1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
use crate::ast::NodeId;
use crate::early_buffered_lints::BufferedEarlyLintId;
use crate::ext::tt::macro_parser;
use crate::feature_gate::Features;
use crate::parse::{token, ParseSess};
use crate::print::pprust;
use crate::tokenstream::{self, DelimSpan};
use crate::ast;
use crate::symbol::kw;

use syntax_pos::{edition::Edition, BytePos, Span};

use rustc_data_structures::sync::Lrc;
use std::iter::Peekable;

/// Contains the sub-token-trees of a "delimited" token tree, such as the contents of `(`. Note
/// that the delimiter itself might be `NoDelim`.
#[derive(Clone, PartialEq, RustcEncodable, RustcDecodable, Debug)]
pub struct Delimited {
    pub delim: token::DelimToken,
    pub tts: Vec<TokenTree>,
}

impl Delimited {
    /// Returns the opening delimiter (possibly `NoDelim`).
    pub fn open_token(&self) -> token::Token {
        token::OpenDelim(self.delim)
    }

    /// Returns the closing delimiter (possibly `NoDelim`).
    pub fn close_token(&self) -> token::Token {
        token::CloseDelim(self.delim)
    }

    /// Returns a `self::TokenTree` with a `Span` corresponding to the opening delimiter.
    pub fn open_tt(&self, span: Span) -> TokenTree {
        let open_span = if span.is_dummy() {
            span
        } else {
            span.with_lo(span.lo() + BytePos(self.delim.len() as u32))
        };
        TokenTree::Token(open_span, self.open_token())
    }

    /// Returns a `self::TokenTree` with a `Span` corresponding to the closing delimiter.
    pub fn close_tt(&self, span: Span) -> TokenTree {
        let close_span = if span.is_dummy() {
            span
        } else {
            span.with_lo(span.hi() - BytePos(self.delim.len() as u32))
        };
        TokenTree::Token(close_span, self.close_token())
    }
}

#[derive(Clone, PartialEq, RustcEncodable, RustcDecodable, Debug)]
pub struct SequenceRepetition {
    /// The sequence of token trees
    pub tts: Vec<TokenTree>,
    /// The optional separator
    pub separator: Option<token::Token>,
    /// Whether the sequence can be repeated zero (*), or one or more times (+)
    pub op: KleeneOp,
    /// The number of `Match`s that appear in the sequence (and subsequences)
    pub num_captures: usize,
}

/// A Kleene-style [repetition operator](http://en.wikipedia.org/wiki/Kleene_star)
/// for token sequences.
#[derive(Clone, PartialEq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum KleeneOp {
    /// Kleene star (`*`) for zero or more repetitions
    ZeroOrMore,
    /// Kleene plus (`+`) for one or more repetitions
    OneOrMore,
    /// Kleene optional (`?`) for zero or one reptitions
    ZeroOrOne,
}

/// Similar to `tokenstream::TokenTree`, except that `$i`, `$i:ident`, and `$(...)`
/// are "first-class" token trees. Useful for parsing macros.
#[derive(Debug, Clone, PartialEq, RustcEncodable, RustcDecodable)]
pub enum TokenTree {
    Token(Span, token::Token),
    Delimited(DelimSpan, Lrc<Delimited>),
    /// A kleene-style repetition sequence
    Sequence(DelimSpan, Lrc<SequenceRepetition>),
    /// e.g., `$var`
    MetaVar(Span, ast::Ident),
    /// e.g., `$var:expr`. This is only used in the left hand side of MBE macros.
    MetaVarDecl(
        Span,
        ast::Ident, /* name to bind */
        ast::Ident, /* kind of nonterminal */
    ),
}

impl TokenTree {
    /// Return the number of tokens in the tree.
    pub fn len(&self) -> usize {
        match *self {
            TokenTree::Delimited(_, ref delimed) => match delimed.delim {
                token::NoDelim => delimed.tts.len(),
                _ => delimed.tts.len() + 2,
            },
            TokenTree::Sequence(_, ref seq) => seq.tts.len(),
            _ => 0,
        }
    }

    /// Returns `true` if the given token tree contains no other tokens. This is vacuously true for
    /// single tokens or metavar/decls, but may be false for delimited trees or sequences.
    pub fn is_empty(&self) -> bool {
        match *self {
            TokenTree::Delimited(_, ref delimed) => match delimed.delim {
                token::NoDelim => delimed.tts.is_empty(),
                _ => false,
            },
            TokenTree::Sequence(_, ref seq) => seq.tts.is_empty(),
            _ => true,
        }
    }

    /// Gets the `index`-th sub-token-tree. This only makes sense for delimited trees and sequences.
    pub fn get_tt(&self, index: usize) -> TokenTree {
        match (self, index) {
            (&TokenTree::Delimited(_, ref delimed), _) if delimed.delim == token::NoDelim => {
                delimed.tts[index].clone()
            }
            (&TokenTree::Delimited(span, ref delimed), _) => {
                if index == 0 {
                    return delimed.open_tt(span.open);
                }
                if index == delimed.tts.len() + 1 {
                    return delimed.close_tt(span.close);
                }
                delimed.tts[index - 1].clone()
            }
            (&TokenTree::Sequence(_, ref seq), _) => seq.tts[index].clone(),
            _ => panic!("Cannot expand a token tree"),
        }
    }

    /// Retrieves the `TokenTree`'s span.
    pub fn span(&self) -> Span {
        match *self {
            TokenTree::Token(sp, _)
            | TokenTree::MetaVar(sp, _)
            | TokenTree::MetaVarDecl(sp, _, _) => sp,
            TokenTree::Delimited(sp, _)
            | TokenTree::Sequence(sp, _) => sp.entire(),
        }
    }
}

/// Takes a `tokenstream::TokenStream` and returns a `Vec<self::TokenTree>`. Specifically, this
/// takes a generic `TokenStream`, such as is used in the rest of the compiler, and returns a
/// collection of `TokenTree` for use in parsing a macro.
///
/// # Parameters
///
/// - `input`: a token stream to read from, the contents of which we are parsing.
/// - `expect_matchers`: `parse` can be used to parse either the "patterns" or the "body" of a
///   macro. Both take roughly the same form _except_ that in a pattern, metavars are declared with
///   their "matcher" type. For example `$var:expr` or `$id:ident`. In this example, `expr` and
///   `ident` are "matchers". They are not present in the body of a macro rule -- just in the
///   pattern, so we pass a parameter to indicate whether to expect them or not.
/// - `sess`: the parsing session. Any errors will be emitted to this session.
/// - `features`, `attrs`: language feature flags and attributes so that we know whether to use
///   unstable features or not.
/// - `edition`: which edition are we in.
/// - `macro_node_id`: the NodeId of the macro we are parsing.
///
/// # Returns
///
/// A collection of `self::TokenTree`. There may also be some errors emitted to `sess`.
pub fn parse(
    input: tokenstream::TokenStream,
    expect_matchers: bool,
    sess: &ParseSess,
    features: &Features,
    attrs: &[ast::Attribute],
    edition: Edition,
    macro_node_id: NodeId,
) -> Vec<TokenTree> {
    // Will contain the final collection of `self::TokenTree`
    let mut result = Vec::new();

    // For each token tree in `input`, parse the token into a `self::TokenTree`, consuming
    // additional trees if need be.
    let mut trees = input.trees().peekable();
    while let Some(tree) = trees.next() {
        // Given the parsed tree, if there is a metavar and we are expecting matchers, actually
        // parse out the matcher (i.e., in `$id:ident` this would parse the `:` and `ident`).
        let tree = parse_tree(
            tree,
            &mut trees,
            expect_matchers,
            sess,
            features,
            attrs,
            edition,
            macro_node_id,
        );
        match tree {
            TokenTree::MetaVar(start_sp, ident) if expect_matchers => {
                let span = match trees.next() {
                    Some(tokenstream::TokenTree::Token(span, token::Colon)) => match trees.next() {
                        Some(tokenstream::TokenTree::Token(end_sp, ref tok)) => match tok.ident() {
                            Some((kind, _)) => {
                                let span = end_sp.with_lo(start_sp.lo());
                                result.push(TokenTree::MetaVarDecl(span, ident, kind));
                                continue;
                            }
                            _ => end_sp,
                        },
                        tree => tree
                            .as_ref()
                            .map(tokenstream::TokenTree::span)
                            .unwrap_or(span),
                    },
                    tree => tree
                        .as_ref()
                        .map(tokenstream::TokenTree::span)
                        .unwrap_or(start_sp),
                };
                sess.missing_fragment_specifiers.borrow_mut().insert(span);
                result.push(TokenTree::MetaVarDecl(
                    span,
                    ident,
                    ast::Ident::invalid(),
                ));
            }

            // Not a metavar or no matchers allowed, so just return the tree
            _ => result.push(tree),
        }
    }
    result
}

/// Takes a `tokenstream::TokenTree` and returns a `self::TokenTree`. Specifically, this takes a
/// generic `TokenTree`, such as is used in the rest of the compiler, and returns a `TokenTree`
/// for use in parsing a macro.
///
/// Converting the given tree may involve reading more tokens.
///
/// # Parameters
///
/// - `tree`: the tree we wish to convert.
/// - `trees`: an iterator over trees. We may need to read more tokens from it in order to finish
///   converting `tree`
/// - `expect_matchers`: same as for `parse` (see above).
/// - `sess`: the parsing session. Any errors will be emitted to this session.
/// - `features`, `attrs`: language feature flags and attributes so that we know whether to use
///   unstable features or not.
fn parse_tree<I>(
    tree: tokenstream::TokenTree,
    trees: &mut Peekable<I>,
    expect_matchers: bool,
    sess: &ParseSess,
    features: &Features,
    attrs: &[ast::Attribute],
    edition: Edition,
    macro_node_id: NodeId,
) -> TokenTree
where
    I: Iterator<Item = tokenstream::TokenTree>,
{
    // Depending on what `tree` is, we could be parsing different parts of a macro
    match tree {
        // `tree` is a `$` token. Look at the next token in `trees`
        tokenstream::TokenTree::Token(span, token::Dollar) => match trees.next() {
            // `tree` is followed by a delimited set of token trees. This indicates the beginning
            // of a repetition sequence in the macro (e.g. `$(pat)*`).
            Some(tokenstream::TokenTree::Delimited(span, delim, tts)) => {
                // Must have `(` not `{` or `[`
                if delim != token::Paren {
                    let tok = pprust::token_to_string(&token::OpenDelim(delim));
                    let msg = format!("expected `(`, found `{}`", tok);
                    sess.span_diagnostic.span_err(span.entire(), &msg);
                }
                // Parse the contents of the sequence itself
                let sequence = parse(
                    tts.into(),
                    expect_matchers,
                    sess,
                    features,
                    attrs,
                    edition,
                    macro_node_id,
                );
                // Get the Kleene operator and optional separator
                let (separator, op) =
                    parse_sep_and_kleene_op(
                        trees,
                        span.entire(),
                        sess,
                        features,
                        attrs,
                        edition,
                        macro_node_id,
                    );
                // Count the number of captured "names" (i.e., named metavars)
                let name_captures = macro_parser::count_names(&sequence);
                TokenTree::Sequence(
                    span,
                    Lrc::new(SequenceRepetition {
                        tts: sequence,
                        separator,
                        op,
                        num_captures: name_captures,
                    }),
                )
            }

            // `tree` is followed by an `ident`. This could be `$meta_var` or the `$crate` special
            // metavariable that names the crate of the invocation.
            Some(tokenstream::TokenTree::Token(ident_span, ref token)) if token.is_ident() => {
                let (ident, is_raw) = token.ident().unwrap();
                let span = ident_span.with_lo(span.lo());
                if ident.name == kw::Crate && !is_raw {
                    let ident = ast::Ident::new(kw::DollarCrate, ident.span);
                    TokenTree::Token(span, token::Ident(ident, is_raw))
                } else {
                    TokenTree::MetaVar(span, ident)
                }
            }

            // `tree` is followed by a random token. This is an error.
            Some(tokenstream::TokenTree::Token(span, tok)) => {
                let msg = format!(
                    "expected identifier, found `{}`",
                    pprust::token_to_string(&tok)
                );
                sess.span_diagnostic.span_err(span, &msg);
                TokenTree::MetaVar(span, ast::Ident::invalid())
            }

            // There are no more tokens. Just return the `$` we already have.
            None => TokenTree::Token(span, token::Dollar),
        },

        // `tree` is an arbitrary token. Keep it.
        tokenstream::TokenTree::Token(span, tok) => TokenTree::Token(span, tok),

        // `tree` is the beginning of a delimited set of tokens (e.g., `(` or `{`). We need to
        // descend into the delimited set and further parse it.
        tokenstream::TokenTree::Delimited(span, delim, tts) => TokenTree::Delimited(
            span,
            Lrc::new(Delimited {
                delim: delim,
                tts: parse(
                    tts.into(),
                    expect_matchers,
                    sess,
                    features,
                    attrs,
                    edition,
                    macro_node_id,
                ),
            }),
        ),
    }
}

/// Takes a token and returns `Some(KleeneOp)` if the token is `+` `*` or `?`. Otherwise, return
/// `None`.
fn kleene_op(token: &token::Token) -> Option<KleeneOp> {
    match *token {
        token::BinOp(token::Star) => Some(KleeneOp::ZeroOrMore),
        token::BinOp(token::Plus) => Some(KleeneOp::OneOrMore),
        token::Question => Some(KleeneOp::ZeroOrOne),
        _ => None,
    }
}

/// Parse the next token tree of the input looking for a KleeneOp. Returns
///
/// - Ok(Ok((op, span))) if the next token tree is a KleeneOp
/// - Ok(Err(tok, span)) if the next token tree is a token but not a KleeneOp
/// - Err(span) if the next token tree is not a token
fn parse_kleene_op<I>(
    input: &mut I,
    span: Span,
) -> Result<Result<(KleeneOp, Span), (token::Token, Span)>, Span>
where
    I: Iterator<Item = tokenstream::TokenTree>,
{
    match input.next() {
        Some(tokenstream::TokenTree::Token(span, tok)) => match kleene_op(&tok) {
            Some(op) => Ok(Ok((op, span))),
            None => Ok(Err((tok, span))),
        },
        tree => Err(tree
            .as_ref()
            .map(tokenstream::TokenTree::span)
            .unwrap_or(span)),
    }
}

/// Attempt to parse a single Kleene star, possibly with a separator.
///
/// For example, in a pattern such as `$(a),*`, `a` is the pattern to be repeated, `,` is the
/// separator, and `*` is the Kleene operator. This function is specifically concerned with parsing
/// the last two tokens of such a pattern: namely, the optional separator and the Kleene operator
/// itself. Note that here we are parsing the _macro_ itself, rather than trying to match some
/// stream of tokens in an invocation of a macro.
///
/// This function will take some input iterator `input` corresponding to `span` and a parsing
/// session `sess`. If the next one (or possibly two) tokens in `input` correspond to a Kleene
/// operator and separator, then a tuple with `(separator, KleeneOp)` is returned. Otherwise, an
/// error with the appropriate span is emitted to `sess` and a dummy value is returned.
///
/// N.B., in the 2015 edition, `*` and `+` are the only Kleene operators, and `?` is a separator.
/// In the 2018 edition however, `?` is a Kleene operator, and not a separator.
fn parse_sep_and_kleene_op<I>(
    input: &mut Peekable<I>,
    span: Span,
    sess: &ParseSess,
    features: &Features,
    attrs: &[ast::Attribute],
    edition: Edition,
    macro_node_id: NodeId,
) -> (Option<token::Token>, KleeneOp)
where
    I: Iterator<Item = tokenstream::TokenTree>,
{
    match edition {
        Edition::Edition2015 => parse_sep_and_kleene_op_2015(
            input,
            span,
            sess,
            features,
            attrs,
            macro_node_id,
        ),
        Edition::Edition2018 => parse_sep_and_kleene_op_2018(input, span, sess, features, attrs),
    }
}

// `?` is a separator (with a migration warning) and never a KleeneOp.
fn parse_sep_and_kleene_op_2015<I>(
    input: &mut Peekable<I>,
    span: Span,
    sess: &ParseSess,
    _features: &Features,
    _attrs: &[ast::Attribute],
    macro_node_id: NodeId,
) -> (Option<token::Token>, KleeneOp)
where
    I: Iterator<Item = tokenstream::TokenTree>,
{
    // We basically look at two token trees here, denoted as #1 and #2 below
    let span = match parse_kleene_op(input, span) {
        // #1 is a `+` or `*` KleeneOp
        //
        // `?` is ambiguous: it could be a separator (warning) or a Kleene::ZeroOrOne (error), so
        // we need to look ahead one more token to be sure.
        Ok(Ok((op, _))) if op != KleeneOp::ZeroOrOne => return (None, op),

        // #1 is `?` token, but it could be a Kleene::ZeroOrOne (error in 2015) without a separator
        // or it could be a `?` separator followed by any Kleene operator. We need to look ahead 1
        // token to find out which.
        Ok(Ok((op, op1_span))) => {
            assert_eq!(op, KleeneOp::ZeroOrOne);

            // Lookahead at #2. If it is a KleenOp, then #1 is a separator.
            let is_1_sep = if let Some(&tokenstream::TokenTree::Token(_, ref tok2)) = input.peek() {
                kleene_op(tok2).is_some()
            } else {
                false
            };

            if is_1_sep {
                // #1 is a separator and #2 should be a KleepeOp.
                // (N.B. We need to advance the input iterator.)
                match parse_kleene_op(input, span) {
                    // #2 is `?`, which is not allowed as a Kleene op in 2015 edition,
                    // but is allowed in the 2018 edition.
                    Ok(Ok((op, op2_span))) if op == KleeneOp::ZeroOrOne => {
                        sess.span_diagnostic
                            .struct_span_err(op2_span, "expected `*` or `+`")
                            .note("`?` is not a macro repetition operator in the 2015 edition, \
                                 but is accepted in the 2018 edition")
                            .emit();

                        // Return a dummy
                        return (None, KleeneOp::ZeroOrMore);
                    }

                    // #2 is a Kleene op, which is the only valid option
                    Ok(Ok((op, _))) => {
                        // Warn that `?` as a separator will be deprecated
                        sess.buffer_lint(
                            BufferedEarlyLintId::QuestionMarkMacroSep,
                            op1_span,
                            macro_node_id,
                            "using `?` as a separator is deprecated and will be \
                             a hard error in an upcoming edition",
                        );

                        return (Some(token::Question), op);
                    }

                    // #2 is a random token (this is an error) :(
                    Ok(Err((_, _))) => op1_span,

                    // #2 is not even a token at all :(
                    Err(_) => op1_span,
                }
            } else {
                // `?` is not allowed as a Kleene op in 2015,
                // but is allowed in the 2018 edition
                sess.span_diagnostic
                    .struct_span_err(op1_span, "expected `*` or `+`")
                    .note("`?` is not a macro repetition operator in the 2015 edition, \
                         but is accepted in the 2018 edition")
                    .emit();

                // Return a dummy
                return (None, KleeneOp::ZeroOrMore);
            }
        }

        // #1 is a separator followed by #2, a KleeneOp
        Ok(Err((tok, span))) => match parse_kleene_op(input, span) {
            // #2 is a `?`, which is not allowed as a Kleene op in 2015 edition,
            // but is allowed in the 2018 edition
            Ok(Ok((op, op2_span))) if op == KleeneOp::ZeroOrOne => {
                sess.span_diagnostic
                    .struct_span_err(op2_span, "expected `*` or `+`")
                    .note("`?` is not a macro repetition operator in the 2015 edition, \
                        but is accepted in the 2018 edition")
                    .emit();

                // Return a dummy
                return (None, KleeneOp::ZeroOrMore);
            }

            // #2 is a KleeneOp :D
            Ok(Ok((op, _))) => return (Some(tok), op),

            // #2 is a random token :(
            Ok(Err((_, span))) => span,

            // #2 is not a token at all :(
            Err(span) => span,
        },

        // #1 is not a token
        Err(span) => span,
    };

    sess.span_diagnostic.span_err(span, "expected `*` or `+`");

    // Return a dummy
    (None, KleeneOp::ZeroOrMore)
}

// `?` is a Kleene op, not a separator
fn parse_sep_and_kleene_op_2018<I>(
    input: &mut Peekable<I>,
    span: Span,
    sess: &ParseSess,
    _features: &Features,
    _attrs: &[ast::Attribute],
) -> (Option<token::Token>, KleeneOp)
where
    I: Iterator<Item = tokenstream::TokenTree>,
{
    // We basically look at two token trees here, denoted as #1 and #2 below
    let span = match parse_kleene_op(input, span) {
        // #1 is a `?` (needs feature gate)
        Ok(Ok((op, _op1_span))) if op == KleeneOp::ZeroOrOne => {
            return (None, op);
        }

        // #1 is a `+` or `*` KleeneOp
        Ok(Ok((op, _))) => return (None, op),

        // #1 is a separator followed by #2, a KleeneOp
        Ok(Err((tok, span))) => match parse_kleene_op(input, span) {
            // #2 is the `?` Kleene op, which does not take a separator (error)
            Ok(Ok((op, _op2_span))) if op == KleeneOp::ZeroOrOne => {
                // Error!
                sess.span_diagnostic.span_err(
                    span,
                    "the `?` macro repetition operator does not take a separator",
                );

                // Return a dummy
                return (None, KleeneOp::ZeroOrMore);
            }

            // #2 is a KleeneOp :D
            Ok(Ok((op, _))) => return (Some(tok), op),

            // #2 is a random token :(
            Ok(Err((_, span))) => span,

            // #2 is not a token at all :(
            Err(span) => span,
        },

        // #1 is not a token
        Err(span) => span,
    };

    // If we ever get to this point, we have experienced an "unexpected token" error
    sess.span_diagnostic
        .span_err(span, "expected one of: `*`, `+`, or `?`");

    // Return a dummy
    (None, KleeneOp::ZeroOrMore)
}