1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
//! **This module is deprecated by the [crate::zc_parser] module** and is only kept for
//! compatibility with existing parsers.
//!
//! This module implements the parsing routines that uses the state machine
//! generated by rustlr.  The main structure here is [RuntimeParser].
//! All parsing functions are organized around the [RuntimeParser::parse_base]
//! function, which implements the basic LR parsing algorithm.  This function
//! expects dynamic [Lexer] and [ErrHandler] trait-objects. 
//! This module provides generic
//! parsing and parser-training routines that use stdio for interface, but
//! the [ErrHandler] trait allows custom user interfaces to be build separately.

#![allow(dead_code)]
#![allow(unused_variables)]
#![allow(non_snake_case)]
#![allow(non_camel_case_types)]
#![allow(unused_parens)]
#![allow(unused_mut)]
#![allow(unused_assignments)]
#![allow(unused_doc_comments)]
#![allow(unused_imports)]
use std::fmt::Display;
use std::default::Default;
use std::collections::{HashMap,HashSet,BTreeSet};
use std::io::{self,Read,Write,BufReader,BufRead};
use std::cell::{RefCell,Ref,RefMut};
use std::hash::{Hash,Hasher};
use std::any::Any;
use std::fs::File;
use std::io::prelude::*;
use std::path::Path;
use std::mem;
use crate::{TRACE,Lexer,Lextoken,Stateaction,Statemachine};
use crate::{LBox,LRc};
use crate::Stateaction::*;

/// this structure is only exported because it is required by the generated parsers.
/// There is no reason to use it in other programs.
#[derive(Clone)]
pub struct RProduction<AT:Default,ET:Default>  // runtime rep of grammar rule
{
  pub lhs: &'static str, // left-hand side nonterminal of rule
  pub Ruleaction : fn(&mut RuntimeParser<AT,ET>) -> AT, //parser as arg
}
impl<AT:Default,ET:Default> RProduction<AT,ET>
{
  pub fn new_skeleton(lh:&'static str) -> RProduction<AT,ET>
  {
     RProduction {
       lhs : lh,
       Ruleaction : |p|{<AT>::default()},
     }
  }
}//impl RProduction

pub struct Stackelement<AT:Default>
{
   pub si : usize, // state index
   pub value : AT, // semantic value (don't clone grammar symbols)
   //pub line: usize,  // line and column
   //pub column: usize, 
}

/// this is the structure created by the generated parser.  The generated parser
/// program will contain a make_parser function that returns this structure.
/// Most of the pub items are, however, only exported to support the operation
/// of the parser, and should not be accessed directly.  Only the functions
/// [RuntimeParser::parse], [RuntimeParser::report], [RuntimeParser::abort]
/// and [RuntimeParser::error_occurred] should be called directly 
/// from user programs.  Only the field [RuntimeParser::exstate] should be accessed
/// by user programs.
pub struct RuntimeParser<AT:Default,ET:Default>  
{
  /// this is the "external state" structure, with type ET defined by the grammar.
  /// The semantic actions associated with each grammar rule, which are written
  /// in the grammar, have ref mut access to the RuntimeParser structure, which
  /// allows them to read and change the external state object.  This gives
  /// the parsers greater flexibility and capability, including the ability to
  /// parse some non-context free languages.  See 
  /// [this sample grammar](<https://cs.hofstra.edu/~cscccl/rustlr_project/ncf.grammar>).
  /// The exstate is initialized to ET::default().
  pub exstate : ET,  // external state structure, usage optional
  /// used only by generated parser: do not reference
  pub RSM : Vec<HashMap<&'static str,Stateaction>>,  // runtime state machine
  // do not reference
  //pub Expected : Vec<Vec<&'static str>>,
  /// do not reference
  pub Rules : Vec<RProduction<AT,ET>>, //rules with just lhs and delegate function
  ////// this value should be set through abort or report
  stopparsing : bool,
  /// do not reference  
  pub stack :  Vec<Stackelement<AT>>, // parse stack
//  pub recover : HashSet<&'static str>, // for error recovery
  pub resynch : HashSet<&'static str>,
  pub Errsym : &'static str,
  err_occurred : bool,
  pub linenum : usize,
  pub column : usize,
  pub src_id : usize,
  report_line : usize,
//  training : bool,
//  pub trained: HashMap<(usize,String),String>,
  /// Hashset containing all grammar symbols (terminal and non-terminal). This is used for error reporting and training.
  pub Symset : HashSet<&'static str>,
}//struct RuntimeParser

impl<AT:Default,ET:Default> RuntimeParser<AT,ET>
{
    /// this is only called by the make_parser function in the machine-generated
    /// parser program.  *Do not call this function in other places* as it
    /// only generates a skeleton.
    pub fn new(rlen:usize, slen:usize) -> RuntimeParser<AT,ET>
    {  // given number of rules and number states
       let mut p = RuntimeParser {
         RSM : Vec::with_capacity(slen),
         //Expected : Vec::with_capacity(slen),
         Rules : Vec::with_capacity(rlen),
         stopparsing : false,
         exstate : ET::default(),
         stack : Vec::with_capacity(1024),
         Errsym : "",
         err_occurred : false,
         linenum : 0,
         column : 0,
         src_id : 0,
         report_line : 0,
         resynch : HashSet::new(),
         //added for training
         //training : false,
         //trained : HashMap::new(),
         Symset : HashSet::with_capacity(64),
       };
       for _ in 0..slen {
         p.RSM.push(HashMap::with_capacity(16));
         //p.Expected.push(Vec::new());
       }
       return p;
    }//new

    /// this function can be called from with the "semantic" actions attached
    /// to grammar production rules that are executed for each
    /// "reduce" action of the parser.
    pub fn abort(&mut self, msg:&str)
    {
       eprintln!("\n!!!Parsing Aborted: {}",msg);
       self.err_occurred = true;
       self.stopparsing=true;
    }

    /// may be called from grammar semantic actions to report error.
    /// this report function will print to stdout. 
    pub fn report(&mut self, errmsg:&str)  
    {      // linenum must be set prior to call
       if (self.report_line != self.linenum || self.linenum==0)  {
//         eprint!("ERROR on line {}, column {}:\n{}\n",self.linenum,self.column,tokenizer.current_line());         
         eprintln!("ERROR on line {}, column {}: {}",self.linenum,self.column,errmsg);
         self.report_line = self.linenum;
       }
       else {
         eprint!(" {} ",errmsg);
       }
       self.err_occurred = true;
    }// report

    /// this function is only exported to support the generated code
    pub fn bad_pattern(&mut self,pattern:&str) -> AT
    {
       let msg = format!("pattern {} failed to bind to stacked values\n",pattern);
       self.report(&msg);
       AT::default()
    }

    /// sets an index that index source information, such as the source file
    /// when compiling multiple sources. This information must be maintained externally.
    /// The source id will also be passed on to the [LBox] and [LRc] smartpointers by
    /// the [RuntimeParser::lb] function.
    pub fn set_src_id(&mut self, id:usize)
    { self.src_id =id; }

    //called to simulate a shift
    fn errshift(&mut self, sym:&str) -> bool
    {
       let csi = self.stack[self.stack.len()-1].si; // current state
       let actionopt = self.RSM[csi].get(sym);
       if let Some(Shift(ni)) = actionopt {
         self.stack.push(Stackelement{si:*ni,value:AT::default()}); true
       }
       else {false}
    }

  // this is the LR parser shift action: push the next state, along with the
  // value of the current lookahead token onto the parse stack, returns the
  // next token
  fn shift(&mut self, nextstate:usize, lookahead:Lextoken<AT>, tokenizer:&mut dyn Lexer<AT>) -> Lextoken<AT>
  {
     self.stack.push(Stackelement{si:nextstate,value:lookahead.value});
     self.nexttoken(tokenizer)
  }

    fn reduce(&mut self, ri:&usize)
    {
              let rulei = &self.Rules[*ri];
              let ruleilhs = rulei.lhs; // &'static : Copy
              let val = (rulei.Ruleaction)(self); // calls delegate function
              let newtop = self.stack[self.stack.len()-1].si; 
              let goton = self.RSM[newtop].get(ruleilhs).unwrap();
//              if TRACE>1 {println!(" ..performing Reduce({}), new state {}, action on {}: {:?}..",ri,newtop,ruleilhs,goton);}
              if let Stateaction::Gotonext(nsi) = goton {
                self.stack.push(Stackelement{si:*nsi,value:val});
                // DO NOT CHANGE LOOKAHEAD AFTER REDUCE!
              }// goto next state after reduce
              else {
                self.report("state transition table corrupted: no suitable action after reduce");
                self.stopparsing=true;
              }
    }//reduce

    /// can be called to determine if an error occurred during parsing.  The parser
    /// will not panic.
    pub fn error_occurred(&self) -> bool {self.err_occurred}

    fn nexttoken(&self, tokenizer:&mut dyn Lexer<AT>) -> Lextoken<AT>
    {
       if let Some(tok) = tokenizer.nextsym() {tok}
        else { Lextoken{sym:"EOF".to_owned(),  value:AT::default()} } 
    }


    /// *this function is equivalent to [RuntimeParser::parse_stdio_train]*.
    pub fn parse_train(&mut self, tokenizer:&mut dyn Lexer<AT>, parserfile:&str) -> AT
    {
      self.parse_stdio_train(tokenizer,parserfile)
    }//parse_train

    /// creates a [LBox] smart pointer that includes line/column/src information;
    /// should be called from the semantic actions of a grammar rule, e.g.
    ///```ignore
    ///   E --> E:a + E:b {PlusExpr(parser.lb(a),parser.lb(b))}
    ///```
    pub fn lb<T>(&self,e:T) -> LBox<T> { LBox::new(e,self.linenum,self.column /*,self.src_id*/) }
    /// creates a `LBox<dyn Any>`, which allows attributes of different types to
    /// be associated with grammar symbols.  Use in conjuction with [LBox::downcast], [LBox::upcast] and the [lbdown], [lbup] macros.
    pub fn lba<T:'static>(&self,e:T) -> LBox<dyn Any> { LBox::upcast(LBox::new(e,self.linenum,self.column /*,self.src_id*/)) }
    /// similar to [RuntimeParser::lb], but creates a [LRc] instead of [LBox]
    pub fn lrc<T>(&self,e:T) -> LRc<T> { LRc::new(e,self.linenum,self.column /*,self.src_id*/) }
    /// similar to [RuntimeParser::lba] but creates a [LRc]
    pub fn lrca<T:'static>(&self,e:T) -> LRc<dyn Any> { LRc::upcast(LRc::new(e,self.linenum,self.column /*,self.src_id*/)) }        
}// impl RuntimeParser


//////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////
//// new version of write_fsm:

impl Statemachine
{
  pub fn writeparser(&self, filename:&str)->Result<(),std::io::Error>
  {
    let mut fd = File::create(filename)?;
    write!(fd,"//Parser generated by rustlr\n
#![allow(unused_variables)]
#![allow(non_snake_case)]
#![allow(non_camel_case_types)]
#![allow(unused_parens)]
#![allow(unused_mut)]
#![allow(unused_imports)]
#![allow(unused_assignments)]
#![allow(irrefutable_let_patterns)]
extern crate rustlr;
use rustlr::{{RuntimeParser,RProduction,Stateaction,decode_action}};\n")?;

    write!(fd,"{}\n",&self.Gmr.Extras)?; // use clauses

    // write static array of symbols
    write!(fd,"const SYMBOLS:[&'static str;{}] = [",self.Gmr.Symbols.len())?;
    for i in 0..self.Gmr.Symbols.len()-1
    {
      write!(fd,"\"{}\",",&self.Gmr.Symbols[i].sym)?;
    }
    write!(fd,"\"{}\"];\n\n",&self.Gmr.Symbols[self.Gmr.Symbols.len()-1].sym)?;
    // position of symbols must be inline with self.Gmr.Symhash

    // record table entries in a static array
    let mut totalsize = 0;
    for i in 0..self.FSM.len() { totalsize+=self.FSM[i].len(); }
    write!(fd,"const TABLE:[u64;{}] = [",totalsize)?;
    // generate table to represent FSM
    let mut encode:u64 = 0;
    for i in 0..self.FSM.len() // for each state index i
    {
      let row = &self.FSM[i];
      for key in row.keys()
      { // see function decode for opposite translation
        let k = *self.Gmr.Symhash.get(key).unwrap(); // index of symbol
        encode = ((i as u64) << 48) + ((k as u64) << 32);
        match row.get(key) {
          Some(Shift(statei)) => { encode += (*statei as u64) << 16; },
          Some(Gotonext(statei)) => { encode += ((*statei as u64) << 16)+1; },
          Some(Reduce(rulei)) => { encode += ((*rulei as u64) << 16)+2; },
          Some(Accept) => {encode += 3; },
          _ => {encode += 4; },  // 4 indicates Error
        }//match
        write!(fd,"{},",encode)?;
      } //for symbol index k
    }//for each state index i
    write!(fd,"];\n\n")?;

    // must know what absyn type is when generating code.
    let ref absyn = self.Gmr.Absyntype;
    let ref extype = self.Gmr.Externtype;
    write!(fd,"pub fn make_parser() -> RuntimeParser<{},{}>",absyn,extype)?; 
    write!(fd,"\n{{\n")?;
    // write code to pop stack, assign labels to variables.
    write!(fd," let mut parser1:RuntimeParser<{},{}> = RuntimeParser::new({},{});\n",absyn,extype,self.Gmr.Rules.len(),self.States.len())?;
    // generate rules and Ruleaction delegates, must pop values from runtime stack
    write!(fd," let mut rule = RProduction::<{},{}>::new_skeleton(\"{}\");\n",absyn,extype,"start")?;
    for i in 0..self.Gmr.Rules.len() 
    {
      write!(fd," rule = RProduction::<{},{}>::new_skeleton(\"{}\");\n",absyn,extype,self.Gmr.Rules[i].lhs.sym)?;      
      write!(fd," rule.Ruleaction = |parser|{{ ")?;
      let mut k = self.Gmr.Rules[i].rhs.len();

      //form if-let labels and patterns as we go...
      let mut labels = String::from("(");
      let mut patterns = String::from("(");
      while k>0
      {
        let gsym = &self.Gmr.Rules[i].rhs[k-1];
	if gsym.label.len()>1 && gsym.label.find('@').is_some() { // if-let pattern
	  let atindex = gsym.label.find('@').unwrap();
	  let varlab = if atindex>0 {gsym.label[0..atindex].to_string()} 
	      else {format!("_vflab_{}",k-1)};
 	  if atindex>0 {labels.push_str("&mut ");}
	  labels.push_str(&varlab); labels.push(',');
	  patterns.push_str(&gsym.label[atindex+1..]); patterns.push_str(",");
	  write!(fd," let mut {}=",&varlab)?;	  
	}
	else if gsym.label.len()>0 { // simple pattern, no need for if-let
	  if gsym.rusttype.len()>=3 && &gsym.rusttype[0..3]=="mut" {
	    write!(fd," let mut {}:{}=",&gsym.label,absyn)?;
	  }
          else {write!(fd," let {}:{}=",&gsym.label,absyn)?;}
	}
        write!(fd,"parser.stack.pop()")?; 
        if gsym.label.len()>0 { write!(fd,".unwrap().value;  ")?;}
        else {write!(fd,";  ")?;}
        k -= 1;      
      }// for each symbol on right hand side of rule
      // form if-let clause
      let defaultaction = format!("return <{}>::default();}}",absyn);
      let mut semaction = &self.Gmr.Rules[i].action; //string that ends with }
      if semaction.len()<=1 {semaction = &defaultaction;}
      if labels.len()<2 { write!(fd,"{};\n",semaction.trim_end())?; } //empty pattern
      else { // write an if-let
        labels.push(')');  patterns.push(')');
	write!(fd,"\n  if let {}={} {{ {}  else {{parser.bad_pattern(\"{}\")}} }};\n",&patterns,&labels,semaction.trim_end(),&patterns)?;
      }// if-let semantic action

/*
      while k>0 // k-1 indexes backwards rhs of grammar rule
      {
        let gsym = &self.Gmr.Rules[i].rhs[k-1];
        if gsym.label.len()>0 && &gsym.rusttype[0..3]=="mut"
          { write!(fd," let mut {}:{}=",gsym.label,absyn)?; }        
        else if gsym.label.len()>0
          { write!(fd," let {}:{}=",gsym.label,absyn)?; }
        write!(fd,"parser.stack.pop()")?; 
        if gsym.label.len()>0 { write!(fd,".unwrap().value;  ")?;}
        else {write!(fd,";  ")?;}
        k -= 1;
      } // for each symbol on right hand side of rule  
      let mut semaction = &self.Gmr.Rules[i].action; //this is a string
      if semaction.len()>1 {write!(fd,"{};\n",semaction.trim_end())?;}
      else {write!(fd," return <{}>::default();}};\n",absyn)?;}
*/

      write!(fd," parser1.Rules.push(rule);\n")?;
    }// for each rule
    write!(fd," parser1.Errsym = \"{}\";\n",&self.Gmr.Errsym)?;
    // resynch vector
    for s in &self.Gmr.Resynch {write!(fd," parser1.resynch.insert(\"{}\");\n",s)?;}

    // generate code to load RSM from TABLE
    write!(fd,"\n for i in 0..{} {{\n",totalsize)?;
    write!(fd,"   let symi = ((TABLE[i] & 0x0000ffff00000000) >> 32) as usize;\n")?;
    write!(fd,"   let sti = ((TABLE[i] & 0xffff000000000000) >> 48) as usize;\n")?;
    write!(fd,"   parser1.RSM[sti].insert(SYMBOLS[symi],decode_action(TABLE[i]));\n }}\n\n")?;
//    write!(fd,"\n for i in 0..{} {{for k in 0..{} {{\n",rows,cols)?;
//    write!(fd,"   parser1.RSM[i].insert(SYMBOLS[k],decode_action(TABLE[i*{}+k]));\n }}}}\n",cols)?;
    write!(fd," for s in SYMBOLS {{ parser1.Symset.insert(s); }}\n\n")?;

    write!(fd," load_extras(&mut parser1);\n")?;
    write!(fd," return parser1;\n")?;
    write!(fd,"}} //make_parser\n\n")?;

    ////// Augment!
    write!(fd,"fn load_extras(parser:&mut RuntimeParser<{},{}>)\n{{\n",absyn,extype)?;
    write!(fd,"}}//end of load_extras: don't change this line as it affects augmentation\n")?;
    Ok(())
  }//writeparser


//////////////
///////////////// non-binary version (no augmentation) //////////////////
pub fn write_verbose(&self, filename:&str)->Result<(),std::io::Error>
  {
    let mut fd = File::create(filename)?;
    write!(fd,"//Parser generated by rustlr\n
#![allow(unused_variables)]
#![allow(non_snake_case)]
#![allow(non_camel_case_types)]
#![allow(unused_parens)]
#![allow(unused_mut)]
#![allow(unused_assignments)]
extern crate rustlr;
use rustlr::{{RuntimeParser,RProduction,Stateaction}};\n")?;

    write!(fd,"{}\n",&self.Gmr.Extras)?; // use clauses
    let ref absyn = self.Gmr.Absyntype;
    let ref extype = self.Gmr.Externtype;
    write!(fd,"pub fn make_parser() -> RuntimeParser<{},{}>",absyn,extype)?; 
    write!(fd,"\n{{\n")?;
    // write code to pop stack, assign labels to variables.
    write!(fd," let mut parser1:RuntimeParser<{},{}> = RuntimeParser::new({},{});\n",absyn,extype,self.Gmr.Rules.len(),self.States.len())?;
    // generate rules and Ruleaction delegates, must pop values from runtime stack
    write!(fd," let mut rule = RProduction::<{},{}>::new_skeleton(\"{}\");\n",absyn,extype,"start")?;
    for i in 0..self.Gmr.Rules.len() 
    {
      write!(fd," rule = RProduction::<{},{}>::new_skeleton(\"{}\");\n",absyn,extype,self.Gmr.Rules[i].lhs.sym)?;      
      write!(fd," rule.Ruleaction = |parser|{{ ")?;
      let mut k = self.Gmr.Rules[i].rhs.len();
      while k>0
      {
        let gsym = &self.Gmr.Rules[i].rhs[k-1];
        if gsym.label.len()>0 && &gsym.rusttype[0..3]=="mut"
          { write!(fd," let mut {}:{}=",gsym.label,absyn)?; }        
        else if gsym.label.len()>0
          { write!(fd," let {}:{}=",gsym.label,absyn)?; }
        write!(fd,"parser.stack.pop()")?; 
        if gsym.label.len()>0 { write!(fd,".unwrap().value;  ")?;}
        else {write!(fd,";  ")?;}
        k -= 1;
      } // for each symbol on right hand side of rule  
      let mut semaction = &self.Gmr.Rules[i].action; //this is a string
      //if semaction.len()<1 {semaction = "}}";}
      //if al>1 {semaction = semaction.substring(0,al-1);}
      if semaction.len()>1 {write!(fd,"{};\n",semaction.trim_end())?;}
      else {write!(fd," return <{}>::default();}};\n",absyn)?;}
      write!(fd," parser1.Rules.push(rule);\n")?;
    }// for each rule
    write!(fd," parser1.Errsym = \"{}\";\n",&self.Gmr.Errsym)?;
    // resynch vector
    for s in &self.Gmr.Resynch {write!(fd," parser1.resynch.insert(\"{}\");\n",s)?;}
    
    for i in 0..self.FSM.len()
    {
      let row = &self.FSM[i];
      for key in row.keys()
      {
        write!(fd," parser1.RSM[{}].insert(\"{}\",Stateaction::{:?});\n",i,key,row.get(key).unwrap())?;
      } //for each string key in row
    }//for each state index i

    write!(fd," return parser1;\n")?;
    write!(fd,"}} //make_parser\n")?;
    Ok(())
  }//write_verbose

} // impl Statemachine


//// independent function
    fn iserror(actionopt:&Option<&Stateaction>) -> bool
    {
       match actionopt {
           None => true,
           Some(Error(_)) => true,
           _ => false,
         }
    }//iserror





///////////////////////////////////////////////////////////////////////////
////// reimplementing the parsing algorithm more modularly, with aim of
////// allowing custom parsers
//////////// errors should compile a report

impl<AT:Default,ET:Default> RuntimeParser<AT,ET>
{
  /// this function is used to invoke the generated parser returned by
  /// the generated parser program's make_parser function.  *This function
  /// is equivalent to [RuntimeParser::parse_stdio]*.
  pub fn parse(&mut self, tokenizer:&mut dyn Lexer<AT>) -> AT
  {
     self.parse_stdio(tokenizer)
  }

  /// Error recovery routine of rustlr, separate from error_reporter.
  /// This function will modify the parser and lookahead symbol and return
  /// either the next action the parser should take (if recovery succeeded)
  /// or None if recovery failed.
  pub fn error_recover<'t>(&mut self, lookahead:&mut Lextoken<AT>,tokenizer:&mut dyn Lexer<AT>) -> Option<Stateaction>
  {
    let mut erraction = None;
    ///// prefer to ue Errsym method
    if self.Errsym.len()>0 {
      let errsym = self.Errsym;
      // lookdown stack for state with trainsiton on Errsym
      // but that could be current state too (start at top)
      let mut k = self.stack.len(); // offset by 1 because of usize
      let mut spos = k+1;
      while k>0 && spos>k
      {
        let ksi = self.stack[k-1].si;
        erraction = self.RSM[ksi].get(errsym);
        if let None = erraction {k-=1;} else {spos=k;}
      }//while k>0
      if spos==k { self.stack.truncate(k); } // new current state revealed
      // run all reduce actions that are valid before the Errsym:
      while let Some(Reduce(ri)) = erraction // keep reducing
      {
       //self.reduce(ri); // borrow error- only need mut self.stack
              let rulei = &self.Rules[*ri];
              let ruleilhs = rulei.lhs; // &'static : Copy
              let val = (rulei.Ruleaction)(self); // calls delegate function
              let newtop = self.stack[self.stack.len()-1].si; 
              let gotonopt = self.RSM[newtop].get(ruleilhs);
              match gotonopt {
                Some(Gotonext(nsi)) => { 
                  self.stack.push(Stackelement{si:*nsi,value:val});
                },// goto next state after reduce
                _ => {self.abort("recovery failed"); },
              }//match
              // end reduce
              let tos=self.stack[self.stack.len()-1].si;
              erraction = self.RSM[tos].get(self.Errsym);
      } // while let erraction is reduce
      // remaining defined action on Errsym must be shift
      if let Some(Shift(i)) = erraction { // simulate shift errsym 
          self.stack.push(Stackelement{si:*i,value:AT::default()});
          // keep lookahead until action is found that transitions from
          // current state (i). but skipping ahead without reducing
          // the error production is not a good idea
          while let None = self.RSM[*i].get(&lookahead.sym[..]) {
            if &lookahead.sym[..]=="EOF" {break;}
            *lookahead = self.nexttoken(tokenizer);
          }//while let
          // either at end of input or found action on next symbol
          erraction = self.RSM[*i].get(&lookahead.sym[..]);
      } // if shift action found down under stack
    }//errsym exists

    // at this point, if erraction is None, then Errsym failed to recover,
    // try the resynch symbol method next ...
    if iserror(&erraction) && self.resynch.len()>0 {
      while &lookahead.sym!="EOF" &&
        !self.resynch.contains(&lookahead.sym[..]) {
        self.linenum = tokenizer.linenum(); self.column = tokenizer.column();
        *lookahead = self.nexttoken(tokenizer);
      }//while
      if &lookahead.sym!="EOF" {
        // look for state on stack that has action defined on next symbol
        self.linenum = tokenizer.linenum(); self.column = tokenizer.column();    
        *lookahead = self.nexttoken(tokenizer); // skipp err-causing symbol
      }
      let mut k = self.stack.len()-1; // offset by 1 because of usize
      let mut position = 0;
      while k>0 && erraction==None
      {
         let ksi = self.stack[k-1].si;
         erraction = self.RSM[ksi].get(&lookahead.sym[..]);
         if let None=erraction {k-=1;}
      }//while k>0 && erraction==None
      match erraction {
        None => {}, // do nothing, whill shift next symbol
        _ => { self.stack.truncate(k);},//pop stack
      }//match
   }// there are resync symbols

   // at this point, if erraction is None, then resynch recovery failed too.
   // only action left is to skip ahead...
   let mut eofcx = 0;
   while iserror(&erraction) && eofcx<1 { //skip input
      self.linenum = tokenizer.linenum(); self.column = tokenizer.column();
      *lookahead = self.nexttoken(tokenizer);
      if &lookahead.sym=="EOF" {eofcx+=1;}
      let csi =self.stack[self.stack.len()-1].si;
      erraction = self.RSM[csi].get(&lookahead.sym[..]);
   }// skip ahead
   match erraction {
     None => None,
     Some(act) => Some(*act),
   }//return match
  }//error_recover function

}//impl RuntimeParser 2


/////////////////////////////////////////////////////////////////////////
/////////////// new approach using more flexible trait object

/// A trait object that implements ErrHandler is expected by the [RuntimeParser::parse_base]
/// function, which implements the basic LR parsing algorithm using the
/// generated state machine.  The struct [StandardReporter] is provided as
/// the default ErrHandler that uses standard I/O as interface and has the
/// ability to train the parser.  But other implementations of the trait
/// can be created that use different interfaces, such as a graphical IDE.
pub trait ErrHandler<AT:Default,ET:Default> // not same as error recovery
{
  fn err_reporter(&mut self, parser:&mut RuntimeParser<AT,ET>, lookahead:&Lextoken<AT>, erropt:&Option<Stateaction>);
  fn report_err(&self, parser:&mut RuntimeParser<AT,ET>, msg:&str) { parser.report(msg) }
//  fn training_mode(&self, parser:&RuntimeParser<AT,ET>) -> bool {false}
//  fn interactive_mode(&self, parser:&RuntimeParser<AT,ET>) -> bool {false}
}// ErrHandler trait

/*
The structure here is a bit strange.  The script file is written to in
interactive training mode and read from in script-training mode.  However,
the actual modification of the parser file is done after the training, by
the augmenter module.  Thus there's another wrapper function that's needed
besides the creation of the right kind of StandardReporter.
*/

/// these objects implement the [ErrHandler] trait.  They are used in the
/// [RuntimeParser::parse_stdio], [RuntimeParser::parse_stdio_train] and
/// [RuntimeParser::train_from_script] functions.
pub struct StandardReporter
{
  pub  training : bool,
  //    pub  interactive : bool,  scriptinopt==None
  pub  trained : HashMap<(usize,String),String>,
  pub scriptinopt:  Option<BufReader<File>>,   // for training from script
  pub scriptoutopt: Option<File>,   // created during interactive training
}
impl StandardReporter
{
  /// creates default standard reporter, used by parse_stdio (does not train)
  pub fn new() -> StandardReporter
  {
    StandardReporter {
      training:false, trained:HashMap::new(), scriptinopt:None, scriptoutopt:None,}
  }
  /// creates a stdio error handler with interactive training, takes as
  /// argument parser file name, to create script for future retraining.
  pub fn new_interactive_training(existingparser:&str) -> StandardReporter
  {
    let outfile =  format!("{}_script.txt", existingparser);
    let mut fout = File::create(outfile).expect("failed to create training script file");
    let _ = write!(fout,"# Rustlr training script for {}\n\n",existingparser);
    StandardReporter {
      training:true, trained:HashMap::with_capacity(8),
      scriptoutopt:Some(fout), scriptinopt:None,}     
  }
  /// creates a stdio error handler that trains (non-interactively) from
  /// a previously created script.  It's the user's responsibility to match
  /// the script file with the input source.
  pub fn new_script_training(existingparser:&str,scriptfile:&str) -> StandardReporter
  {
    let fin = BufReader::new(File::open(scriptfile).expect("failed to open training script file"));
    StandardReporter {
      training:true, trained:HashMap::with_capacity(32),
      scriptoutopt:None,
      scriptinopt:Some(fin), }     
  }  
  // augment_train implemented in augmenter.rs
}//impl StandardReporter

impl<AT:Default,ET:Default> ErrHandler<AT,ET> for StandardReporter
{
  // this function will be able to write training script to file
  fn err_reporter(&mut self, parser:&mut RuntimeParser<AT,ET>, lookahead:&Lextoken<AT>, erropt:&Option<Stateaction>)
 { 
  let mut wresult:std::io::Result<()> = Err(std::io::Error::new(std::io::ErrorKind::Other,"")); // dummy
  // known that actionop is None or Some(Error(_))
  let cstate = parser.stack[parser.stack.len()-1].si; // current state
  let mut actionopt = if let Some(act)=erropt {Some(act)} else {None};
  let lksym = &lookahead.sym[..];
  // is lookahead recognized as a grammar symbol?
  // if actionopt is NONE, check entry for ANY_ERROR            
  if parser.Symset.contains(lksym) {
     if let None=actionopt {
        actionopt = parser.RSM[cstate].get("ANY_ERROR");
     }
  }// lookahead is recognized grammar sym
  else {
     actionopt = parser.RSM[cstate].get("ANY_ERROR");
  }// lookahead is not a grammar sym
  let errmsg = if let Some(Error(em)) = &actionopt {
    format!("unexpected symbol {}, ** {} ** ..",lksym,em.trim())
  } else {format!("unexpected symbol {} .. ",lksym)};

  parser.report(&errmsg);

  if self.training {          ////// Training mode
    let csym = lookahead.sym.clone();
    let mut inp = String::from("");    
   if let None=self.scriptinopt {  // interactive mode
   if let Some(outfd1) = &self.scriptoutopt {
    let mut outfd = outfd1;
    print!("\n>>>TRAINER: if this message is not adequate (for state {}), enter a replacement (default no change): ",cstate);
    let rrrflush = io::stdout().flush();
    if let Ok(n) = io::stdin().read_line(&mut inp) {
       if inp.len()>5 && parser.Symset.contains(lksym) {
         print!(">>>TRAINER: should this message be given for all unexpected symbols in the current state? (default yes) ");
        let rrrflush2 = io::stdout().flush();
        let mut inp2 = String::new();
        if let Ok(n) = io::stdin().read_line(&mut inp2) {
            if inp2.trim()=="no" || inp2.trim()=="No" {
               wresult = write!(outfd,"{}\t{}\t{} ::: {}\n",parser.linenum,parser.column,&csym,inp.trim());
               self.trained.insert((cstate,csym),inp);
            }
            else  {// insert for any error
               wresult = write!(outfd,"{}\t{}\t{} ::: {}\n",parser.linenum,parser.column,"ANY_ERROR",inp.trim());
               self.trained.insert((cstate,String::from("ANY_ERROR")),inp);
            }
        }// read ok
       }// unexpected symbol is grammar sym
       else if inp.len()>5 && !parser.Symset.contains(lksym) {
         wresult = write!(outfd,"{}\t{}\t{} ::: {}\n",parser.linenum,parser.column,"ANY_ERROR",inp.trim());
         self.trained.insert((cstate,String::from("ANY_ERROR")),inp);
       }
    }// process user response
   }}// interactive mode
   else { // training from script mode (non-interactive)
    if let Some(brfd) = &mut self.scriptinopt {
     let mut scin = brfd;
     let mut readn = 0;
     while readn < 1
     {
       inp = String::new();
       match scin.read_line(&mut inp) {
         Ok(n) if n>1 && &inp[0..1]!="#" && inp.trim().len()>0 => {readn=n;},
         Ok(n) if n>0 => { readn=0; }, // keep reading
         _ => {readn = 1; } // stop - this means End of Stream
       }//match
       if readn>1 { // read something
         let inpsplit:Vec<&str> = inp.split_whitespace().collect();
         if inpsplit.len()>4 && inpsplit[3].trim()==":::" {
           let inline = inpsplit[0].trim().parse::<usize>().unwrap();
           let incolumn = inpsplit[1].trim().parse::<usize>().unwrap();
           let insym = inpsplit[2].trim();
           if parser.linenum==inline && parser.column==incolumn {
             if &csym==insym || insym=="ANY_ERROR" {
               let posc = inp.find(":::").unwrap()+4;
               println!("\n>>>Found matching entry from training script for {}, error message: {}",insym,&inp[posc..]);
               self.trained.insert((cstate,String::from(insym)),String::from(&inp[posc..]));
             } // unexpected symbol match
           }// line/column match
         }//inpsplit check
       }// valid training line read
     }//while readn<2
   }}//training from script mode
  }//if training   //// END TRAINING MODE
  
 }// standardreporter function
}// impl ErrHandler for StandardReporter


//////////////// temporary: live side by side with parse_core (tobe replaced)
impl<AT:Default,ET:Default> RuntimeParser<AT,ET>
{
  /// Core parser (temporarily lives side by side with parse_core) that
  /// takes dynamic trait objects for lexical scanning and err_reporting.
  /// This design makes it possible to create a custom error reporting
  /// interface.
  pub fn parse_base(&mut self, tokenizer:&mut dyn Lexer<AT>, err_handler:&mut dyn ErrHandler<AT,ET>) -> AT
  {
    self.stack.clear();
    self.err_occurred = false;
    let mut result = AT::default();
    self.stack.push(Stackelement {si:0, value:AT::default()});
    self.stopparsing = false;
    let mut action = Stateaction::Error("");
    let mut lookahead = Lextoken{sym:"EOF".to_owned(),value:AT::default()};
    if let Some(tok) = tokenizer.nextsym() {lookahead=tok;}
    else {self.stopparsing=true;}

    while !self.stopparsing
    {
      self.linenum = tokenizer.linenum(); self.column=tokenizer.column();
      let currentstate = self.stack[self.stack.len()-1].si;
      let mut actionopt = self.RSM[currentstate].get(lookahead.sym.as_str());
      let actclone:Option<Stateaction> = match actionopt {
        Some(a) => Some(*a),
        None => None,
      };
      if iserror(&actionopt) {  // either None or Error
        if !self.err_occurred {self.err_occurred = true;}
        
        err_handler.err_reporter(self,&lookahead,&actclone);
        //err_reporter(self,&lookahead,&actclone);
        
        match self.error_recover(&mut lookahead,tokenizer) {
          None => { self.stopparsing=true; break; }
          Some(act) => {action = act;},
        }//match
      }// iserror
      else { action = actclone.unwrap(); }
      match &action {
        Shift(nextstate) => {
           lookahead = self.shift(*nextstate,lookahead,tokenizer);
        },
        Reduce(rulei) => { self.reduce(rulei); },
        Accept => {
          self.stopparsing=true;
          if self.stack.len()>0 {result = self.stack.pop().unwrap().value;}
          else {self.err_occurred=true;}
        },
        _ => {}, // continue
      }//match action
    }// main parse loop
    return result;
  }//parse_base

  ///provided generic parsing function that reports errors on std::io. This
  ///function is equivalent to [RuntimeParser::parse].
  pub fn parse_stdio(&mut self, tokenizer:&mut dyn Lexer<AT>) -> AT
  {
    let mut stdeh = StandardReporter::new();
    self.parse_base(tokenizer,&mut stdeh) 
  }//parse_stdio

  ///Parses in interactive training mode with provided path to parserfile.
  ///The parser file will be modified and a training script file will be
  ///created for future retraining after grammar is modified. This function
  ///is equivalent to [RuntimeParser::parse_train].
  ///
  /// When an error occurs, the parser will
    /// ask the human trainer for an appropriate error message: it will
    /// then insert an entry into its state transition table to
    /// give the same error message on future errors of the same type.
    /// If the error is caused by an unexpected token that is recognized
    /// as a terminal symbol of the grammar, the trainer can select to
    /// enter the entry 
    /// under the reserved ANY_ERROR symbol. If the unexpected token is
    /// not recognized as a grammar symbol, then the entry will always
    /// be entered under ANY_ERROR.  ANY_ERROR entries for a state will match
    /// all future unexpected symbols for that state: however, entries for
    /// valid grammar symbols will still override the generic entry.
    ///
    /// Example: with the parser for this [toy grammar](https://cs.hofstra.edu/~cscccl/rustlr_project/cpm.grammar), parse_train can run as follows:
    ///```ignore
    ///  Write something in C+- : cout << x y ;   
    ///  ERROR on line 1, column 0: unexpected symbol y ..
    ///  >>>TRAINER: is this error message adequate? If not, enter a better one: need another <<                   
    ///  >>>TRAINER: should this message be given for all unexpected symbols in the current state? (default yes) yes
    ///```
    /// (ignore the column number as the lexer for this toy language does not implement it)
    ///
    /// parse_train will then produced a [modified parser](https://cs.hofstra.edu/~cscccl/rustlr_project/cpmparser.rs) as specified
    /// by the filename (path) argument.  When the augmented parser is used, it will
    /// give a more helpful error message:
    ///```
    /// Write something in C+- : cout << x endl
    /// ERROR on line 1, column 0: unexpected symbol endl, ** need another << ** ..
    ///```
    ///
    /// parse_stdio_train calls parse_stdio, which uses stdin/stdout for user interface.
    /// Parsing in interactive training mode also produces a [training script file](http://cs.hofstra.edu/~cscccl/rustlr_project/cpmparser.rs_script.txt) which can
    /// be used to re-train a parser using [RuntimeParser::train_from_script]. 
    /// This is useful after a grammar is modified with extensions to a language.
  pub fn parse_stdio_train(&mut self, tokenizer:&mut dyn Lexer<AT>, parserfile:&str) -> AT
    {
      let mut stdtrainer = StandardReporter::new_interactive_training(parserfile);
      let result = self.parse_base(tokenizer,&mut stdtrainer);
      if let Err(m) = stdtrainer.augment_training(parserfile) {
        eprintln!("Error in augmenting parser: {:?}",m)
      }

      return result;
    }//parse_stdio_train

  /// trains parser from a [training script](https://cs.hofstra.edu/~cscccl/rustlr_project/cpmparser.rs_script.txt)
  /// created by interactive training.  This
  /// is intended to be used after a grammar has been modified and the parser
  /// is regenerated with different state numbers.  It is the user's
  /// responsibility to keep consistent the parser file, script file, and sample
  /// input that was used when the script was created.  The script contains
  /// the line and column numbers of each error encountered, along with either
  /// the unexpected symbol that caused the error, or the reserved ANY_ERROR
  /// symbol if the error message is to be applied to all unexpected symbols.
  /// These entries must match, in sequence, the errors encountered during
  /// retraining - it is therefore recommended that the same tokenizer be used
  /// during retraining so that the same line/column information are given.
  /// The trainer will augment the parser (parserfile) with new Error
  /// entries, overriding any previous ones.  It is also recommended that the
  /// user examines the "load_extras" function that appears at the end of
  /// the [augmented parser](https://cs.hofstra.edu/~cscccl/rustlr_project/cpmparser.rs).
  /// The train_from_script function does not return
  /// a value, unlike [RuntimeParser::parse_stdio] and [RuntimeParser::parse_stdio_train].
  pub fn train_from_script(&mut self, tokenizer:&mut dyn Lexer<AT>, parserfile:&str, scriptfile:&str)
  {
      let mut stdtrainer = StandardReporter::new_script_training(parserfile,scriptfile);
      let result = self.parse_base(tokenizer,&mut stdtrainer);
      if let Err(m) = stdtrainer.augment_training(parserfile) {
        eprintln!("Error in augmenting parser: {:?}",m)
      }
      if !self.err_occurred {println!("no errors encountered during parsing");}
  }//train_from_script

}// 3rd impl RuntimeParser