1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
use std::sync::Arc;
use std::{any::TypeId, cmp::min};

use primal_check::miller_rabin;

use crate::algorithm::*;
use crate::common::FftNum;
use crate::math_utils::PartialFactors;
use crate::Fft;
use crate::{algorithm::butterflies::*, fft_cache::FftCache};

use super::*;

fn wrap_fft<T: FftNum>(butterfly: impl Fft<T> + 'static) -> Arc<dyn Fft<T>> {
    Arc::new(butterfly) as Arc<dyn Fft<T>>
}

#[derive(Debug)]
enum MixedRadixBase {
    // The base will be a butterfly algorithm
    ButterflyBase(usize),

    // The base will be an instance of Rader's Algorithm. That will require its own plan for the internal FFT, which we'll handle separately
    RadersBase(usize),

    // The base will be an instance of Bluestein's Algorithm. That will require its own plan for the internal FFT, which we'll handle separately.
    // First usize is the base length, second usize is the inner FFT length
    BluesteinsBase(usize, usize),

    // The "base" is a FFT instance we already have cached
    CacheBase(usize),
}
impl MixedRadixBase {
    fn base_len(&self) -> usize {
        match self {
            Self::ButterflyBase(len) => *len,
            Self::RadersBase(len) => *len,
            Self::BluesteinsBase(len, _) => *len,
            Self::CacheBase(len) => *len,
        }
    }
}

/// repreesnts a FFT plan, stored as a base FFT and a stack of MixedRadix*xn on top of it.
#[derive(Debug)]
pub struct MixedRadixPlan {
    len: usize,       // product of base and radixes
    radixes: Vec<u8>, // stored from innermost to outermost
    base: MixedRadixBase,
}
impl MixedRadixPlan {
    fn new(base: MixedRadixBase, radixes: Vec<u8>) -> Self {
        Self {
            len: base.base_len() * radixes.iter().map(|r| *r as usize).product::<usize>(),
            base,
            radixes,
        }
    }
    fn cached(cached_len: usize) -> Self {
        Self {
            len: cached_len,
            base: MixedRadixBase::CacheBase(cached_len),
            radixes: Vec::new(),
        }
    }
    fn butterfly(butterfly_len: usize, radixes: Vec<u8>) -> Self {
        Self::new(MixedRadixBase::ButterflyBase(butterfly_len), radixes)
    }
    fn push_radix(&mut self, radix: u8) {
        self.radixes.push(radix);
        self.len *= radix as usize;
    }
    fn push_radix_power(&mut self, radix: u8, power: u32) {
        self.radixes
            .extend(std::iter::repeat(radix).take(power as usize));
        self.len *= (radix as usize).pow(power);
    }
}

/// The AVX FFT planner creates new FFT algorithm instances which take advantage of the AVX instruction set.
///
/// Creating an instance of `FftPlannerAvx` requires the `avx` and `fma` instructions to be available on the current machine, and it requires RustFFT's
///  `avx` feature flag to be set. A few algorithms will use `avx2` if it's available, but it isn't required.
///
/// For the time being, AVX acceleration is black box, and AVX accelerated algorithms are not available without a planner. This may change in the future.
///
/// ~~~
/// // Perform a forward Fft of size 1234, accelerated by AVX
/// use std::sync::Arc;
/// use rustfft::{FftPlannerAvx, num_complex::Complex};
///
/// // If FftPlannerAvx::new() returns Ok(), we'll know AVX algorithms are available
/// // on this machine, and that RustFFT was compiled with the `avx` feature flag
/// if let Ok(mut planner) = FftPlannerAvx::new() {
///     let fft = planner.plan_fft_forward(1234);
///
///     let mut buffer = vec![Complex{ re: 0.0f32, im: 0.0f32 }; 1234];
///     fft.process(&mut buffer);
///
///     // The FFT instance returned by the planner has the type `Arc<dyn Fft<T>>`,
///     // where T is the numeric type, ie f32 or f64, so it's cheap to clone
///     let fft_clone = Arc::clone(&fft);
/// }
/// ~~~
///
/// If you plan on creating multiple FFT instances, it is recommended to re-use the same planner for all of them. This
/// is because the planner re-uses internal data across FFT instances wherever possible, saving memory and reducing
/// setup time. (FFT instances created with one planner will never re-use data and buffers with FFT instances created
/// by a different planner)
///
/// Each FFT instance owns [`Arc`s](std::sync::Arc) to its internal data, rather than borrowing it from the planner, so it's perfectly
/// safe to drop the planner after creating Fft instances.
pub struct FftPlannerAvx<T: FftNum> {
    internal_planner: Box<dyn AvxPlannerInternalAPI<T>>,
}
impl<T: FftNum> FftPlannerAvx<T> {
    /// Constructs a new `FftPlannerAvx` instance.
    ///
    /// Returns `Ok(planner_instance)` if we're compiling for X86_64, AVX support was enabled in feature flags, and the current CPU supports the `avx` and `fma` CPU features.
    /// Returns `Err(())` if AVX support is not available.
    pub fn new() -> Result<Self, ()> {
        // Eventually we might make AVX algorithms that don't also require FMA.
        // If that happens, we can only check for AVX here? seems like a pretty low-priority addition
        let has_avx = is_x86_feature_detected!("avx");
        let has_fma = is_x86_feature_detected!("fma");
        if has_avx && has_fma {
            // Ideally, we would implement the planner with specialization.
            // Specialization won't be on stable rust for a long time tohugh, so in the meantime, we can hack around it.
            //
            // The first step of the hack is to use TypeID to determine if T is f32, f64, or neither. If neither, we don't want to di any AVX acceleration
            // If it's f32 or f64, then construct an internal type that has two generic parameters, one bounded on AvxNum, the other bounded on FftNum
            //
            // - A is bounded on the AvxNum trait, and is the type we use for any AVX computations. It has associated types for AVX vectors,
            //      associated constants for the number of elements per vector, etc.
            // - T is bounded on the FftNum trait, and thus is the type that every FFT algorithm will recieve its input/output buffers in.
            //
            // An important snag relevant to the planner is that we have to box and type-erase the AvxNum bound,
            // since the only other option is making the AvxNum bound a part of this struct's external API
            //
            // Another annoying snag with this setup is that we frequently have to transmute buffers from &mut [Complex<T>] to &mut [Complex<A>] or vice versa.
            // We know this is safe because we assert everywhere that Type(A)==Type(T), so it's just a matter of "doing it right" every time.
            // These transmutes are required because the FFT algorithm's input will come through the FFT trait, which may only be bounded by FftNum.
            // So the buffers will have the type &mut [Complex<T>]. The problem comes in that all of our AVX computation tools are on the AvxNum trait.
            //
            // If we had specialization, we could easily convince the compilr that AvxNum and FftNum were different bounds on the same underlying type (IE f32 or f64)
            // but without it, the compiler is convinced that they are different. So we use the transmute as a last-resort way to overcome this limitation.
            //
            // We keep both the A and T types around in all of our AVX-related structs so that we can cast between A and T whenever necessary.
            let id_f32 = TypeId::of::<f32>();
            let id_f64 = TypeId::of::<f64>();
            let id_t = TypeId::of::<T>();

            if id_t == id_f32 {
                return Ok(Self {
                    internal_planner: Box::new(AvxPlannerInternal::<f32, T>::new()),
                });
            } else if id_t == id_f64 {
                return Ok(Self {
                    internal_planner: Box::new(AvxPlannerInternal::<f64, T>::new()),
                });
            }
        }
        Err(())
    }

    /// Returns a `Fft` instance which uses AVX instructions to compute FFTs of size `len`.
    ///
    /// If the provided `direction` is `FftDirection::Forward`, the returned instance will compute forward FFTs. If it's `FftDirection::Inverse`, it will compute inverse FFTs.
    ///
    /// If this is called multiple times, the planner will attempt to re-use internal data between calls, reducing memory usage and FFT initialization time.
    pub fn plan_fft(&mut self, len: usize, direction: FftDirection) -> Arc<dyn Fft<T>> {
        self.internal_planner.plan_and_construct_fft(len, direction)
    }
    /// Returns a `Fft` instance which uses AVX instructions to compute forward FFTs of size `len`.
    ///
    /// If this is called multiple times, the planner will attempt to re-use internal data between calls, reducing memory usage and FFT initialization time.
    pub fn plan_fft_forward(&mut self, len: usize) -> Arc<dyn Fft<T>> {
        self.plan_fft(len, FftDirection::Forward)
    }
    /// Returns a `Fft` instance which uses AVX instructions to compute inverse FFTs of size `len.
    ///
    /// If this is called multiple times, the planner will attempt to re-use internal data between calls, reducing memory usage and FFT initialization time.
    pub fn plan_fft_inverse(&mut self, len: usize) -> Arc<dyn Fft<T>> {
        self.plan_fft(len, FftDirection::Inverse)
    }

    /// Returns a FFT plan without constructing it
    #[allow(unused)]
    pub(crate) fn debug_plan_fft(&self, len: usize, direction: FftDirection) -> MixedRadixPlan {
        self.internal_planner.debug_plan_fft(len, direction)
    }
}

trait AvxPlannerInternalAPI<T: FftNum>: Send {
    fn plan_and_construct_fft(&mut self, len: usize, direction: FftDirection) -> Arc<dyn Fft<T>>;
    fn debug_plan_fft(&self, len: usize, direction: FftDirection) -> MixedRadixPlan;
}

struct AvxPlannerInternal<A: AvxNum, T: FftNum> {
    cache: FftCache<T>,
    _phantom: std::marker::PhantomData<A>,
}

impl<T: FftNum> AvxPlannerInternalAPI<T> for AvxPlannerInternal<f32, T> {
    fn plan_and_construct_fft(&mut self, len: usize, direction: FftDirection) -> Arc<dyn Fft<T>> {
        // Step 1: Create a plan for this FFT length.
        let plan = self.plan_fft(len, direction, Self::plan_mixed_radix_base);

        // Step 2: Construct the plan. If the base is rader's algorithm or bluestein's algorithm, this may call self.plan_and_construct_fft recursively!
        self.construct_plan(
            plan,
            direction,
            Self::construct_butterfly,
            Self::plan_and_construct_fft,
        )
    }
    fn debug_plan_fft(&self, len: usize, direction: FftDirection) -> MixedRadixPlan {
        self.plan_fft(len, direction, Self::plan_mixed_radix_base)
    }
}
impl<T: FftNum> AvxPlannerInternalAPI<T> for AvxPlannerInternal<f64, T> {
    fn plan_and_construct_fft(&mut self, len: usize, direction: FftDirection) -> Arc<dyn Fft<T>> {
        // Step 1: Create a plan for this FFT length.
        let plan = self.plan_fft(len, direction, Self::plan_mixed_radix_base);

        // Step 2: Construct the plan. If the base is rader's algorithm or bluestein's algorithm, this may call self.plan_and_construct_fft recursively!
        self.construct_plan(
            plan,
            direction,
            Self::construct_butterfly,
            Self::plan_and_construct_fft,
        )
    }
    fn debug_plan_fft(&self, len: usize, direction: FftDirection) -> MixedRadixPlan {
        self.plan_fft(len, direction, Self::plan_mixed_radix_base)
    }
}

//-------------------------------------------------------------------
// f32-specific planning stuff
//-------------------------------------------------------------------
impl<T: FftNum> AvxPlannerInternal<f32, T> {
    pub fn new() -> Self {
        // Internal sanity check: Make sure that T == f32.
        // This struct has two generic parameters A and T, but they must always be the same, and are only kept separate to help work around the lack of specialization.
        // It would be cool if we could do this as a static_assert instead
        let id_f32 = TypeId::of::<f32>();
        let id_t = TypeId::of::<T>();
        assert_eq!(id_f32, id_t);

        Self {
            cache: FftCache::new(),
            _phantom: std::marker::PhantomData,
        }
    }

    fn plan_mixed_radix_base(&self, len: usize, factors: &PartialFactors) -> MixedRadixPlan {
        // if we have non-fast-path factors, use them as our base FFT length, and we will have to use either rader's algorithm or bluestein's algorithm as our base
        if factors.get_other_factors() > 1 {
            let other_factors = factors.get_other_factors();

            // First, if the "other factors" are a butterfly, use that as the butterfly
            if self.is_butterfly(other_factors) {
                return MixedRadixPlan::butterfly(other_factors, vec![]);
            }

            // We can only use rader's if `other_factors` is prime
            if miller_rabin(other_factors as u64) {
                // len is prime, so we can use Rader's Algorithm as a base. Whether or not that's a good idea is a different story
                // Rader's Algorithm is only faster in a few narrow cases.
                // as a heuristic, only use rader's algorithm if its inner FFT can be computed entirely without bluestein's or rader's
                // We're intentionally being too conservative here. Otherwise we'd be recursively applying a heuristic, and repeated heuristic failures could stack to make a rader's chain significantly slower.
                // If we were writing a measuring planner, expanding this heuristic and measuring its effectiveness would be an opportunity for up to 2x performance gains.
                let inner_factors = PartialFactors::compute(other_factors - 1);
                if self.is_butterfly(inner_factors.get_other_factors()) {
                    // We only have factors of 2,3,5,7, and 11. If we don't have AVX2, we also have to exclude factors of 5 and 7 and 11, because avx2 gives us enough headroom for the overhead of those to not be a problem
                    if is_x86_feature_detected!("avx2")
                        || (inner_factors.product_power2power3() == len - 1)
                    {
                        return MixedRadixPlan::new(
                            MixedRadixBase::RadersBase(other_factors),
                            vec![],
                        );
                    }
                }
            }

            // At this point, we know we're using bluestein's algorithm for the base. Next step is to plan the inner size we'll use for bluestein's algorithm.
            let inner_bluesteins_len =
                self.plan_bluesteins(other_factors, |(_len, factor2, factor3)| {
                    if *factor2 > 16 && *factor3 < 3 {
                        // surprisingly, pure powers of 2 have a pretty steep dropoff in speed after 65536.
                        // the algorithm is designed to generate candidadtes larger than baseline_candidate, so if we hit a large power of 2, there should be more after it that we can skip to
                        return false;
                    }
                    true
                });
            return MixedRadixPlan::new(
                MixedRadixBase::BluesteinsBase(other_factors, inner_bluesteins_len),
                vec![],
            );
        }

        // If this FFT size is a butterfly, use that
        if self.is_butterfly(len) {
            return MixedRadixPlan::butterfly(len, vec![]);
        }

        // If the power2 * power3 component of this FFT is a butterfly and not too small, return that
        let power2power3 = factors.product_power2power3();
        if power2power3 > 4 && self.is_butterfly(power2power3) {
            return MixedRadixPlan::butterfly(power2power3, vec![]);
        }

        // most of this code is heuristics assuming FFTs of a minimum size. if the FFT is below that minimum size, the heuristics break down.
        // so the first thing we're going to do is hardcode the plan for osme specific sizes where we know the heuristics won't be enough
        let hardcoded_base = match power2power3 {
            // 3 * 2^n special cases
            96 => Some(MixedRadixPlan::butterfly(32, vec![3])), // 2^5 * 3
            192 => Some(MixedRadixPlan::butterfly(48, vec![4])), // 2^6 * 3
            1536 => Some(MixedRadixPlan::butterfly(48, vec![8, 4])), // 2^8 * 3

            // 9 * 2^n special cases
            18 => Some(MixedRadixPlan::butterfly(3, vec![6])), // 2 * 3^2
            144 => Some(MixedRadixPlan::butterfly(36, vec![4])), // 2^4 * 3^2

            _ => None,
        };
        if let Some(hardcoded) = hardcoded_base {
            return hardcoded;
        }

        if factors.get_power2() >= 5 {
            match factors.get_power3() {
                // if this FFT is a power of 2, our strategy here is to tweak the butterfly to free us up to do an 8xn chain
                0 => match factors.get_power2() % 3 {
                    0 => MixedRadixPlan::butterfly(512, vec![]),
                    1 => MixedRadixPlan::butterfly(256, vec![]),
                    2 => MixedRadixPlan::butterfly(256, vec![]),
                    _ => unreachable!(),
                },
                // if this FFT is 3 times a power of 2, our strategy here is to tweak butterflies to make it easier to set up a 8xn chain
                1 => match factors.get_power2() % 3 {
                    0 => MixedRadixPlan::butterfly(64, vec![12, 16]),
                    1 => MixedRadixPlan::butterfly(48, vec![]),
                    2 => MixedRadixPlan::butterfly(64, vec![]),
                    _ => unreachable!(),
                },
                // if this FFT is 9 or greater times a power of 2, just use 72. As you might expect, in this vast field of options, what is optimal becomes a lot more muddy and situational
                // but across all the benchmarking i've done, 72 seems like the best default that will get us the best plan in 95% of the cases
                // 64, 54, and 48 are occasionally faster, although i haven't been able to discern a pattern.
                _ => MixedRadixPlan::butterfly(72, vec![]),
            }
        } else if factors.get_power3() >= 3 {
            // Our FFT is a power of 3 times a low power of 2. A high level summary of our strategy is that we want to pick a base that will
            // A: consume all factors of 2, and B: leave us with an even power of 3, so that we can do a 9xn chain.
            match factors.get_power2() {
                0 => MixedRadixPlan::butterfly(27, vec![]),
                1 => MixedRadixPlan::butterfly(54, vec![]),
                2 => match factors.get_power3() % 2 {
                    0 => MixedRadixPlan::butterfly(36, vec![]),
                    1 => MixedRadixPlan::butterfly(if len < 1000 { 36 } else { 12 }, vec![]),
                    _ => unreachable!(),
                },
                3 => match factors.get_power3() % 2 {
                    0 => MixedRadixPlan::butterfly(72, vec![]),
                    1 => MixedRadixPlan::butterfly(
                        if factors.get_power3() > 7 { 24 } else { 72 },
                        vec![],
                    ),
                    _ => unreachable!(),
                },
                4 => match factors.get_power3() % 2 {
                    0 => MixedRadixPlan::butterfly(
                        if factors.get_power3() > 6 { 16 } else { 72 },
                        vec![],
                    ),
                    1 => MixedRadixPlan::butterfly(
                        if factors.get_power3() > 9 { 48 } else { 72 },
                        vec![],
                    ),
                    _ => unreachable!(),
                },
                // if this FFT is 32 or greater times a power of 3, just use 72. As you might expect, in this vast field of options, what is optimal becomes a lot more muddy and situational
                // but across all the benchmarking i've done, 72 seems like the best default that will get us the best plan in 95% of the cases
                // 64, 54, and 48 are occasionally faster, although i haven't been able to discern a pattern.
                _ => MixedRadixPlan::butterfly(72, vec![]),
            }
        }
        // If this FFT has powers of 11, 7, or 5, use that
        else if factors.get_power11() > 0 {
            MixedRadixPlan::butterfly(11, vec![])
        } else if factors.get_power7() > 0 {
            MixedRadixPlan::butterfly(7, vec![])
        } else if factors.get_power5() > 0 {
            MixedRadixPlan::butterfly(5, vec![])
        } else {
            panic!(
                "Couldn't find a base for FFT size {}, factors={:?}",
                len, factors
            )
        }
    }

    fn is_butterfly(&self, len: usize) -> bool {
        [
            0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17, 19, 23, 24, 27, 29, 31, 32, 36, 48,
            54, 64, 72, 128, 256, 512,
        ]
        .contains(&len)
    }

    fn construct_butterfly(&self, len: usize, direction: FftDirection) -> Arc<dyn Fft<T>> {
        match len {
            0 | 1 => wrap_fft(Dft::new(len, direction)),
            2 => wrap_fft(Butterfly2::new(direction)),
            3 => wrap_fft(Butterfly3::new(direction)),
            4 => wrap_fft(Butterfly4::new(direction)),
            5 => wrap_fft(Butterfly5Avx::new(direction).unwrap()),
            6 => wrap_fft(Butterfly6::new(direction)),
            7 => wrap_fft(Butterfly7Avx::new(direction).unwrap()),
            8 => wrap_fft(Butterfly8Avx::new(direction).unwrap()),
            9 => wrap_fft(Butterfly9Avx::new(direction).unwrap()),
            11 => wrap_fft(Butterfly11Avx::new(direction).unwrap()),
            12 => wrap_fft(Butterfly12Avx::new(direction).unwrap()),
            13 => wrap_fft(Butterfly13::new(direction)),
            16 => wrap_fft(Butterfly16Avx::new(direction).unwrap()),
            17 => wrap_fft(Butterfly17::new(direction)),
            19 => wrap_fft(Butterfly19::new(direction)),
            23 => wrap_fft(Butterfly23::new(direction)),
            24 => wrap_fft(Butterfly24Avx::new(direction).unwrap()),
            27 => wrap_fft(Butterfly27Avx::new(direction).unwrap()),
            29 => wrap_fft(Butterfly29::new(direction)),
            31 => wrap_fft(Butterfly31::new(direction)),
            32 => wrap_fft(Butterfly32Avx::new(direction).unwrap()),
            36 => wrap_fft(Butterfly36Avx::new(direction).unwrap()),
            48 => wrap_fft(Butterfly48Avx::new(direction).unwrap()),
            54 => wrap_fft(Butterfly54Avx::new(direction).unwrap()),
            64 => wrap_fft(Butterfly64Avx::new(direction).unwrap()),
            72 => wrap_fft(Butterfly72Avx::new(direction).unwrap()),
            128 => wrap_fft(Butterfly128Avx::new(direction).unwrap()),
            256 => wrap_fft(Butterfly256Avx::new(direction).unwrap()),
            512 => wrap_fft(Butterfly512Avx::new(direction).unwrap()),
            _ => panic!("Invalid butterfly len: {}", len),
        }
    }
}

//-------------------------------------------------------------------
// f64-specific planning stuff
//-------------------------------------------------------------------
impl<T: FftNum> AvxPlannerInternal<f64, T> {
    pub fn new() -> Self {
        // Internal sanity check: Make sure that T == f64.
        // This struct has two generic parameters A and T, but they must always be the same, and are only kept separate to help work around the lack of specialization.
        // It would be cool if we could do this as a static_assert instead
        let id_f64 = TypeId::of::<f64>();
        let id_t = TypeId::of::<T>();
        assert_eq!(id_f64, id_t);

        Self {
            cache: FftCache::new(),
            _phantom: std::marker::PhantomData,
        }
    }

    fn plan_mixed_radix_base(&self, len: usize, factors: &PartialFactors) -> MixedRadixPlan {
        // if we have a factor that can't be computed with 2xn 3xn etc, we'll have to compute it with bluestein's or rader's, so use that as the base
        if factors.get_other_factors() > 1 {
            let other_factors = factors.get_other_factors();

            // First, if the "other factors" are a butterfly, use that as the butterfly
            if self.is_butterfly(other_factors) {
                return MixedRadixPlan::butterfly(other_factors, vec![]);
            }

            // We can only use rader's if `other_factors` is prime
            if miller_rabin(other_factors as u64) {
                // len is prime, so we can use Rader's Algorithm as a base. Whether or not that's a good idea is a different story
                // Rader's Algorithm is only faster in a few narrow cases.
                // as a heuristic, only use rader's algorithm if its inner FFT can be computed entirely without bluestein's or rader's
                // We're intentionally being too conservative here. Otherwise we'd be recursively applying a heuristic, and repeated heuristic failures could stack to make a rader's chain significantly slower.
                // If we were writing a measuring planner, expanding this heuristic and measuring its effectiveness would be an opportunity for up to 2x performance gains.
                let inner_factors = PartialFactors::compute(other_factors - 1);
                if self.is_butterfly(inner_factors.get_other_factors()) {
                    // We only have factors of 2,3,5,7, and 11. If we don't have AVX2, we also have to exclude factors of 5 and 7 and 11, because avx2 gives us enough headroom for the overhead of those to not be a problem
                    if is_x86_feature_detected!("avx2")
                        || (inner_factors.product_power2power3() == len - 1)
                    {
                        return MixedRadixPlan::new(
                            MixedRadixBase::RadersBase(other_factors),
                            vec![],
                        );
                    }
                }
            }

            // At this point, we know we're using bluestein's algorithm for the base. Next step is to plan the inner size we'll use for bluestein's algorithm.
            let inner_bluesteins_len =
                self.plan_bluesteins(other_factors, |(_len, factor2, factor3)| {
                    if *factor3 < 1 && *factor2 > 13 {
                        return false;
                    }
                    if *factor3 < 4 && *factor2 > 14 {
                        return false;
                    }
                    true
                });
            return MixedRadixPlan::new(
                MixedRadixBase::BluesteinsBase(other_factors, inner_bluesteins_len),
                vec![],
            );
        }

        // If this FFT size is a butterfly, use that
        if self.is_butterfly(len) {
            return MixedRadixPlan::butterfly(len, vec![]);
        }

        // If the power2 * power3 component of this FFT is a butterfly and not too small, return that
        let power2power3 = factors.product_power2power3();
        if power2power3 > 4 && self.is_butterfly(power2power3) {
            return MixedRadixPlan::butterfly(power2power3, vec![]);
        }

        // most of this code is heuristics assuming FFTs of a minimum size. if the FFT is below that minimum size, the heuristics break down.
        // so the first thing we're going to do is hardcode the plan for osme specific sizes where we know the heuristics won't be enough
        let hardcoded_base = match power2power3 {
            // 2^n special cases
            64 => Some(MixedRadixPlan::butterfly(16, vec![4])), // 2^6

            // 3 * 2^n special cases
            48 => Some(MixedRadixPlan::butterfly(12, vec![4])), // 3 * 2^4
            96 => Some(MixedRadixPlan::butterfly(12, vec![8])), // 3 * 2^5
            768 => Some(MixedRadixPlan::butterfly(12, vec![8, 8])), // 3 * 2^8

            // 9 * 2^n special cases
            72 => Some(MixedRadixPlan::butterfly(24, vec![3])), // 2^3 * 3^2
            288 => Some(MixedRadixPlan::butterfly(32, vec![9])), // 2^5 * 3^2

            // 4 * 3^n special cases
            108 => Some(MixedRadixPlan::butterfly(18, vec![6])), // 2^4 * 3^2
            _ => None,
        };
        if let Some(hardcoded) = hardcoded_base {
            return hardcoded;
        }

        if factors.get_power2() >= 4 {
            match factors.get_power3() {
                // if this FFT is a power of 2, our strategy here is to tweak the butterfly to free us up to do an 8xn chain
                0 => match factors.get_power2() % 3 {
                    0 => MixedRadixPlan::butterfly(512, vec![]),
                    1 => MixedRadixPlan::butterfly(128, vec![]),
                    2 => MixedRadixPlan::butterfly(256, vec![]),
                    _ => unreachable!(),
                },
                // if this FFT is 3 times a power of 2, our strategy here is to tweak butterflies to make it easier to set up a 8xn chain
                1 => match factors.get_power2() % 3 {
                    0 => MixedRadixPlan::butterfly(24, vec![]),
                    1 => MixedRadixPlan::butterfly(32, vec![12]),
                    2 => MixedRadixPlan::butterfly(32, vec![12, 16]),
                    _ => unreachable!(),
                },
                // if this FFT is 9 times a power of 2, our strategy here is to tweak butterflies to make it easier to set up a 8xn chain
                2 => match factors.get_power2() % 3 {
                    0 => MixedRadixPlan::butterfly(36, vec![16]),
                    1 => MixedRadixPlan::butterfly(36, vec![]),
                    2 => MixedRadixPlan::butterfly(18, vec![]),
                    _ => unreachable!(),
                },
                // this FFT is 27 or greater times a power of two. As you might expect, in this vast field of options, what is optimal becomes a lot more muddy and situational
                // but across all the benchmarking i've done, 36 seems like the best default that will get us the best plan in 95% of the cases
                // 32 is rarely faster, although i haven't been able to discern a pattern.
                _ => MixedRadixPlan::butterfly(36, vec![]),
            }
        } else if factors.get_power3() >= 3 {
            // Our FFT is a power of 3 times a low power of 2
            match factors.get_power2() {
                0 => match factors.get_power3() % 2 {
                    0 => MixedRadixPlan::butterfly(
                        if factors.get_power3() > 10 { 9 } else { 27 },
                        vec![],
                    ),
                    1 => MixedRadixPlan::butterfly(27, vec![]),
                    _ => unreachable!(),
                },
                1 => MixedRadixPlan::butterfly(18, vec![]),
                2 => match factors.get_power3() % 2 {
                    0 => MixedRadixPlan::butterfly(36, vec![]),
                    1 => MixedRadixPlan::butterfly(
                        if factors.get_power3() > 10 { 36 } else { 18 },
                        vec![],
                    ),
                    _ => unreachable!(),
                },
                3 => MixedRadixPlan::butterfly(18, vec![]),
                // this FFT is 16 or greater times a power of three. As you might expect, in this vast field of options, what is optimal becomes a lot more muddy and situational
                // but across all the benchmarking i've done, 36 seems like the best default that will get us the best plan in 95% of the cases
                // 32 is rarely faster, although i haven't been able to discern a pattern.
                _ => MixedRadixPlan::butterfly(36, vec![]),
            }
        }
        // If this FFT has powers of 11, 7, or 5, use that
        else if factors.get_power11() > 0 {
            MixedRadixPlan::butterfly(11, vec![])
        } else if factors.get_power7() > 0 {
            MixedRadixPlan::butterfly(7, vec![])
        } else if factors.get_power5() > 0 {
            MixedRadixPlan::butterfly(5, vec![])
        } else {
            panic!(
                "Couldn't find a base for FFT size {}, factors={:?}",
                len, factors
            )
        }
    }

    fn is_butterfly(&self, len: usize) -> bool {
        [
            0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 23, 24, 27, 29, 31, 32, 36,
            64, 128, 256, 512,
        ]
        .contains(&len)
    }

    fn construct_butterfly(&self, len: usize, direction: FftDirection) -> Arc<dyn Fft<T>> {
        match len {
            0 | 1 => wrap_fft(Dft::new(len, direction)),
            2 => wrap_fft(Butterfly2::new(direction)),
            3 => wrap_fft(Butterfly3::new(direction)),
            4 => wrap_fft(Butterfly4::new(direction)),
            5 => wrap_fft(Butterfly5Avx64::new(direction).unwrap()),
            6 => wrap_fft(Butterfly6::new(direction)),
            7 => wrap_fft(Butterfly7Avx64::new(direction).unwrap()),
            8 => wrap_fft(Butterfly8Avx64::new(direction).unwrap()),
            9 => wrap_fft(Butterfly9Avx64::new(direction).unwrap()),
            11 => wrap_fft(Butterfly11Avx64::new(direction).unwrap()),
            12 => wrap_fft(Butterfly12Avx64::new(direction).unwrap()),
            13 => wrap_fft(Butterfly13::new(direction)),
            16 => wrap_fft(Butterfly16Avx64::new(direction).unwrap()),
            17 => wrap_fft(Butterfly17::new(direction)),
            18 => wrap_fft(Butterfly18Avx64::new(direction).unwrap()),
            19 => wrap_fft(Butterfly19::new(direction)),
            23 => wrap_fft(Butterfly23::new(direction)),
            24 => wrap_fft(Butterfly24Avx64::new(direction).unwrap()),
            27 => wrap_fft(Butterfly27Avx64::new(direction).unwrap()),
            29 => wrap_fft(Butterfly29::new(direction)),
            31 => wrap_fft(Butterfly31::new(direction)),
            32 => wrap_fft(Butterfly32Avx64::new(direction).unwrap()),
            36 => wrap_fft(Butterfly36Avx64::new(direction).unwrap()),
            64 => wrap_fft(Butterfly64Avx64::new(direction).unwrap()),
            128 => wrap_fft(Butterfly128Avx64::new(direction).unwrap()),
            256 => wrap_fft(Butterfly256Avx64::new(direction).unwrap()),
            512 => wrap_fft(Butterfly512Avx64::new(direction).unwrap()),
            _ => panic!("Invalid butterfly len: {}", len),
        }
    }
}

//-------------------------------------------------------------------
// type-agnostic planning stuff
//-------------------------------------------------------------------
impl<A: AvxNum, T: FftNum> AvxPlannerInternal<A, T> {
    // Given a length, return a plan for how this FFT should be computed
    fn plan_fft(
        &self,
        len: usize,
        direction: FftDirection,
        base_fn: impl FnOnce(&Self, usize, &PartialFactors) -> MixedRadixPlan,
    ) -> MixedRadixPlan {
        // First step: If this size is already cached, return it directly
        if self.cache.contains_fft(len, direction) {
            return MixedRadixPlan::cached(len);
        }

        // We have butterflies for everything below 10, so if it's below 10, just skip the factorization etc
        // Notably, this step is *required* if the len is 0, since we can't compute a prime factorization for zero
        if len < 10 {
            return MixedRadixPlan::butterfly(len, Vec::new());
        }

        // This length is not cached, so we have to come up with a new plan. The first step is to find a suitable base.
        let factors = PartialFactors::compute(len);
        let base = base_fn(self, len, &factors);

        // it's possible that the base planner plans out the whole FFT. it's guaranteed if `len` is a prime number, or if it's a butterfly, for example
        let uncached_plan = if base.len == len {
            base
        } else {
            // We have some mixed radix steps to compute! Compute the factors that need to computed by mixed radix steps,
            let radix_factors = factors
                .divide_by(&PartialFactors::compute(base.len))
                .unwrap_or_else(|| {
                    panic!(
                        "Invalid base for FFT length={}, base={:?}, base radixes={:?}",
                        len, base.base, base.radixes
                    )
                });
            self.plan_mixed_radix(radix_factors, base)
        };

        // Last step: We have a full FFT plan, but some of the steps of that plan may have been cached. If they have, use the largest cached step as the base.
        self.replan_with_cache(uncached_plan, direction)
    }

    // Takes a plan and an algorithm cache, and replaces steps of the plan with cached steps, if possible
    fn replan_with_cache(&self, plan: MixedRadixPlan, direction: FftDirection) -> MixedRadixPlan {
        enum CacheLocation {
            None,
            Base,
            Radix(usize, usize), // First value is the length of the cached FFT, and second value is the index in the radix array
        }

        let mut largest_cached_len = CacheLocation::None;
        let base_len = plan.base.base_len();
        let mut current_len = base_len;

        // Check if the cache contains the base
        if self.cache.contains_fft(current_len, direction) {
            largest_cached_len = CacheLocation::Base;
        }

        // Walk up the radix chain, checking if rthe cache contains each step
        for (i, radix) in plan.radixes.iter().enumerate() {
            current_len *= *radix as usize;

            if self.cache.contains_fft(current_len, direction) {
                largest_cached_len = CacheLocation::Radix(current_len, i);
            }
        }

        // If we found a cached length within the plan, update the plan to account for the cache
        match largest_cached_len {
            CacheLocation::None => plan,
            CacheLocation::Base => {
                MixedRadixPlan::new(MixedRadixBase::CacheBase(base_len), plan.radixes)
            }
            CacheLocation::Radix(cached_len, cached_index) => {
                // We know that `plan.radixes[cached_index]` is the largest cache value, and `cached_len` will be our new base legth
                // Drop every element from `plan.radixes` from up to and including cached_index
                let mut chain = plan.radixes;
                chain.drain(0..=cached_index);
                MixedRadixPlan::new(MixedRadixBase::CacheBase(cached_len), chain)
            }
        }
    }
    // given a set of factors, compute how many iterations of 12xn and 16xn we should plan for. Returns (k, j) for 12^k and 6^j
    fn plan_power12_power6(radix_factors: &PartialFactors) -> (u32, u32) {
        // it's helpful to think of this process as rewriting the FFT length as powers of our radixes
        // the fastest FFT we could possibly compute is 8^n, because the 8xn algorithm is blazing fast. 9xn and 12xn are also in the top tier for speed, so those 3 algorithms are what we will aim for
        // Specifically, we want to find a combination of 8, 9, and 12, that will "consume" all factors of 2 and 3, without having any leftovers

        // Unfortunately, most FFTs don't come in the form 8^n * 9^m * 12^k
        // Thankfully, 6xn is also reasonably fast, so we can use 6xn to strip away factors.
        // This function's job will be to divide radix_factors into 8^n * 9^m * 12^k * 6^j, which minimizes j, then maximizes k

        // we're going to hypothetically add as many 12's to our plan as possible, keeping track of how many 6's were required to balance things out
        // we can also compute this analytically with modular arithmetic, but that technique only works when the FFT is above a minimum size, but this loop+array technique always works
        let max_twelves = min(radix_factors.get_power2() / 2, radix_factors.get_power3());
        let mut required_sixes = [None; 4]; // only track 6^0 through 6^3. 6^4 can be converted into 12^2 * 9, and 6^5 can be converted into 12 * 8 * 9 * 9
        for hypothetical_twelve_power in 0..(max_twelves + 1) {
            let hypothetical_twos = radix_factors.get_power2() - hypothetical_twelve_power * 2;
            let hypothetical_threes = radix_factors.get_power3() - hypothetical_twelve_power;

            // figure out how many sixes we would need to leave our FFT at 8^n * 9^m via modular arithmetic, and write to that index of our twelves_per_sixes array
            let sixes = match (hypothetical_twos % 3, hypothetical_threes % 2) {
                (0, 0) => Some(0),
                (1, 1) => Some(1),
                (2, 0) => Some(2),
                (0, 1) => Some(3),
                (1, 0) => None, // it would take 4 sixes, which can be replaced by 2 twelves, so we'll hit it in a later loop (if we have that many factors)
                (2, 1) => None, // it would take 5 sixes, but note that 12 is literally 2^2 * 3^1, so instead of applying 5 sixes, we can apply a single 12
                (_, _) => unreachable!(),
            };

            // if we can bring the FFT into range for the fast path with sixes, record so in the required_sixes array
            // but make sure the number of sixes we're going to apply actually fits into our available factors
            if let Some(sixes) = sixes {
                if sixes <= hypothetical_twos && sixes <= hypothetical_threes {
                    required_sixes[sixes as usize] = Some(hypothetical_twelve_power)
                }
            }
        }

        // required_sixes[i] now contains the largest power of twelve that we can apply, given that we also apply 6^i
        // we want to apply as many of 12 as possible, so take the array element with the largest non-None element
        // note that it's possible (and very likely) that either power_twelve or power_six is zero, or both of them are zero! this will happen for a pure power of 2 or power of 3 FFT, for example
        let (power_twelve, mut power_six) = required_sixes
            .iter()
            .enumerate()
            .filter_map(|(i, maybe_twelve)| maybe_twelve.map(|twelve| (twelve, i as u32)))
            .fold(
                (0, 0),
                |best, current| if current.0 >= best.0 { current } else { best },
            );

        // special case: if we have exactly one factor of 2 and at least one factor of 3, unconditionally apply a factor of 6 to get rid of the 2
        if radix_factors.get_power2() == 1 && radix_factors.get_power3() > 0 {
            power_six = 1;
        }
        // special case: if we have a single factor of 3 and more than one factor of 2 (and we don't have any twelves), unconditionally apply a factor of 6 to get rid of the 3
        if radix_factors.get_power2() > 1 && radix_factors.get_power3() == 1 && power_twelve == 0 {
            power_six = 1;
        }

        (power_twelve, power_six)
    }

    fn plan_mixed_radix(
        &self,
        mut radix_factors: PartialFactors,
        mut plan: MixedRadixPlan,
    ) -> MixedRadixPlan {
        // if we can complete the FFT with a single radix, do it
        if [2, 3, 4, 5, 6, 7, 8, 9, 12, 16].contains(&radix_factors.product()) {
            plan.push_radix(radix_factors.product() as u8)
        } else {
            // Compute how many powers of 12 and powers of 6 we want to strip away
            let (power_twelve, power_six) = Self::plan_power12_power6(&radix_factors);

            // divide our powers of 12 and 6 out of our radix factors
            radix_factors = radix_factors
                .divide_by(&PartialFactors::compute(
                    6usize.pow(power_six) * 12usize.pow(power_twelve),
                ))
                .unwrap();

            // now that we know the 12 and 6 factors, the plan array can be computed in descending radix size
            if radix_factors.get_power2() % 3 == 1 && radix_factors.get_power2() > 1 {
                // our factors of 2 might not quite be a power of 8 -- our plan_power12_power6 function tried its best, but if there are very few factors of 3, it can't help.
                // if we're 2 * 8^N, benchmarking shows that applying a 16 before our chain of 8s is very fast.
                plan.push_radix(16);
                radix_factors = radix_factors
                    .divide_by(&PartialFactors::compute(16))
                    .unwrap();
            }
            plan.push_radix_power(12, power_twelve);
            plan.push_radix_power(11, radix_factors.get_power11());
            plan.push_radix_power(9, radix_factors.get_power3() / 2);
            plan.push_radix_power(8, radix_factors.get_power2() / 3);
            plan.push_radix_power(7, radix_factors.get_power7());
            plan.push_radix_power(6, power_six);
            plan.push_radix_power(5, radix_factors.get_power5());
            if radix_factors.get_power2() % 3 == 2 {
                // our factors of 2 might not quite be a power of 8 -- our plan_power12_power6 function tried its best, but if we are a power of 2, it can't help.
                // if we're 4 * 8^N, benchmarking shows that applying a 4 to the end our chain of 8s is very fast.
                plan.push_radix(4);
            }
            if radix_factors.get_power3() % 2 == 1 {
                // our factors of 3 might not quite be a power of 9 -- our plan_power12_power6 function tried its best, but if we are a power of 3, it can't help.
                // if we're 3 * 9^N, our only choice is to add an 8xn step
                plan.push_radix(3);
            }
            if radix_factors.get_power2() % 3 == 1 {
                // our factors of 2 might not quite be a power of 8. We tried to correct this with a 16 radix and 4 radix, but as a last resort, apply a 2. 2 is very slow, but it's better than not computing the FFT
                plan.push_radix(2);
            }

            // measurement opportunity: is it faster to let the plan_power12_power6 function put a 4 on the end instead of relying on all 8's?
            // measurement opportunity: is it faster to slap a 16 on top of the stack?
            // measurement opportunity: if our plan_power12_power6 function adds both 12s and sixes, is it faster to drop combinations of 12+6 down to 8+9?
        };
        plan
    }

    // Constructs and returns a FFT instance from a FFT plan.
    // If the base is a butterfly, it will call the provided `construct_butterfly_fn` to do so.
    // If constructing the base requires constructing an inner FFT (IE bluetein's or rader's algorithm), it will call the provided `inner_fft_fn` to construct it
    fn construct_plan(
        &mut self,
        plan: MixedRadixPlan,
        direction: FftDirection,
        construct_butterfly_fn: impl FnOnce(&Self, usize, FftDirection) -> Arc<dyn Fft<T>>,
        inner_fft_fn: impl FnOnce(&mut Self, usize, FftDirection) -> Arc<dyn Fft<T>>,
    ) -> Arc<dyn Fft<T>> {
        let mut fft = match plan.base {
            MixedRadixBase::CacheBase(len) => self.cache.get(len, direction).unwrap(),
            MixedRadixBase::ButterflyBase(len) => {
                let butterfly_instance = construct_butterfly_fn(self, len, direction);

                // Cache this FFT instance for future calls to `plan_fft`
                self.cache.insert(&butterfly_instance);

                butterfly_instance
            }
            MixedRadixBase::RadersBase(len) => {
                // Rader's Algorithm requires an inner FFT of size len - 1
                let inner_fft = inner_fft_fn(self, len - 1, direction);

                // try to construct our AVX2 rader's algorithm. If that fails (probably because the machine we're running on doesn't have AVX2), fall back to scalar
                let raders_instance =
                    if let Ok(raders_avx) = RadersAvx2::<A, T>::new(Arc::clone(&inner_fft)) {
                        wrap_fft(raders_avx)
                    } else {
                        wrap_fft(RadersAlgorithm::new(inner_fft))
                    };

                // Cache this FFT instance for future calls to `plan_fft`
                self.cache.insert(&raders_instance);

                raders_instance
            }
            MixedRadixBase::BluesteinsBase(len, inner_fft_len) => {
                // Bluestein's has an inner FFT of arbitrary size. But we've already planned it, so just use what we planned
                let inner_fft = inner_fft_fn(self, inner_fft_len, direction);

                // try to construct our AVX2 rader's algorithm. If that fails (probably because the machine we're running on doesn't have AVX2), fall back to scalar
                let bluesteins_instance =
                    wrap_fft(BluesteinsAvx::<A, T>::new(len, inner_fft).unwrap());

                // Cache this FFT instance for future calls to `plan_fft`
                self.cache.insert(&bluesteins_instance);

                bluesteins_instance
            }
        };

        // We have constructed our base. Now, construct the radix chain.
        for radix in plan.radixes {
            fft = match radix {
                2 => wrap_fft(MixedRadix2xnAvx::<A, T>::new(fft).unwrap()),
                3 => wrap_fft(MixedRadix3xnAvx::<A, T>::new(fft).unwrap()),
                4 => wrap_fft(MixedRadix4xnAvx::<A, T>::new(fft).unwrap()),
                5 => wrap_fft(MixedRadix5xnAvx::<A, T>::new(fft).unwrap()),
                6 => wrap_fft(MixedRadix6xnAvx::<A, T>::new(fft).unwrap()),
                7 => wrap_fft(MixedRadix7xnAvx::<A, T>::new(fft).unwrap()),
                8 => wrap_fft(MixedRadix8xnAvx::<A, T>::new(fft).unwrap()),
                9 => wrap_fft(MixedRadix9xnAvx::<A, T>::new(fft).unwrap()),
                11 => wrap_fft(MixedRadix11xnAvx::<A, T>::new(fft).unwrap()),
                12 => wrap_fft(MixedRadix12xnAvx::<A, T>::new(fft).unwrap()),
                16 => wrap_fft(MixedRadix16xnAvx::<A, T>::new(fft).unwrap()),
                _ => unreachable!(),
            };

            // Cache this FFT instance for future calls to `plan_fft`
            self.cache.insert(&fft);
        }

        fft
    }

    // Plan and return the inner size to be used with Bluestein's Algorithm
    // Calls `filter_fn` on result candidates, giving the caller the opportunity to reject certain sizes
    fn plan_bluesteins(
        &self,
        len: usize,
        filter_fn: impl FnMut(&&(usize, u32, u32)) -> bool,
    ) -> usize {
        assert!(len > 1); // Internal consistency check: The logic in this method doesn't work for a length of 1

        // Bluestein's computes a FFT of size `len` by reorganizing it as a FFT of ANY size greater than or equal to len * 2 - 1
        // an obvious choice is the next power of two larger than  len * 2 - 1, but if we can find a smaller FFT that will go faster, we can save a lot of time.
        // We can very efficiently compute almost any 2^n * 3^m, so we're going to search for all numbers of the form 2^n * 3^m that lie between len * 2 - 1 and the next power of two.
        let min_len = len * 2 - 1;
        let baseline_candidate = min_len.checked_next_power_of_two().unwrap();

        // our algorithm here is to start with our next power of 2, and repeatedly divide by 2 and multiply by 3, trying to keep our value in range
        let mut bluesteins_candidates = Vec::new();
        let mut candidate = baseline_candidate;
        let mut factor2 = candidate.trailing_zeros();
        let mut factor3 = 0;

        let min_factor2 = 2; // benchmarking shows that while 3^n and  2 * 3^n are fast, they're typically slower than the next-higher candidate, so don't bother generating them
        while factor2 >= min_factor2 {
            // if this candidate length isn't too small, add it to our candidates list
            if candidate >= min_len {
                bluesteins_candidates.push((candidate, factor2, factor3));
            }
            // if the candidate is too large, divide it by 2. if it's too small, divide it by 3
            if candidate >= baseline_candidate {
                candidate >>= 1;
                factor2 -= 1;
            } else {
                candidate *= 3;
                factor3 += 1;
            }
        }
        bluesteins_candidates.sort();

        // we now have a list of candidates to choosse from. some 2^n * 3^m FFTs are faster than others, so apply a filter, which will let us skip sizes that benchmarking has shown to be slow
        let (chosen_size, _, _) =
            bluesteins_candidates
                .iter()
                .find(filter_fn)
                .unwrap_or_else(|| {
                    panic!(
                        "Failed to find a bluestein's candidate for len={}, candidates: {:?}",
                        len, bluesteins_candidates
                    )
                });

        *chosen_size
    }
}

#[cfg(test)]
mod unit_tests {
    use super::*;

    // We don't need to actually compute anything for a FFT size of zero, but we do need to verify that it doesn't explode
    #[test]
    fn test_plan_zero_avx() {
        let mut planner32 = FftPlannerAvx::<f32>::new().unwrap();
        let fft_zero32 = planner32.plan_fft_forward(0);
        fft_zero32.process(&mut []);

        let mut planner64 = FftPlannerAvx::<f64>::new().unwrap();
        let fft_zero64 = planner64.plan_fft_forward(0);
        fft_zero64.process(&mut []);
    }
}