1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
#![crate_name = "rustencils"]
pub mod grid {

    extern crate ndarray;

    /// The Grid struct represents the physical space over which the PDE is defined.
    #[derive(Debug, PartialEq)]
    pub struct Grid(ndarray::ArrayD<Point>);

    impl Grid {
        pub(crate) fn indexed_iter(&self) -> ndarray::iter::IndexedIter<Point, ndarray::Dim<ndarray::IxDynImpl>> {
            self.0.indexed_iter()
        }

        pub(crate) fn iter(&self) -> ndarray::iter::Iter<'_, Point, ndarray::Dim<ndarray::IxDynImpl>> {
            self.0.iter()
        }
    }

    impl core::ops::Index<ndarray::Dim<ndarray::IxDynImpl>> for Grid {
        type Output = Point;

        fn index(self: &'_ Self, index: ndarray::Dim<ndarray::IxDynImpl>) -> &'_ Self::Output {
            &self.0[index]
        }
    }

    impl core::ops::IndexMut<ndarray::Dim<ndarray::IxDynImpl>> for Grid {
        fn index_mut(self: &'_ mut Self, index: ndarray::Dim<ndarray::IxDynImpl>) -> &'_ mut Self::Output {
            &mut self.0[index]
        }
    }
    
    /// The ValVector struct simply stores a 1D array containing the quantity
    /// of interest at each point on the grid.
    #[derive(Clone, Debug, PartialEq)]
    pub struct ValVector(pub(crate) ndarray::Array1<f64>);

    impl ValVector {
        pub fn len(&self) -> usize {
            self.0.len()
        }

        pub fn is_empty(&self) -> bool {
            if self.len() == 0 { true }
            else { false }
        }

        fn vals(&self) -> &ndarray::Array1<f64> {
            &self.0
        }

        pub(crate) fn as_ndarray(&self) -> &ndarray::Array1<f64> {
            self.vals()
        }
    }

    impl core::ops::Index<usize> for ValVector {
        type Output = f64;

        fn index(self: &'_ Self, index: usize) -> &'_ Self::Output {
            &self.0[index]
        }
    }

    impl core::ops::IndexMut<usize> for ValVector {
        fn index_mut(self: &'_ mut Self, index: usize) -> &'_ mut Self::Output {
            &mut self.0[index]
        }
    }
    
    /// For consistency, this AxisSetup struct is used as an argument when
    /// constructing GridSpecs. It contains the minimum axis value
    /// (`start: f64`), the spacing of the axis points (`delta: f64`),
    /// and the number of axis points including the start value
    /// (`steps: usize`).
    #[derive(Clone)]
    pub struct AxisSetup {
        start: f64,
        delta: f64,
        steps: usize,
    }

    impl AxisSetup {
        /// Returns an AxisSetup
        /// # Arguments
        /// * `start` - the minimum axis value
        /// * `delta` - the spacing btween axis points
        /// * `steps` - the number of axis points including start
        /// # Examples
        /// ```should_panic
        /// use rustencils::grid::AxisSetup;
        /// let ax = AxisSetup::new(0., 0., 100);
        /// ```
        /// 
        /// ```should_panic
        /// use rustencils::grid::AxisSetup;
        /// let ax = AxisSetup::new(0., 0.1, 0);
        /// ```
        /// 
        /// ```
        /// use rustencils::grid::AxisSetup;
        /// let ax = AxisSetup::new(0., 0.1, 100);
        /// ```
        pub fn new(start: f64, delta: f64, steps: usize) -> Self {
            assert_ne!(delta, 0., "Delta cannot be zero!");
            assert_ne!(steps, 0, "Steps cannot be zero!");
            assert_ne!(steps, 1, "Steps cannot be one!");
            AxisSetup {
                delta: delta.abs(),
                start,
                steps,
            }
        }
    }

    /// The Point struct represents a single point on the Grid. Each Point
    /// contains a vector of the axis values at that Point, as well as an
    /// index that corresponds to the position within the GridQty that
    /// represents the value of interest at that Point.
    #[derive(Default, Clone, Debug, PartialEq)]
    pub struct Point {
        pub(crate) coord: Vec<f64>,
        pub(crate) idx: usize,
    }

    /// Since the physical space of the PDE can be defined in multiple
    /// coordinate systems, the GridSpec trait is used to identify those
    /// structs that can be used for this purpose. The trait defines the
    /// necessary methods for a struct that specifies a certain type of
    /// grid. For example, this trait is implemented by the
    /// CartesianGridSpec type. It would also need to be implemented for
    /// a SphericalGridSpec or PolarGridSpec.
    pub trait GridSpec {
        /// Returns a shared reference to the vector containing the sets
        /// of points along the coordinate axes that make up the grid
        /// (e.g., [[x0,x1,x2,...,xm],[y0,y1,y2,...,yn]]).
        fn get_coords(&self) -> &Vec<Vec<f64>>;
        /// Returns a usize that represents the dimensionality of the grid.
        fn get_ndim(&self) -> usize;
        /// Returns a shared reference to a vector that contains the number
        /// of points along each axis (e.g., [m,n]).
        fn get_gridshape(&self) -> &Vec<usize>;
        /// Returns a shared reference to a vector that contains the spacing
        /// between the points on the coordinate axes (e.g., [(x1-x0),(y1-y0)]).
        fn get_spacing(&self) -> &Vec<f64>;
        /// Returns a shared reference to the Grid instance.
        fn get_grid(&self) -> &Grid;
        /// Returns an owned vector of usizes that represent the index values
        /// of the boundary points along the specified axis. Here, the boundary
        /// points refer to the outermost set of points along the edge of the
        /// grid.
        fn get_bound_idxs(&self, dimension: usize, side: crate::boundaries::BoundarySide) -> Vec<usize>;
        /// Returns an owned vector of Point structs that represent the
        /// boundary points along the specified axis. Here, the boundary
        /// points refer to the outermost set of points along the edge of the
        /// grid.
        fn get_bound_pts(&self, dimesnion: usize, side: crate::boundaries::BoundarySide) -> Vec<Point>;
    }

    /// The CartesianGridSpec struct represents the specifications of a
    /// Grid in Cartesian coordinates. The dimensionality can be any size,
    /// which means it could be more or less than the standard 3-dimensional
    /// Cartesian coordinate space.
    #[derive(Debug, PartialEq)]
    pub struct CartesianGridSpec {
        /// Vector containing the sets of points along the coordinate axes
        /// that make up the grid (e.g., [[x0,x1,x2,...,xm],[y0,y1,y2,...,yn]]).
        coords: Vec<Vec<f64>>,
        /// A usize that represents the dimensionality of the grid.
        ndim: usize,
        /// Vector that contains the number of points along each axis
        /// (e.g., [m,n]).
        gridshape: Vec<usize>,
        /// Vector that contains the spacing between the points on the
        /// coordinate axes (e.g., [(x1-x0),(y1-y0)]).
        spacing: Vec<f64>,
        /// The Grid instance specified by this struct.
        grid: Grid,
        /// Vector containing the Points that correspond to the Grid
        /// boundaries. The vector contains 2-element arrays. Each
        /// array corresponds to a different axis, and each element
        /// of the array corresponds to either the Low or High side
        /// of that axis.
        boundary_pts: Vec<[Vec<Point>;2]>,
    }

    impl GridSpec for CartesianGridSpec {
        fn get_coords(&self) -> &Vec<Vec<f64>> { &self.coords }
        fn get_ndim(&self) -> usize { self.ndim }
        fn get_gridshape(&self) -> &Vec<usize> { &self.gridshape }
        fn get_spacing(&self) -> &Vec<f64> { &self.spacing }
        fn get_grid(&self) -> &Grid { &self.grid }
        
        fn get_bound_pts(&self, dimension: usize, side: crate::boundaries::BoundarySide) -> Vec<Point> {
            let side_idx = match side {
                crate::boundaries::BoundarySide::Low => 0,
                crate::boundaries::BoundarySide::High => 1,
            };
            self.boundary_pts[dimension][side_idx].clone()
        }

        fn get_bound_idxs(&self, dimension: usize, side: crate::boundaries::BoundarySide) -> Vec<usize> {
            let pts = self.get_bound_pts(dimension, side);
            let mut idxs = Vec::new();
            for pt in pts.iter() { idxs.push(pt.idx); }
            idxs
        }
    }

    impl CartesianGridSpec {
        // Potential issue with casting usize to f64 if high precision required for
        // axis values.

        /// Returns a CartesianGridSpec built from a vector of AxisSetup structs.
        /// # Arguments
        /// * `axes` - vector containing one or more instances of AxisSetup
        /// # Examples
        /// ```
        /// use rustencils::grid::{AxisSetup, GridSpec, CartesianGridSpec};
        /// let x = AxisSetup::new(0., 0.01, 100);
        /// let y = x.clone();
        /// let axs = vec![x, y];
        /// let spec = CartesianGridSpec::new(axs);
        /// assert_eq!(spec.get_gridshape(), &vec![100,100]);
        /// assert_eq!(spec.get_spacing(), &vec![0.01,0.01]);
        /// ```
        pub fn new(axes: Vec<AxisSetup>) -> Self {
            // gridshape holds the number of steps for each axis
            let gridshape: Vec<usize> = axes.iter().map(|ax| ax.steps).collect();
            // calculate the full set of coordinates for each axis based on the
            // AxisSetup specifications
            let coords: Vec<Vec<f64>> = axes.iter().map(|ax| {
                    let mut set = Vec::with_capacity(ax.steps);
                    for i in 0..ax.steps {set.push(ax.start + (i as f64)*ax.delta);}
                    set
                }).collect();
            // spacing holds the delta value for each axis
            let spacing: Vec<f64> = axes.iter().map(|ax| ax.delta).collect();
            // initialize the grid with default values
            let mut grid: ndarray::ArrayD<Point> = ndarray::Array::default(gridshape.clone());
            let mut count = 0;
            // popluate the grid with Point structs based on coordinates
            let _ = grid.indexed_iter_mut().map(|(indices,pt)| {
                pt.coord = Vec::new();
                for i in 0..coords.len() {
                    pt.coord.push(coords[i][indices[i]]);
                }
                pt.idx = count;
                count += 1;
            }).collect::<()>();
            let mut boundary_pts: Vec<[Vec<Point>;2]> = Vec::new();
            // populate the boundary points vector
            for i in 0..axes.len() {
                boundary_pts.push([Vec::new(), Vec::new()]);
                for j in 0..2 {
                    let slc = match j {
                        0 => grid.slice_axis(ndarray::Axis(i), ndarray::Slice::from(0..1)),
                        1 => grid.slice_axis(ndarray::Axis(i), ndarray::Slice::from(-1..-2)),
                        _ => panic!("Error while constructing grid boundary points!"),
                    };

                    for pt in slc.iter() {
                        boundary_pts[i][j].push(pt.clone());
                    }
                }
            }
            CartesianGridSpec {
                spacing,
                gridshape,
                ndim: axes.len(),
                coords,
                grid: Grid(grid),
                boundary_pts,
            }
        }
    }

    /// The GridQty trait is meant to leave open the possibility of in the
    /// future adding something like a GridVector struct that would store
    /// a vector value for each point on the grid as opposed to the scalar
    /// values stored by the GridScalar struct. However, it is more likely
    /// that this trait may be deprecated in the future and a GridVector
    /// struct would just contain a vector of GridScalars.
    pub trait GridQty<S> where S: GridSpec {
        /// Returns an Rc pointing to the GridSpec held by the GridQty.
        fn get_spec(&self) -> Rc<S>;
        /// Returns a shared reference to the ValVector held by the GridQty.
        fn get_gridvals(&self) -> &ValVector;
        /// Returns a shared reference to the Grid struct on which the
        /// GridQty is defined.
        fn get_grid(&self) -> &Grid;
        /// A public API that allows the creation of a new GridQty simply
        /// from its component parts (i.e., a GridSpec and a ValVector).
        /// Because ValVector has a very limited public API, this method
        /// is generally used to construct a new GridQty after performing
        /// some operation on an existing GridQty.
        /// (See rustencils::operator::OperatorMatrix::of)
        /// # Arguments
        /// * `spec` - reference counted smart pointer to a GridSpec
        /// * `gridvals` - ValVector containing the quantity of interest
        fn new(spec: Rc<S>, gridvals: ValVector) -> Self;
    }

    use std::rc::Rc;
    
    /// The GridScalar struct is the type that represents the values of
    /// interest. It contains a GridSpec and a ValVector.
    #[derive(Clone, Debug, PartialEq)]
    pub struct GridScalar<S> {
        /// A reference counted smart pointer to a GridSpec
        spec: Rc<S>,
        /// A vector that just contains the values of interest at every point
        gridvals: ValVector, 
    }

    impl<S> GridQty<S> for GridScalar<S> where S: GridSpec {
        fn get_spec(&self) -> Rc<S> { Rc::clone(&self.spec) }
        fn get_gridvals(&self) -> &ValVector { &self.gridvals }
        fn get_grid(&self) -> &Grid { self.spec.get_grid() }
        fn new(spec: Rc<S>, gridvals: ValVector) -> Self {
            Self::new(spec, gridvals)
        }
    }

    impl<S> GridScalar<S> where S: GridSpec {
        /// Private constructor that is used by the implementation of
        /// GridQty::new().
        fn new(spec: Rc<S>, gridvals: ValVector) -> Self {
            GridScalar {
                spec,
                gridvals,
            }
        }

        /// Returns a GridScalar where the value of interest at each point is
        /// equal to the value passed in as an argument
        /// # Arguments
        /// * `spec` - reference counted smart pointer to a GridSpec
        /// * `value` - the value that will be set at each grid point
        /// # Examples
        /// ```
        /// use std::rc::Rc;
        /// use rustencils::grid::{GridScalar, GridQty, CartesianGridSpec, AxisSetup};
        /// let x = AxisSetup::new(0., 0.01, 100);
        /// let y = x.clone();
        /// let axs = vec![x, y];
        /// let spec = Rc::new(CartesianGridSpec::new(axs));
        /// let temperature = GridScalar::uniform(spec, 0.5);
        /// assert_eq!(temperature.get_gridvals()[0], 0.5);
        /// assert_eq!(temperature.get_gridvals().len(), 100*100);
        /// ```
        pub fn uniform(spec: Rc<S>, value: f64) -> Self {
            let mut n = 1;
            for elm in spec.get_gridshape() {
                n *= elm;
            }
            let gridvals: ndarray::Array1<f64> = ndarray::arr1(&vec![value; n][..]);
            GridScalar{
                spec,
                gridvals: ValVector(gridvals),
            }
        }

        /// Returns a GridScalar where the value of interest at each point is
        /// equal to one.
        /// # Arguments
        /// * `spec` - reference counted smart pointer to a GridSpec
        /// # Examples
        /// ```
        /// use std::rc::Rc;
        /// use rustencils::grid::{GridScalar, GridQty, CartesianGridSpec, AxisSetup};
        /// let x = AxisSetup::new(0., 0.01, 100);
        /// let y = x.clone();
        /// let axs = vec![x, y];
        /// let spec = Rc::new(CartesianGridSpec::new(axs));
        /// let temperature = GridScalar::ones(spec);
        /// assert_eq!(temperature.get_gridvals()[0], 1.);
        /// assert_eq!(temperature.get_gridvals().len(), 100*100);
        /// ```
        pub fn ones(spec: Rc<S>) -> Self {
            GridScalar::uniform(spec, 1.)
        }

        /// Returns a GridScalar where the value of interest at each point is
        /// equal to zero.
        /// # Arguments
        /// * `spec` - reference counted smart pointer to a GridSpec
        /// # Examples
        /// ```
        /// use std::rc::Rc;
        /// use rustencils::grid::{GridScalar, GridQty, CartesianGridSpec, AxisSetup};
        /// let x = AxisSetup::new(0., 0.01, 100);
        /// let y = x.clone();
        /// let axs = vec![x, y];
        /// let spec = Rc::new(CartesianGridSpec::new(axs));
        /// let temperature = GridScalar::zeros(spec);
        /// assert_eq!(temperature.get_gridvals()[0], 0.);
        /// assert_eq!(temperature.get_gridvals().len(), 100*100);
        /// ```
        pub fn zeros(spec: Rc<S>) -> Self {
            GridScalar::uniform(spec, 0.)
        }

        /// Returns a GridScalar instance that contains the values along the
        /// specified coordinate axis that correspond to the indices of the
        /// GridScalar. Use this if you need to add/multiply/etc. the value
        /// of interest by the axis coordinate (e.g., x*dT/dx, or y+T).
        /// # Arguments
        /// * `spec` - reference counted smart pointer to a GridSpec
        /// * `dimension` - the axis for which the values are desired
        /// # Examples
        /// ```
        /// use std::rc::Rc;
        /// use rustencils::grid::{GridScalar, GridQty, CartesianGridSpec, AxisSetup};
        /// let x_init = AxisSetup::new(0., 0.01, 100);
        /// let y_init = x_init.clone();
        /// let axs_init = vec![x_init, y_init];
        /// let spec = Rc::new(CartesianGridSpec::new(axs_init));
        /// let temperature = GridScalar::zeros(Rc::clone(&spec));
        /// let x_vals = GridScalar::axis_vals(Rc::clone(&spec), 0);
        /// let y_vals = GridScalar::axis_vals(spec, 1);
        /// let x_plus_temp = &x_vals + &temperature;
        /// let temp_minus_y = &temperature - &y_vals;
        /// assert_eq!(x_plus_temp, x_vals);
        /// assert_eq!(temp_minus_y, -&y_vals);
        /// ```
        pub fn axis_vals(spec: Rc<S>, dimension: usize) -> Self {
            let mut axis = GridScalar::zeros(Rc::clone(&spec));
            let _ = spec.get_grid().iter().map(|point| {
                axis.gridvals[point.idx] = point.coord[dimension];
            }).collect::<()>();
            axis
        }
    }

    impl<'a, 'b, S> std::ops::Sub<&'b GridScalar<S>> for &'a GridScalar<S> where S: GridSpec {
        type Output = GridScalar<S>;

        fn sub(self, other: &'b GridScalar<S>) -> Self::Output {
            if self.gridvals.len() == other.gridvals.len() &&
            Rc::ptr_eq(&self.get_spec(), &other.get_spec()) {
                let result = self.gridvals.vals() - other.gridvals.vals();
                GridScalar {
                    spec: Rc::clone(&self.spec),
                    gridvals: ValVector(result),
                }
            }
            else { panic!("Error subtracting GridScalars! Ensure sizes and GridSpecs are the same.") }
        }
    }

    impl<'a, S> std::ops::Sub<f64> for &'a GridScalar<S> {
        type Output = GridScalar<S>;

        fn sub(self, other: f64) -> Self::Output {
            let result  = self.gridvals.vals() - other;
            
            GridScalar {
                spec: Rc::clone(&self.spec),
                gridvals: ValVector(result),
            }
        }
    }

    impl<'a, S> std::ops::Sub<&'a GridScalar<S>> for f64 {
        type Output = GridScalar<S>;

        fn sub(self, other: &'a GridScalar<S>) -> Self::Output {
            let result = self - other.gridvals.vals();
            
            GridScalar {
                spec: Rc::clone(&other.spec),
                gridvals: ValVector(result),
            }
        }
    }

    impl<'a, 'b, S> std::ops::Add<&'b GridScalar<S>> for &'a GridScalar<S> where S: GridSpec {
        type Output = GridScalar<S>;

        fn add(self, other: &'b GridScalar<S>) -> Self::Output {
            if self.gridvals.len() == other.gridvals.len() &&
            Rc::ptr_eq(&self.get_spec(), &other.get_spec()) {
                let result = self.gridvals.vals() + other.gridvals.vals();
                GridScalar {
                    spec: Rc::clone(&self.spec),
                    gridvals: ValVector(result),
                }
            }
            else { panic!("Error adding GridScalars! Ensure sizes and GridSpecs are the same.") }
        }
    }

    impl<'a, S> std::ops::Add<f64> for &'a GridScalar<S> {
        type Output = GridScalar<S>;

        fn add(self, other: f64) -> Self::Output {
            let result  = self.gridvals.vals() + other;
            
            GridScalar {
                spec: Rc::clone(&self.spec),
                gridvals: ValVector(result),
            }
        }
    }

    impl<'a, S> std::ops::Add<&'a GridScalar<S>> for f64 {
        type Output = GridScalar<S>;

        fn add(self, other: &'a GridScalar<S>) -> Self::Output {
            let result = self + other.gridvals.vals();
            
            GridScalar {
                spec: Rc::clone(&other.spec),
                gridvals: ValVector(result),
            }
        }
    }

    impl<'a, 'b, S> std::ops::Mul<&'b GridScalar<S>> for &'a GridScalar<S> where S: GridSpec {
        type Output = GridScalar<S>;

        fn mul(self, other: &'b GridScalar<S>) -> Self::Output {
            if self.gridvals.len() == other.gridvals.len() &&
            Rc::ptr_eq(&self.get_spec(), &other.get_spec()) {
                let result = self.gridvals.vals() * other.gridvals.vals();
                GridScalar {
                    spec: Rc::clone(&self.spec),
                    gridvals: ValVector(result),
                }
            }
            else { panic!("Error multiplying GridScalars! Ensure sizes and GridSpecs are the same.") }
        }
    }

    impl<'a, S> std::ops::Mul<f64> for &'a GridScalar<S> {
        type Output = GridScalar<S>;

        fn mul(self, other: f64) -> Self::Output {
            let result = self.gridvals.vals() * other;
            
            GridScalar {
                spec: Rc::clone(&self.spec),
                gridvals: ValVector(result),
            }
        }
    }

    impl<'a, S> std::ops::Mul<&'a GridScalar<S>> for f64 {
        type Output = GridScalar<S>;

        fn mul(self, other: &'a GridScalar<S>) -> Self::Output {
            let result = self * other.gridvals.vals();
            
            GridScalar {
                spec: Rc::clone(&other.spec),
                gridvals: ValVector(result),
            }
        }
    }

    impl<'a, 'b, S> std::ops::Div<&'b GridScalar<S>> for &'a GridScalar<S> where S: GridSpec {
        type Output = GridScalar<S>;

        fn div(self, other: &'b GridScalar<S>) -> Self::Output {
            if self.gridvals.len() == other.gridvals.len() &&
            Rc::ptr_eq(&self.get_spec(), &other.get_spec()) {
                let result = self.gridvals.vals() / other.gridvals.vals();
                GridScalar {
                    spec: Rc::clone(&self.spec),
                    gridvals: ValVector(result),
                }
            }
            else { panic!("Error dividing GridScalars! Ensure sizes and GridSpecs are the same.") }
        }
    }

    impl<'a, S> std::ops::Div<f64> for &'a GridScalar<S> {
        type Output = GridScalar<S>;

        fn div(self, other: f64) -> Self::Output {
            let result = self.gridvals.vals() / other;
            
            GridScalar {
                spec: Rc::clone(&self.spec),
                gridvals: ValVector(result),
            }
        }
    }

    impl<'a, S> std::ops::Div<&'a GridScalar<S>> for f64 {
        type Output = GridScalar<S>;

        fn div(self, other: &'a GridScalar<S>) -> Self::Output {
            let result = self / other.gridvals.vals();
            
            GridScalar {
                spec: Rc::clone(&other.spec),
                gridvals: ValVector(result),
            }
        }
    }

    impl<'a, S> std::ops::Neg for &'a GridScalar<S> {
        type Output = GridScalar<S>;

        fn neg(self) -> Self::Output {
            GridScalar{
                spec: Rc::clone(&self.spec),
                gridvals: ValVector(-self.gridvals.vals()),
            }
        }
    }
}

pub mod stencil {
    
    extern crate ndarray;
    extern crate ndarray_linalg;
    extern crate factorial;

    /// The FdWeights struct contains the Stencil of points to use for a
    /// finite difference approximation, the order of the derivative to
    /// be approximated, and the "weights," or coefficients, that will
    /// be multiplied by the values at the stencil points.
    #[derive(Clone, Debug, PartialEq)]
    pub struct FdWeights {
        /// The Stencil contains the relative positions of points to be
        /// used in the finite difference approximation
        stencil: Stencil,
        /// The order of the derivative to be approximated (1 -> d, 
        /// 2 -> d2, etc.)
        nderiv: usize,
        /// The accuracy of the approximation = number of stencil points
        /// minus the derivative order
        accuracy: usize,
        /// The finite difference coefficients, or weights, contained in
        /// a ValVector
        weights: crate::grid::ValVector,
    }

    impl FdWeights {
        /// Returns an FdWeights instance fully formed and populated with
        /// the calculated coefficients. First creates a new Stencil
        /// instance with Stencil::new(), which sorts and removes duplicate
        /// values from the `slots` argument.
        /// # Arguments
        /// * `slots` - an array of integers representing the relative positions
        /// of the neighboring points to be used in the approximation; this
        /// argument will be sorted purged of duplicate values
        /// * `nderiv` - the order of the derivative to be approximated
        /// # Examples
        /// ```
        /// use rustencils::stencil::FdWeights;
        /// let s = [-2,-1,0,1,2];
        /// let d1 = FdWeights::new(&s[..], 1);
        /// let d3 = FdWeights::new(&s[..], 3);
        /// assert_eq!(d1.get_slots(), d3.get_slots());
        /// ```
        /// 
        /// ```should_panic
        /// use rustencils::stencil::FdWeights;
        /// let s = [-1,0,1];
        /// // panics because nderiv is not less than the length of s
        /// let d3 = FdWeights::new(&s[..], 3);
        /// ```
        /// 
        /// ```
        /// use rustencils::stencil::FdWeights;
        /// let s = [3,1,0,1,-1,-2,3];
        /// let d2 = FdWeights::new(&s[..], 2);
        /// assert_ne!(d2.get_slots(), &s[..]);
        /// assert_eq!(d2.get_slots(), &[-2,-1,0,1,3]);
        /// ```
        /// 
        /// ```
        /// use rustencils::stencil::FdWeights;
        /// let s = [-1,0,1];
        /// let d1 = FdWeights::new(&s[..], 1);
        /// let d2 = FdWeights::new(&s[..], 2);
        /// assert_eq!(d1.get_weights()[0], -0.5);
        /// assert_eq!(d2.get_weights()[0], 1.);
        /// ```
        pub fn new(slots: &[isize], nderiv: usize) -> Self {
            let stncl = Stencil::new(slots);
            FdWeights {
                weights: crate::grid::ValVector(Self::gen_fd_weights(&stncl, nderiv)),
                accuracy: stncl.num_slots - nderiv,
                nderiv,
                stencil: stncl,
            }
        }

        /// Solves a basic linear algebra problem to find the finite
        /// difference coefficients for arbitrary stencil points. See:
        /// https://en.wikipedia.org/wiki/Finite_difference_coefficient
        fn gen_fd_weights(stencil: &Stencil, nderiv: usize) -> ndarray::Array1<f64> {
            assert!(nderiv < stencil.num_slots,
                    "Derivative order must be less than number of stencil points!");
            let matx = Self::init_matrix(&stencil.slot_pos[..]);
            let mut bvec = ndarray::Array1::<f64>::zeros(stencil.num_slots);
            bvec[[nderiv]] = factorial::Factorial::factorial(&nderiv) as f64;
            ndarray_linalg::Solve::solve_into(&matx, bvec).unwrap()
        }

        /// Constructs the square matrix for use in generating the finite
        /// difference coefficients. Each row of the matrix is the set of
        /// stencil points raised to the power of the row index.
        fn init_matrix(slots: &[isize]) -> ndarray::Array2<f64> {
            let mut result = ndarray::Array2::<f64>::zeros((slots.len(), slots.len()));
            for i in 0..slots.len() {
                for (j, elm) in slots.iter().enumerate() {
                    result[[i,j]] = elm.pow(i as u32) as f64;
                }
            }
            result
        }

        /// Returns a shared array slice containing the stencil point
        /// positions.
        pub fn get_slots(&self) -> &[isize] {
            &self.stencil.get_slots()
        }

        /// Returns the value of the derivative order
        pub fn get_ord(&self) -> usize {
            self.nderiv
        }

        /// Returns a shared reference to a rustencils::grid::ValVector
        /// that contains the calculated finite difference coefficients
        pub fn get_weights(&self) -> &crate::grid::ValVector {
            &self.weights
        }
    }

    /// The Stencil struct represents the stencil of points that will be used
    /// to approximate some derivative. It simply contains a vector of the
    /// stencil slot positions and the number of slots.
    #[derive(Clone, Debug, PartialEq)]
    pub struct Stencil {
        /// A vector of the relative positions of the points to be used
        slot_pos: Vec<isize>,
        /// The length of the `slot_pos` vector
        num_slots: usize,
    }

    impl Stencil {
        /// Returns a new Stencil instance. First sorts and removes duplicate
        /// values from the input argument.
        /// # Arguments
        /// * `slots` - an array of integers representing the relative positions
        /// of the neighboring points to be used in the approximation; this
        /// argument will be sorted purged of duplicate values
        fn new(slots: &[isize]) -> Self {
            let mut slots_vec = Vec::from(slots);
            slots_vec.sort_unstable();
            slots_vec.dedup();
            Stencil {
                num_slots: slots.len(),
                slot_pos: slots_vec,
            }
        }

        /// Returns a shared array slice containing the stencil point
        /// positions.
        fn get_slots(&self) -> &[isize] {
            &self.slot_pos[..]
        }
    }
    
    #[test]
    fn check_slots() {
        let slots = [3,1,0,1,-1,-2,3];
        let stncl = Stencil::new(&slots[..]);
        assert_ne!(stncl.get_slots(), &slots[..]);
        assert_eq!(stncl.get_slots(), &[-2,-1,0,1,3]);
    }
}

pub mod operator {
    
    extern crate ndarray;
    
    /// The full 1D operator construction with finite difference weights
    /// corresponding to the interior region, as well as those for the edges.
    /// The basis direction refers to the dimension along which the
    /// operator should be applied (e.g., [0][1][2] corresponding to
    /// [x][y][z] in Cartesian coordinates
    #[derive(Debug)]
    pub struct Operator1D<E> {
        /// An instance of rustencils::stencil::FdWeights holding the finite
        /// difference coefficients used on the interior region of the grid
        interior: crate::stencil::FdWeights,
        /// A set of rustencils::stencil::FdWeights instances holding the
        /// finite difference coefficients used at the edges of the grid
        /// where the interior stencil will not fit
        edge: E,
        /// Axis with respect to which the derivative will be taken (e.g.,
        /// 0 -> d/dx, 1 -> d/dy, etc.)
        basis_direction: usize,
        /// The order of the derivative
        deriv_ord: usize,
    }

    impl<E> Operator1D<E> where E: EdgeOperator {
        /// Returns a new Operator1D instance. Ensures that edge and interior
        /// FdWeights instances are all calculated for the same derivative
        /// order. Also calls the EdgeOperator `check_edges()` function to
        /// verify proper edge construction.
        /// # Arguments
        /// * `interior` - FdWeights instance that will be used for the
        /// interior region of the grid
        /// * `edge` - an object that implements EdgeOperator that holds
        /// FdWeights instances used for the grid edges
        /// * `direction` - the axis with respect to which the derivative
        /// will be taken (e.g., 0 -> d/dx, 1 -> d/dy, etc.)
        /// # Examples
        /// ```
        /// use std::rc::Rc;
        /// use rustencils::stencil::FdWeights;
        /// use rustencils::grid::{GridScalar, GridQty, CartesianGridSpec, AxisSetup};
        /// use rustencils::operator::{Operator1D, FixedEdgeOperator};
        /// 
        /// // First initialize the grid objects
        /// let x_init = AxisSetup::new(0., 0.01, 100);
        /// let y_init = x_init.clone();
        /// let axs_init = vec![x_init, y_init];
        /// let spec = Rc::new(CartesianGridSpec::new(axs_init));
        /// let temperature = GridScalar::zeros(Rc::clone(&spec));
        /// 
        /// // Next construct the interior and edge arguments for a 2nd order derivative
        /// let wts_2nd_int = FdWeights::new(&[-2,-1,0,1,2], 2);
        /// 
        /// let wts_2nd_L0 = FdWeights::new(&[0,1,2,3,4], 2);
        /// let wts_2nd_L1 = FdWeights::new(&[-1,0,1,2,3], 2);
        /// let wts_2nd_L = vec![wts_2nd_L0, wts_2nd_L1];
        /// 
        /// let wts_2nd_R0 = FdWeights::new(&[-4,-3,-2,-1,0], 2);
        /// let wts_2nd_R1 = FdWeights::new(&[-3,-2,-1,0,1], 2);
        /// let wts_2nd_R = vec![wts_2nd_R0, wts_2nd_R1];
        /// 
        /// let edge_wts_2nd = FixedEdgeOperator::new(wts_2nd_L, wts_2nd_R);
        /// 
        /// // Next construct the full Operator1D instances
        /// let op1d_2nd_x = Operator1D::new(wts_2nd_int.clone(), edge_wts_2nd.clone(), 0);
        /// let op1d_2nd_y = Operator1D::new(wts_2nd_int, edge_wts_2nd, 1);
        /// ```
        /// 
        /// ```should_panic
        /// use rustencils::stencil::FdWeights;
        /// use rustencils::operator::{Operator1D, FixedEdgeOperator};
        /// 
        /// // Construct the interior and edge arguments for a 2nd order derivative
        /// let wts_2nd_int = FdWeights::new(&[-2,-1,0,1,2], 2);
        /// 
        /// let wts_2nd_L0 = FdWeights::new(&[0,1,2,3,4], 2);
        /// let wts_2nd_L1 = FdWeights::new(&[-1,0,1,2,3], 2);
        /// let wts_2nd_L = vec![wts_2nd_L0, wts_2nd_L1];
        /// 
        /// let wts_2nd_R0 = FdWeights::new(&[-4,-3,-2,-1,0], 2);
        /// let wts_2nd_R = vec![wts_2nd_R0];
        /// 
        /// let edge_wts_2nd = FixedEdgeOperator::new(wts_2nd_L, wts_2nd_R);
        /// 
        /// // Next construct the full Operator1D instances
        /// // Panics because the right edge does not have enough FdWeights!
        /// // Remember that each FdWeights in the edge is only applied once
        /// // and they are applied from the outside of the grid to the interior
        /// let op1d_2nd_x = Operator1D::new(wts_2nd_int.clone(), edge_wts_2nd.clone(), 0);
        /// let op1d_2nd_y = Operator1D::new(wts_2nd_int, edge_wts_2nd, 1);
        /// ```
        pub fn new(interior: crate::stencil::FdWeights, edge: E, direction: usize) -> Self {
            let deriv_ord = interior.get_ord();
            for elm in edge.get_left() {
                assert_eq!(deriv_ord, elm.get_ord());
            }
            for elm in edge.get_right() {
                assert_eq!(deriv_ord, elm.get_ord());
            }
            let _ = edge.check_edges(&interior);
            Operator1D {
                interior,
                edge,
                basis_direction: direction,
                deriv_ord,
            }
        }

        /// Retruns the order of the derivative
        pub fn get_ord(&self) -> usize {
            self.deriv_ord
        }
    }

    /// Since the edges of the grid can be defined in multiple ways (e.g.,
    /// non-periodic -- called "fixed" in this crate -- vs periodic) the
    /// EdgeOperator trait is used to identify those structs that can be
    /// used for this purpose. The trait defines the necessary methods for
    /// a struct that specifies a type of grid edge construction. For
    /// example, this trait is implemented by the FixedEdgeOperator type.
    /// NOTE: that the boundary conditions are separate from the edge
    /// operator and are specified elsewhere.
    pub trait EdgeOperator {
        /// Returns a Result<(), &'static str> depending on whether the edges
        /// are constructed properly. It is also valid to simply panic when
        /// the edge construction is not correct. Generally advisable to just
        /// include logic about when to check which edge and conditionally
        /// call `check_left_edge` and `check_right_edge`.
        /// # Arguments
        /// * `weights_int` - the corresponding FdWeights instance used for
        /// the interior of the grid
        fn check_edges(&self, weights_int: &crate::stencil::FdWeights) -> Result<(), &'static str>;
        /// Check and assert the construction of the left edge is correct.
        /// Panics if it is not correct.
        /// # Arguments
        /// * `weights_int` - the corresponding FdWeights instance used for
        /// the interior of the grid
        fn check_left_edge(&self, weights_int: &crate::stencil::FdWeights);
        /// Check and assert the construction of the right edge is correct.
        /// Panics if it is not correct.
        /// # Arguments
        /// * `weights_int` - the corresponding FdWeights instance used for
        /// the interior of the grid
        fn check_right_edge(&self, weights_int: &crate::stencil::FdWeights);
        /// Returns an exclusive reference to the vector of left edge
        /// FdWeights
        fn get_left_mut(&mut self) -> &mut Vec<crate::stencil::FdWeights>;
        /// Returns an exclusive reference to the vector of right edge
        /// FdWeights
        fn get_right_mut(&mut self) -> &mut Vec<crate::stencil::FdWeights>;
        /// Returns a shared reference to the vector of left edge FdWeights
        fn get_left(&self) -> &Vec<crate::stencil::FdWeights>;
        /// Returns a shared reference to the vector of right edge FdWeights
        fn get_right(&self) -> &Vec<crate::stencil::FdWeights>;
    }

    /// The FixedEdgeOperator struct contains vectors of rustencils::stencil::FdWeights.
    /// One vector for the left edge and one vector for the right edge.
    /// NOTE: "Fixed" refers to the fact that the bounds are NOT periodic! The
    /// boundary conditions can still be of any type and must be specified separately!
    /// The left (more negative side) and right (more positive side) edge operators will
    /// be applied from the outside-in (i.e. the first element in the vector will apply
    /// to the outermost point, and so on) and each element is only applied once. The
    /// user is responsible for ensuring adequate edge operator construction given the
    /// structure of the interior operator.
    #[derive(Clone, Debug)]
    pub struct FixedEdgeOperator {
        /// The type of edge operator. Constructor sets this to "fixed"
        edge_type: String,
        /// A vector of FdWeights to be applied to the left edge
        left: Vec<crate::stencil::FdWeights>,
        /// A vector of FdWeights to be applied to the right edge
        right: Vec<crate::stencil::FdWeights>,
    }

    impl EdgeOperator for FixedEdgeOperator {
        fn check_edges(&self, weights_int: &crate::stencil::FdWeights) -> Result<(), &'static str> {
            match weights_int.get_slots().iter().min() {
                Some(x) if x < &0 => self.check_left_edge(weights_int),
                Some(_) => {},
                None => {}
            }
            match weights_int.get_slots().iter().max() {
                Some(x) if x > &0 => self.check_right_edge(weights_int),
                Some(_) => {},
                None => {}
            }
            Ok(())
        }

        fn check_left_edge(&self, weights_int: &crate::stencil::FdWeights) {
            assert_eq!(weights_int.get_slots().iter().min().unwrap(), &-(self.left.len() as isize), "Improper number of left edge stencils!");
            for (n, item) in self.left.iter().enumerate() {
                assert!(item.get_slots().iter().min().unwrap() >= &(0-(n as isize)), "Edge stencil out of range!");
            }
        }

        fn check_right_edge(&self, weights_int: &crate::stencil::FdWeights) {
            assert_eq!(weights_int.get_slots().iter().max().unwrap(), &(self.right.len() as isize), "Improper number of right edge stencils!");
            for (n, item) in self.right.iter().enumerate() {
                assert!(item.get_slots().iter().max().unwrap() <= &(n as isize), "Edge stencil out of range!");
            }
        }

        fn get_left_mut(&mut self) -> &mut Vec<crate::stencil::FdWeights> { &mut self.left }
        fn get_right_mut(&mut self) -> &mut Vec<crate::stencil::FdWeights> { &mut self.right }
        fn get_left(&self) -> &Vec<crate::stencil::FdWeights> { &self.left }
        fn get_right(&self) -> &Vec<crate::stencil::FdWeights> { &self.right }
    }

    impl FixedEdgeOperator {
        /// Returns a FixedEdgeOperator. Sets the `edge_type` to "fixed".
        /// # Arguments
        /// * `left_edge_ops` - a vector of FdWeights for the left edge
        /// * `right_edge_ops` - a vector of FdWeights for the right edge
        /// # Examples
        /// ```
        /// use rustencils::stencil::FdWeights;
        /// use rustencils::operator::{EdgeOperator, FixedEdgeOperator};
        /// 
        /// // Construct the interior and edge arguments for a 2nd order derivative
        /// let wts_2nd_int = FdWeights::new(&[-2,-1,0,1,2], 2);
        /// 
        /// let wts_2nd_L0 = FdWeights::new(&[0,1,2,3,4], 2);
        /// let wts_2nd_L1 = FdWeights::new(&[-1,0,1,2,3], 2);
        /// let wts_2nd_L = vec![wts_2nd_L0, wts_2nd_L1];
        /// 
        /// let wts_2nd_R0 = FdWeights::new(&[-4,-3,-2,-1,0], 2);
        /// let wts_2nd_R1 = FdWeights::new(&[-3,-2,-1,0,1], 2);
        /// let wts_2nd_R = vec![wts_2nd_R0, wts_2nd_R1];
        /// 
        /// let edge_wts_2nd = FixedEdgeOperator::new(wts_2nd_L, wts_2nd_R);
        /// 
        /// edge_wts_2nd.check_edges(&wts_2nd_int);
        /// ```
        pub fn new(left_edge_ops: Vec<crate::stencil::FdWeights>,
                   right_edge_ops: Vec<crate::stencil::FdWeights>) -> Self {
            FixedEdgeOperator {
                edge_type: String::from("fixed"),
                left: left_edge_ops,
                right: right_edge_ops,
            }
        }
    }

    /// The OperatorMatrix struct represents the 2D matrix linear operator
    /// approximating some derivative. Holds the matrix and the shape of
    /// the matrix.
    pub struct OperatorMatrix {
        /// The shape of the matrix: (rows, columns)
        shape: (usize, usize),
        /// The actual matrix, here implemented with ndarray
        matrix: ndarray::Array2<f64>,
    }

    impl OperatorMatrix {
        /// Returns a new GridQty that is the result of taking the inner
        /// product of the OperatorMatrix with the GridQty passed in as
        /// argument. This is the approximation of taking a derivative.
        /// # Arguments
        /// * `qty` - an object to be differentiated that implements
        /// rustencils::grid::GridQty
        /// # Examples
        /// ```
        /// use std::rc::Rc;
        /// use rustencils::stencil::FdWeights;
        /// use rustencils::grid::{GridScalar, GridQty, CartesianGridSpec, AxisSetup};
        /// use rustencils::operator::{Operator1D, FixedEdgeOperator, OperatorMatrix};
        /// use rustencils::operator::construct_op;
        /// 
        /// // First initialize the grid objects
        /// let x_init = AxisSetup::new(0., 0.01, 100);
        /// let y_init = x_init.clone();
        /// let axs_init = vec![x_init, y_init];
        /// let spec = Rc::new(CartesianGridSpec::new(axs_init));
        /// let x_vals = GridScalar::axis_vals(Rc::clone(&spec), 0);
        /// let y_vals = GridScalar::axis_vals(Rc::clone(&spec), 1);
        /// // T will represent temperature
        /// let T = 100. * &( &( &x_vals * &x_vals) * &( &y_vals * &y_vals) );
        /// 
        /// // Next construct the interior and edge arguments for a 2nd order derivative
        /// let wts_2nd_int = FdWeights::new(&[-2,-1,0,1,2], 2);
        /// 
        /// let wts_2nd_L0 = FdWeights::new(&[0,1,2,3,4], 2);
        /// let wts_2nd_L1 = FdWeights::new(&[-1,0,1,2,3], 2);
        /// let wts_2nd_L = vec![wts_2nd_L0, wts_2nd_L1];
        /// 
        /// let wts_2nd_R0 = FdWeights::new(&[-4,-3,-2,-1,0], 2);
        /// let wts_2nd_R1 = FdWeights::new(&[-3,-2,-1,0,1], 2);
        /// let wts_2nd_R = vec![wts_2nd_R0, wts_2nd_R1];
        /// 
        /// let edge_wts_2nd = FixedEdgeOperator::new(wts_2nd_L, wts_2nd_R);
        /// 
        /// // Next construct the full Operator1D instances
        /// let op1d_2nd_x = Operator1D::new(wts_2nd_int.clone(), edge_wts_2nd.clone(), 0);
        /// let op1d_2nd_y = Operator1D::new(wts_2nd_int, edge_wts_2nd, 1);
        /// 
        /// // Construct OperatorMatrix instances
        /// let d2dx2 = construct_op(op1d_2nd_x, &T);
        /// let d2dy2 = construct_op(op1d_2nd_y, &T);
        /// 
        /// // Differentiate T
        /// let d2Tdx2 = d2dx2.of_qty(&T);
        /// let d2Tdy2 = d2dy2.of_qty(&T);
        /// 
        /// // Can also construct more complex operator!
        /// let Del2 = &d2dx2 + &d2dy2;
        /// let Del2T = Del2.of_qty(&T);
        /// ```
        pub fn of_qty<Q, S>(&self, qty: &Q) -> Q
        where Q: GridQty<S>, S: GridSpec {
            assert_eq!(qty.get_gridvals().len(), self.shape.0);
            let result = self.matrix.dot(qty.get_gridvals().as_ndarray());
            GridQty::new(qty.get_spec(), crate::grid::ValVector(result))
        }

        /// Returns a new OperatorMatrix that is the result of taking the
        /// inner product of the OperatorMatrix (self) with the
        /// OperatorMarix passed in as argument.
        /// # Arguments
        /// * `other` - another OperatorMatrix instance
        /// # Examples
        /// ```
        /// use std::rc::Rc;
        /// use rustencils::stencil::FdWeights;
        /// use rustencils::grid::{GridScalar, GridQty, CartesianGridSpec, AxisSetup};
        /// use rustencils::operator::{Operator1D, FixedEdgeOperator, OperatorMatrix};
        /// use rustencils::operator::construct_op;
        /// 
        /// // First initialize the grid objects
        /// let x_init = AxisSetup::new(0., 0.01, 100);
        /// let y_init = x_init.clone();
        /// let axs_init = vec![x_init, y_init];
        /// let spec = Rc::new(CartesianGridSpec::new(axs_init));
        /// let x_vals = GridScalar::axis_vals(Rc::clone(&spec), 0);
        /// let y_vals = GridScalar::axis_vals(Rc::clone(&spec), 1);
        /// // T will represent temperature
        /// let T = 100. * &( &( &x_vals * &x_vals) * &( &y_vals * &y_vals) );
        /// 
        /// // Next construct the interior and edge arguments for a 2nd order derivative
        /// let wts_2nd_int = FdWeights::new(&[-2,-1,0,1,2], 2);
        /// 
        /// let wts_2nd_L0 = FdWeights::new(&[0,1,2,3,4], 2);
        /// let wts_2nd_L1 = FdWeights::new(&[-1,0,1,2,3], 2);
        /// let wts_2nd_L = vec![wts_2nd_L0, wts_2nd_L1];
        /// 
        /// let wts_2nd_R0 = FdWeights::new(&[-4,-3,-2,-1,0], 2);
        /// let wts_2nd_R1 = FdWeights::new(&[-3,-2,-1,0,1], 2);
        /// let wts_2nd_R = vec![wts_2nd_R0, wts_2nd_R1];
        /// 
        /// let edge_wts_2nd = FixedEdgeOperator::new(wts_2nd_L, wts_2nd_R);
        /// 
        /// // Next construct the full Operator1D instances
        /// let op1d_2nd_x = Operator1D::new(wts_2nd_int.clone(), edge_wts_2nd.clone(), 0);
        /// let op1d_2nd_y = Operator1D::new(wts_2nd_int, edge_wts_2nd, 1);
        /// 
        /// // Construct OperatorMatrix instances
        /// let d2dx2 = construct_op(op1d_2nd_x, &T);
        /// let d2dy2 = construct_op(op1d_2nd_y, &T);
        /// 
        /// // Differentiate T
        /// let d2Tdy2 = d2dy2.of_qty(&T);
        /// let d4Tdx2dy2 = d2dx2.of_qty(&d2Tdy2);
        /// 
        /// // Can also construct more complex operator!
        /// let d4dx2dy2 = d2dx2.of_mtx(&d2dy2);
        /// let d4Tdx2dy2 = d4dx2dy2.of_qty(&T);
        /// ```
        pub fn of_mtx(&self, other: &OperatorMatrix) -> Self {
            if self.shape == other.shape {
                let result = self.matrix.dot(&other.matrix);
                OperatorMatrix {
                    shape: self.shape,
                    matrix: result,
                }
            }
            else{ panic!("Error taking inner product of OperatorMatrix! Ensure shapes are the same.") }
        }
    }

    use crate::grid::{GridQty, GridSpec};

    /// Constructs a new OperatorMatrix based on an Operator1D and a GridQty
    /// # Arguments
    /// * `op1d` - an Operator1D instance
    /// * `qty` - an instance of something that implements GridQty
    /// # Examples
    /// ```
    /// use std::rc::Rc;
    /// use rustencils::stencil::FdWeights;
    /// use rustencils::grid::{GridScalar, GridQty, CartesianGridSpec, AxisSetup};
    /// use rustencils::operator::{Operator1D, FixedEdgeOperator, OperatorMatrix};
    /// use rustencils::operator::construct_op;
    /// 
    /// // First initialize the grid objects
    /// let x_init = AxisSetup::new(0., 0.01, 100);
    /// let y_init = x_init.clone();
    /// let axs_init = vec![x_init, y_init];
    /// let spec = Rc::new(CartesianGridSpec::new(axs_init));
    /// let x_vals = GridScalar::axis_vals(Rc::clone(&spec), 0);
    /// let y_vals = GridScalar::axis_vals(Rc::clone(&spec), 1);
    /// // T will represent temperature
    /// let T = 100. * &( &( &x_vals * &x_vals) * &( &y_vals * &y_vals) );
    /// 
    /// // Next construct the interior and edge arguments for a 2nd order derivative
    /// let wts_2nd_int = FdWeights::new(&[-2,-1,0,1,2], 2);
    /// 
    /// let wts_2nd_L0 = FdWeights::new(&[0,1,2,3,4], 2);
    /// let wts_2nd_L1 = FdWeights::new(&[-1,0,1,2,3], 2);
    /// let wts_2nd_L = vec![wts_2nd_L0, wts_2nd_L1];
    /// 
    /// let wts_2nd_R0 = FdWeights::new(&[-4,-3,-2,-1,0], 2);
    /// let wts_2nd_R1 = FdWeights::new(&[-3,-2,-1,0,1], 2);
    /// let wts_2nd_R = vec![wts_2nd_R0, wts_2nd_R1];
    /// 
    /// let edge_wts_2nd = FixedEdgeOperator::new(wts_2nd_L, wts_2nd_R);
    /// 
    /// // Next construct the full Operator1D instances
    /// let op1d_2nd_x = Operator1D::new(wts_2nd_int.clone(), edge_wts_2nd.clone(), 0);
    /// let op1d_2nd_y = Operator1D::new(wts_2nd_int, edge_wts_2nd, 1);
    /// 
    /// // Construct OperatorMatrix instances
    /// let d2dx2 = construct_op(op1d_2nd_x, &T);
    /// let d2dy2 = construct_op(op1d_2nd_y, &T);
    /// ```
    pub fn construct_op<Q, S, E>(op1d: Operator1D<E>, qty: &Q) -> OperatorMatrix
    where Q: GridQty<S>, S: GridSpec, E: EdgeOperator
    {
        let dim_num = op1d.basis_direction;
        let dim_pts = qty.get_spec().get_gridshape()[dim_num];
        let tot_pts = qty.get_gridvals().len();
        let shape = (tot_pts, tot_pts);
        let deriv_ord = op1d.get_ord();
        let denom = (qty.get_spec().get_spacing()[dim_num]).powi(deriv_ord as i32);
        let mut matrix: ndarray::Array2<f64> = ndarray::Array2::zeros(shape);
        for (idxs, pt) in qty.get_grid().indexed_iter() {
            let left_idx = idxs[dim_num];
            let right_idx = dim_pts - idxs[dim_num] - 1;
            
            let (stncl, weights) = match (left_idx, right_idx) {
                (left_idx, right_idx) if left_idx >= op1d.edge.get_left().len() && right_idx >= op1d.edge.get_right().len()
                            => (op1d.interior.get_slots(), op1d.interior.get_weights()),
                (left_idx, _) if left_idx < op1d.edge.get_left().len()
                            => (op1d.edge.get_left()[left_idx].get_slots(), op1d.edge.get_left()[left_idx].get_weights()),
                (_, right_idx) if right_idx < op1d.edge.get_right().len()
                            => (op1d.edge.get_right()[right_idx].get_slots(), op1d.edge.get_right()[right_idx].get_weights()),
                (_, _) => panic!("Error while constructing operator!"),
            };

            let _ = stncl.iter().enumerate().map(|(i, rel_pos)| {
                let mut new_idxs = idxs.clone();
                new_idxs[dim_num] = (new_idxs[dim_num] as isize + rel_pos) as usize;
                let mtx_col_idx = qty.get_grid()[new_idxs].idx;
                matrix[[pt.idx, mtx_col_idx]] = weights[i]/denom;
            }).collect::<()>();
        }
        
        OperatorMatrix {
            shape,
            matrix,
        }
    }

    impl<'a, 'b> std::ops::Add<&'b OperatorMatrix> for &'a OperatorMatrix {
        type Output = OperatorMatrix;

        fn add(self, other: &'b OperatorMatrix) -> Self::Output {
            if self.shape == other.shape {
                let result = &self.matrix + &other.matrix;
                OperatorMatrix {
                    shape: self.shape,
                    matrix: result,
                }
            }
            else { panic!("Error adding OperatorMatrix instances! Ensure shapes are the same.") }
        }
    }

    impl<'a, 'b> std::ops::Sub<&'b OperatorMatrix> for &'a OperatorMatrix {
        type Output = OperatorMatrix;

        fn sub(self, other: &'b OperatorMatrix) -> Self::Output {
            if self.shape == other.shape {
                let result = &self.matrix - &other.matrix;
                OperatorMatrix {
                    shape: self.shape,
                    matrix: result,
                }
            }
            else { panic!("Error subtracting OperatorMatrix instances! Ensure shapes are the same.") }
        }
    }
}

pub mod boundaries {
    pub trait BoundaryHandler {
        fn set_bounds(); // maybe call this set_BCs?
        fn check_bc_type();
    }

    pub trait BoundaryCondition {
        fn print_bc(); // print the conatained BC
        fn get_boundary(); // return the slice of the grid corresponding to this boundary
        fn get_bc_type();
    }

    pub enum BoundarySide {
        Low,
        High,
    }

    pub struct DirichletHandler<T> {
        bc_type: String,
        bc_list: Vec<T>,
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    #[test]
    fn it_works() {
        assert_eq!(2 + 2, 4);
    }
}