessageDecrypter>) {
        self.prepare_message_decrypter(cipher);
        self.start_decrypting();
        self.trial_decryption_len = None;
    }

    /// Set and start using the given `MessageDecrypter` for future incoming
    /// message decryption, and enable "trial decryption" mode for when TLS1.3
    /// 0-RTT is attempted but rejected by the server.
    pub(crate) fn set_message_decrypter_with_trial_decryption(
        &mut self,
        cipher: Box<dyn MessageDecrypter>,
        max_length: usize,
    ) {
        self.prepare_message_decrypter(cipher);
        self.start_decrypting();
        self.trial_decryption_len = Some(max_length);
    }

    pub(crate) fn finish_trial_decryption(&mut self) {
        self.trial_decryption_len = None;
    }

    /// Return true if we are getting close to encrypting too many
    /// messages with our encryption key.
    pub(crate) fn wants_close_before_encrypt(&self) -> bool {
        self.write_seq == SEQ_SOFT_LIMIT
    }

    /// Return true if we outright refuse to do anything with the
    /// encryption key.
    pub(crate) fn encrypt_exhausted(&self) -> bool {
        self.write_seq >= SEQ_HARD_LIMIT
    }

    pub(crate) fn is_encrypting(&self) -> bool {
        self.encrypt_state == DirectionState::Active
    }

    /// Return true if we have ever decrypted a message. This is used in place
    /// of checking the read_seq since that will be reset on key updates.
    pub(crate) fn has_decrypted(&self) -> bool {
        self.has_decrypted
    }

    pub(crate) fn write_seq(&self) -> u64 {
        self.write_seq
    }

    pub(crate) fn read_seq(&self) -> u64 {
        self.read_seq
    }

    fn doing_trial_decryption(&mut self, requested: usize) -> bool {
        match self
            .trial_decryption_len
            .and_then(|value| value.checked_sub(requested))
        {
            Some(remaining) => {
                self.trial_decryption_len = Some(remaining);
                true
            }
            _ => false,
        }
    }
}

/// Result of decryption.
#[derive(Debug)]
pub(crate) struct Decrypted {
    /// Whether the peer appears to be getting close to encrypting too many messages with this key.
    pub(crate) want_close_before_decrypt: bool,
    /// The decrypted message.
    pub(crate) plaintext: PlainMessage,
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_has_decrypted() {
        use crate::{ContentType, ProtocolVersion};

        struct PassThroughDecrypter;
        impl MessageDecrypter for PassThroughDecrypter {
            fn decrypt(&mut self, m: OpaqueMessage, _: u64) -> Result<PlainMessage, Error> {
                Ok(m.into_plain_message())
            }
        }

        // A record layer starts out invalid, having never decrypted.
        let mut record_layer = RecordLayer::new();
        assert!(matches!(
            record_layer.decrypt_state,
            DirectionState::Invalid
        ));
        assert_eq!(record_layer.read_seq, 0);
        assert!(!record_layer.has_decrypted());

        // Preparing the record layer should update the decrypt state, but shouldn't affect whether it
        // has decrypted.
        record_layer.prepare_message_decrypter(Box::new(PassThroughDecrypter));
        assert!(matches!(
            record_layer.decrypt_state,
            DirectionState::Prepared
        ));
        assert_eq!(record_layer.read_seq, 0);
        assert!(!record_layer.has_decrypted());

        // Starting decryption should update the decrypt state, but not affect whether it has decrypted.
        record_layer.start_decrypting();
        assert!(matches!(record_layer.decrypt_state, DirectionState::Active));
        assert_eq!(record_layer.read_seq, 0);
        assert!(!record_layer.has_decrypted());

        // Decrypting a message should update the read_seq and track that we have now performed
        // a decryption.
        let msg = OpaqueMessage::new(
            ContentType::Handshake,
            ProtocolVersion::TLSv1_2,
            vec![0xC0, 0xFF, 0xEE],
        );
        record_layer
            .decrypt_incoming(msg)
            .unwrap();
        assert!(matches!(record_layer.decrypt_state, DirectionState::Active));
        assert_eq!(record_layer.read_seq, 1);
        assert!(record_layer.has_decrypted());

        // Resetting the record layer message decrypter (as if a key update occurred) should reset
        // the read_seq number, but not our knowledge of whether we have decrypted previously.
        record_layer.set_message_decrypter(Box::new(PassThroughDecrypter));
        assert!(matches!(record_layer.decrypt_state, DirectionState::Active));
        assert_eq!(record_layer.read_seq, 0);
        assert!(record_layer.has_decrypted());
    }
}