1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at https://mozilla.org/MPL/2.0/.

//! Wrappers for stochastically sampled variables.

use crate::geom::Point;
use crate::spectrum::blackbody_wavelength;

use rand::prelude::*;
use rand_distr::num_traits::{Float, FromPrimitive};
use rand_distr::uniform::SampleUniform;
use rand_distr::Distribution;
use rand_distr::{Normal, StandardNormal};

use std::sync::Arc;

/// Wrapper for a bounded stocastically sampled value
///
/// a `Sampler` encloses the distribution function and bounds for a random
/// variable of type `T`, such that is can be sampled with an external random
/// number generator of type `R`
///
/// Several constructors are provided for common distributions of values, however
/// if a custom one is needed it can be provided as a closure and set of bounds to
/// `Sampler::from_fn`
#[derive(Clone)]
pub struct Sampler<T: Copy, R: Rng> {
    sample: Arc<dyn Fn(&mut R) -> T + Send + Sync>,
    bounds: (T, T),
}

impl<T, R> Sampler<T, R>
where
    R: Rng,
    T: Copy + Send + Sync + 'static,
{
    /// Creates a new `Sampler` with a constant distibution.
    ///
    /// When sampled the `Sampler` will always return `c`
    pub fn new_const<A>(c: A) -> Self
    where
        A: Into<T>,
    {
        let c = c.into();
        Self {
            sample: Arc::new(move |_| c),
            bounds: (c, c),
        }
    }
}

impl<T, R> Sampler<T, R>
where
    R: Rng,
    T: Copy + Float + SampleUniform + Send + Sync + 'static,
{
    /// Creates a new `Sampler` with a uniform distibution.
    ///
    /// When sampled the `Sampler` will always return a value between `a` and `b` (inclusive)
    pub fn new_range<A, B>(a: A, b: B) -> Self
    where
        A: Into<T>,
        B: Into<T>,
    {
        let a = a.into();
        let b = b.into();
        if a == b {
            return Self::new_const(a);
        }
        let lower = T::min(a, b);
        let upper = T::max(a, b);
        Self {
            sample: Arc::new(move |r| r.gen_range(lower..=upper)),
            bounds: (lower, upper),
        }
    }
}

impl<T, R> Sampler<T, R>
where
    R: Rng,
    T: Copy + Float + From<f32> + Send + Sync + 'static,
    StandardNormal: Distribution<T>,
{
    /// Creates a new `Sampler` with a normal (gaussian) distibution.
    ///
    /// Real gaussian's have infinate bounds, this can cause problems in the raytracing engine, so
    /// this implementation wraps at 3 standard deviations.
    ///
    /// When sampled the `Sampler` will always return a value between `mean - 3 * std_dev` and `mean + 3 * std_dev` (inclusive)
    pub fn new_gaussian<A, B>(mean: A, std_dev: B) -> Self
    where
        A: Copy + Into<T>,
        B: Copy + Into<T>,
    {
        let width: T = std_dev.into() * 3.0.into();
        let mean = mean.into();
        let g = Normal::new(0.0.into(), std_dev.into()).unwrap();
        Self {
            sample: Arc::new(move |r| (g.sample(r) % width) + mean),
            bounds: (mean - width, mean + width),
        }
    }
}

impl<T, R> Sampler<T, R>
where
    R: Rng,
    T: Copy + Float + SampleUniform + FromPrimitive + From<f32> + Send + Sync + 'static,
{
    /// Creates a new `Sampler` with a blackbody radiation curve distibution.
    ///
    /// This is only really useful for creating realistic white lights of a given colour temprature, or stars.
    ///
    /// This sampler should be used carefully; it can lead to unexpected results when used on a value other than `Light.wavelength`.
    /// It is also __substancially__ slower than the other `Sampler` types. When Sampled it will return a value between
    /// 0 and `T::MAX` (probably larger than you want) This can cause all sorts of weird problems for collision detection, so _please_
    /// don't use this on a `SamplerPoint`
    pub fn new_blackbody<A>(temperature: A) -> Self
    where
        A: Into<T>,
    {
        let t = temperature.into();
        Self {
            sample: Arc::new(move |r| blackbody_wavelength(t, r.gen_range(0.0.into()..1.0.into()))),
            bounds: (0.0.into(), T::max_value()),
        }
    }
}

impl<T, R> Sampler<T, R>
where
    T: Copy,
    R: Rng,
{
    /// Creates a new `Sampler` with a distribution dictated by `f`
    ///
    /// `f` must always return a value within the bounds specified by `lower` & `upper`
    ///
    /// This is very low level access to how the renderer works; you're in control,
    /// if you break it it's your fault!
    pub fn from_fn(f: Arc<dyn Fn(&mut R) -> T + Send + Sync>, lower: T, upper: T) -> Self {
        Self {
            sample: f,
            bounds: (lower, upper),
        }
    }

    /// Get a sampled value from this `Sampler` using random number generator `rng`
    #[inline(always)]
    pub fn sample(&self, rng: &mut R) -> T {
        (self.sample)(rng)
    }

    /// Get the bounds of a possible sampled value (useful for spacial partitioning and limit checks etc)
    #[inline(always)]
    pub fn bounds(&self) -> (T, T) {
        self.bounds
    }
}

/// A single value of type `T` will be interpreted as a constant distribution if turned into a sampler.
///
/// # Example:
/// ```
/// extern crate rand;
///
/// use rustic_zen::sampler::Sampler;
/// use rand::prelude::*;
/// let mut r = rand::thread_rng();
///
/// let s: Sampler<f64, ThreadRng> = 5.0.into();
///
/// assert_eq!(s.sample(&mut r), 5.0); // will always be true
/// ```
impl<T, R> From<T> for Sampler<T, R>
where
    T: Copy + From<T> + Send + Sync + 'static,
    R: Rng,
{
    fn from(value: T) -> Self {
        Self::new_const(value)
    }
}

/// A tuple of type `(T,T)` will be interpreted as a uniform distribution if turned into a sampler.
///
/// # Example:
/// ```
/// extern crate rand;
///
/// use rustic_zen::sampler::Sampler;
/// use rand::prelude::*;
/// let mut r = rand::thread_rng();
///
/// let s: Sampler<f64, ThreadRng> = (5.0,10.0).into();
///
/// assert!(s.sample(&mut r) >= 5.0); // will always be true
/// assert!(s.sample(&mut r) <= 10.0); // will always be true
/// ```
impl<T, R> From<(T, T)> for Sampler<T, R>
where
    T: Copy + Float + SampleUniform + Send + Sync + From<f32> + 'static,
    R: Rng,
{
    fn from(value: (T, T)) -> Self {
        Self::new_range(value.0, value.1)
    }
}

/// Wrapper around two `Sampler`s to make a Stochasically sampled point.
#[derive(Clone)]
pub struct SamplerPoint<R: Rng> {
    x: Sampler<f64, R>,
    y: Sampler<f64, R>,
}

/// A tuple of type `(Sampler::<T>,Sampler<T>)` will be interpreted as a uniform distribution if turned into a sampler.
///
/// # Example:
/// ```
/// extern crate rand;
///
/// use rustic_zen::sampler::SamplerPoint;
/// use rustic_zen::sampler::Sampler;
/// use rand::prelude::*;
/// let mut r = rand::thread_rng();
///
/// // results in a rounds soft distribution, useful for area lights.
/// let _p: SamplerPoint<ThreadRng> = (Sampler::new_gaussian(0.0, 3.0), Sampler::new_gaussian(0.0, 3.0)).into();
///
/// ```
///
/// This is the only way to construct a `SamplerPoint`. This shorthand can be extended using the `Sampler`'s into traits:
/// ```
/// extern crate rand;
///
/// use rustic_zen::sampler::SamplerPoint;
/// use rustic_zen::geom::Point;
/// use rand::prelude::*;
/// let mut r = rand::thread_rng();
///
/// // results in a fixed point at 0.0, 0.0
/// let _p: SamplerPoint<ThreadRng> = (0.0, 0.0).into();
///
/// // results in a uniformly distributed square from 0.0, 0.0 to 10.0, 10.0
/// let _p: SamplerPoint<ThreadRng> = ((0.0, 10.0), (0.0, 10.0)).into();
/// ```
impl<R> From<Point> for SamplerPoint<R>
where
    R: Rng,
{
    fn from(value: Point) -> Self {
        Self {
            x: value.x.into(),
            y: value.y.into(),
        }
    }
}

impl<A, B, R> From<(A, B)> for SamplerPoint<R>
where
    A: Into<Sampler<f64, R>>,
    B: Into<Sampler<f64, R>>,
    R: Rng,
{
    fn from(value: (A, B)) -> Self {
        Self {
            x: value.0.into(),
            y: value.1.into(),
        }
    }
}

impl<R> SamplerPoint<R>
where
    R: Rng,
{
    #[inline(always)]
    pub(crate) fn get(&self, rng: &mut R) -> Point {
        Point {
            x: self.x.sample(rng),
            y: self.y.sample(rng),
        }
    }
}

#[cfg(test)]
mod tests {
    type RandGen = rand_pcg::Pcg64Mcg;
    use rand::prelude::*;

    use super::Sampler;

    #[test]
    fn const_bounds() {
        // test bounds with 1000 random numbers
        for _ in 0..1000 {
            let mut stdrng = RandGen::from_entropy();
            let f: f64 = stdrng.gen();
            let s = Sampler::<f64, RandGen>::new_const(f);
            let (a, b) = s.bounds();
            assert_eq!(a, b);
            assert_eq!(a, f);
            assert_eq!(b, f);
        }
    }

    #[test]
    fn range_bounds() {
        for _ in 0..1000 {
            let mut stdrng = RandGen::from_entropy();
            let a: f64 = stdrng.gen();
            let b: f64 = stdrng.gen();
            let s = Sampler::<f64, RandGen>::new_range(a, b);

            let (c, d) = s.bounds();
            assert_eq!(a.min(b), c);
            assert_eq!(a.max(b), d);
        }
    }

    #[test]
    fn val_const() {
        let mut rng = RandGen::from_entropy();

        let mut stdrng = RandGen::from_entropy();
        let f: f64 = stdrng.gen();
        let s = Sampler::new_const(f);

        for _ in 0..1000 {
            let y: f64 = s.sample(&mut rng);
            assert_eq!(y, f);
        }
    }

    #[test]
    fn val_range() {
        let mut rng = RandGen::from_entropy();

        let mut stdrng = RandGen::from_entropy();
        let mut f1: f64 = stdrng.gen();
        let mut f2: f64 = stdrng.gen();
        if f1 < f2 {
            let tmp = f1;
            f1 = f2;
            f2 = tmp;
        }
        let s = Sampler::new_range(f1, f2);

        // This does actually run 100,000 times despite finishing so quickly
        for _ in 0..100000 {
            let y: f64 = s.sample(&mut rng);
            assert!(y <= f1);
            assert!(y >= f2);
        }
    }

    #[test]
    fn blackbody_works() {
        let mut rng = RandGen::from_entropy();
        // Get a sampled value from the range of valid wavelenghts
        let w: Sampler<f64, rand_pcg::Mcg128Xsl64> = Sampler::new_range(780.0, 360.0);

        // create sample with random wavelenght
        let s = Sampler::new_blackbody(w.sample(&mut rng));

        // Check s can be sampled without panicing
        let _: f64 = s.sample(&mut rng);
    }

    #[test]
    fn blackbody_white_light_64() {
        let mut rng = RandGen::from_entropy();
        let s = Sampler::new_blackbody(0.0);
        // Check s can be sampled without panicing
        let _: f64 = s.sample(&mut rng);
    }

    #[test]
    fn blackbody_white_light_32() {
        let mut rng = RandGen::from_entropy();
        let s = Sampler::new_blackbody(0.0);
        // Check s can be sampled without panicing
        let _: f32 = s.sample(&mut rng);
    }

    #[test]
    fn gaussian_at_zero() {
        let mut rng = RandGen::from_entropy();
        let s = Sampler::new_gaussian(0.0, 10.0);
        // Check s can be sampled without panicing
        let _: f64 = s.sample(&mut rng);
    }

    #[test]
    fn range_big_first() {
        let mut rng = RandGen::from_entropy();
        let s = Sampler::new_range(10.0, 0.0);
        // Check s can be sampled without panicing
        let _: f64 = s.sample(&mut rng);
    }

    #[test]
    fn range_small_first() {
        let mut rng = RandGen::from_entropy();
        let s = Sampler::new_range(0.0, 10.0);
        // Check s can be sampled without panicing
        let _: f64 = s.sample(&mut rng);
    }
}