1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
//! Code related to parsing literals.

use crate::ast::{self, Ident, Lit, LitKind};
use crate::parse::parser::Parser;
use crate::parse::PResult;
use crate::parse::token::{self, Token};
use crate::parse::unescape::{unescape_str, unescape_char, unescape_byte_str, unescape_byte};
use crate::print::pprust;
use crate::symbol::{keywords, Symbol};
use crate::tokenstream::{TokenStream, TokenTree};

use errors::{Applicability, Handler};
use log::debug;
use rustc_data_structures::sync::Lrc;
use syntax_pos::Span;

use std::ascii;

macro_rules! err {
    ($opt_diag:expr, |$span:ident, $diag:ident| $($body:tt)*) => {
        match $opt_diag {
            Some(($span, $diag)) => { $($body)* }
            None => return None,
        }
    }
}

impl LitKind {
    /// Converts literal token with a suffix into a semantic literal.
    /// Works speculatively and may return `None` if diagnostic handler is not passed.
    /// If diagnostic handler is passed, always returns `Some`,
    /// possibly after reporting non-fatal errors and recovery.
    fn from_lit_token(
        lit: token::Lit,
        suf: Option<Symbol>,
        diag: Option<(Span, &Handler)>
    ) -> Option<LitKind> {
        if suf.is_some() && !lit.may_have_suffix() {
            err!(diag, |span, diag| {
                expect_no_suffix(span, diag, &format!("a {}", lit.literal_name()), suf)
            });
        }

        Some(match lit {
            token::Bool(i) => {
                assert!(i == keywords::True.name() || i == keywords::False.name());
                LitKind::Bool(i == keywords::True.name())
            }
            token::Byte(i) => {
                match unescape_byte(&i.as_str()) {
                    Ok(c) => LitKind::Byte(c),
                    Err(_) => LitKind::Err(i),
                }
            },
            token::Char(i) => {
                match unescape_char(&i.as_str()) {
                    Ok(c) => LitKind::Char(c),
                    Err(_) => LitKind::Err(i),
                }
            },
            token::Err(i) => LitKind::Err(i),

            // There are some valid suffixes for integer and float literals,
            // so all the handling is done internally.
            token::Integer(s) => return integer_lit(&s.as_str(), suf, diag),
            token::Float(s) => return float_lit(&s.as_str(), suf, diag),

            token::Str_(mut sym) => {
                // If there are no characters requiring special treatment we can
                // reuse the symbol from the Token. Otherwise, we must generate a
                // new symbol because the string in the LitKind is different to the
                // string in the Token.
                let mut has_error = false;
                let s = &sym.as_str();
                if s.as_bytes().iter().any(|&c| c == b'\\' || c == b'\r') {
                    let mut buf = String::with_capacity(s.len());
                    unescape_str(s, &mut |_, unescaped_char| {
                        match unescaped_char {
                            Ok(c) => buf.push(c),
                            Err(_) => has_error = true,
                        }
                    });
                    if has_error {
                        return Some(LitKind::Err(sym));
                    }
                    sym = Symbol::intern(&buf)
                }

                LitKind::Str(sym, ast::StrStyle::Cooked)
            }
            token::StrRaw(mut sym, n) => {
                // Ditto.
                let s = &sym.as_str();
                if s.contains('\r') {
                    sym = Symbol::intern(&raw_str_lit(s));
                }
                LitKind::Str(sym, ast::StrStyle::Raw(n))
            }
            token::ByteStr(i) => {
                let s = &i.as_str();
                let mut buf = Vec::with_capacity(s.len());
                let mut has_error = false;
                unescape_byte_str(s, &mut |_, unescaped_byte| {
                    match unescaped_byte {
                        Ok(c) => buf.push(c),
                        Err(_) => has_error = true,
                    }
                });
                if has_error {
                    return Some(LitKind::Err(i));
                }
                buf.shrink_to_fit();
                LitKind::ByteStr(Lrc::new(buf))
            }
            token::ByteStrRaw(i, _) => {
                LitKind::ByteStr(Lrc::new(i.to_string().into_bytes()))
            }
        })
    }

    /// Attempts to recover a token from semantic literal.
    /// This function is used when the original token doesn't exist (e.g. the literal is created
    /// by an AST-based macro) or unavailable (e.g. from HIR pretty-printing).
    pub fn to_lit_token(&self) -> (token::Lit, Option<Symbol>) {
        match *self {
            LitKind::Str(string, ast::StrStyle::Cooked) => {
                let escaped = string.as_str().escape_default().to_string();
                (token::Lit::Str_(Symbol::intern(&escaped)), None)
            }
            LitKind::Str(string, ast::StrStyle::Raw(n)) => {
                (token::Lit::StrRaw(string, n), None)
            }
            LitKind::ByteStr(ref bytes) => {
                let string = bytes.iter().cloned().flat_map(ascii::escape_default)
                    .map(Into::<char>::into).collect::<String>();
                (token::Lit::ByteStr(Symbol::intern(&string)), None)
            }
            LitKind::Byte(byte) => {
                let string: String = ascii::escape_default(byte).map(Into::<char>::into).collect();
                (token::Lit::Byte(Symbol::intern(&string)), None)
            }
            LitKind::Char(ch) => {
                let string: String = ch.escape_default().map(Into::<char>::into).collect();
                (token::Lit::Char(Symbol::intern(&string)), None)
            }
            LitKind::Int(n, ty) => {
                let suffix = match ty {
                    ast::LitIntType::Unsigned(ty) => Some(Symbol::intern(ty.ty_to_string())),
                    ast::LitIntType::Signed(ty) => Some(Symbol::intern(ty.ty_to_string())),
                    ast::LitIntType::Unsuffixed => None,
                };
                (token::Lit::Integer(Symbol::intern(&n.to_string())), suffix)
            }
            LitKind::Float(symbol, ty) => {
                (token::Lit::Float(symbol), Some(Symbol::intern(ty.ty_to_string())))
            }
            LitKind::FloatUnsuffixed(symbol) => (token::Lit::Float(symbol), None),
            LitKind::Bool(value) => {
                let kw = if value { keywords::True } else { keywords::False };
                (token::Lit::Bool(kw.name()), None)
            }
            LitKind::Err(val) => (token::Lit::Err(val), None),
        }
    }
}

impl Lit {
    /// Converts literal token with a suffix into an AST literal.
    /// Works speculatively and may return `None` if diagnostic handler is not passed.
    /// If diagnostic handler is passed, may return `Some`,
    /// possibly after reporting non-fatal errors and recovery, or `None` for irrecoverable errors.
    crate fn from_token(
        token: &token::Token,
        span: Span,
        diag: Option<(Span, &Handler)>,
    ) -> Option<Lit> {
        let (token, suffix) = match *token {
            token::Ident(ident, false) if ident.name == keywords::True.name() ||
                                          ident.name == keywords::False.name() =>
                (token::Bool(ident.name), None),
            token::Literal(token, suffix) =>
                (token, suffix),
            token::Interpolated(ref nt) => {
                if let token::NtExpr(expr) | token::NtLiteral(expr) = &**nt {
                    if let ast::ExprKind::Lit(lit) = &expr.node {
                        return Some(lit.clone());
                    }
                }
                return None;
            }
            _ => return None,
        };

        let node = LitKind::from_lit_token(token, suffix, diag)?;
        Some(Lit { node, token, suffix, span })
    }

    /// Attempts to recover an AST literal from semantic literal.
    /// This function is used when the original token doesn't exist (e.g. the literal is created
    /// by an AST-based macro) or unavailable (e.g. from HIR pretty-printing).
    pub fn from_lit_kind(node: LitKind, span: Span) -> Lit {
        let (token, suffix) = node.to_lit_token();
        Lit { node, token, suffix, span }
    }

    /// Losslessly convert an AST literal into a token stream.
    crate fn tokens(&self) -> TokenStream {
        let token = match self.token {
            token::Bool(symbol) => Token::Ident(Ident::with_empty_ctxt(symbol), false),
            token => Token::Literal(token, self.suffix),
        };
        TokenTree::Token(self.span, token).into()
    }
}

impl<'a> Parser<'a> {
    /// Matches `lit = true | false | token_lit`.
    crate fn parse_lit(&mut self) -> PResult<'a, Lit> {
        let diag = Some((self.span, &self.sess.span_diagnostic));
        if let Some(lit) = Lit::from_token(&self.token, self.span, diag) {
            self.bump();
            return Ok(lit);
        } else if self.token == token::Dot {
            // Recover `.4` as `0.4`.
            let recovered = self.look_ahead(1, |t| {
                if let token::Literal(token::Integer(val), suf) = *t {
                    let next_span = self.look_ahead_span(1);
                    if self.span.hi() == next_span.lo() {
                        let sym = String::from("0.") + &val.as_str();
                        let token = token::Literal(token::Float(Symbol::intern(&sym)), suf);
                        return Some((token, self.span.to(next_span)));
                    }
                }
                None
            });
            if let Some((token, span)) = recovered {
                self.diagnostic()
                    .struct_span_err(span, "float literals must have an integer part")
                    .span_suggestion(
                        span,
                        "must have an integer part",
                        pprust::token_to_string(&token),
                        Applicability::MachineApplicable,
                    )
                    .emit();
                let diag = Some((span, &self.sess.span_diagnostic));
                if let Some(lit) = Lit::from_token(&token, span, diag) {
                    self.bump();
                    self.bump();
                    return Ok(lit);
                }
            }
        }

        Err(self.span_fatal(self.span, &format!("unexpected token: {}", self.this_token_descr())))
    }
}

crate fn expect_no_suffix(sp: Span, diag: &Handler, kind: &str, suffix: Option<ast::Name>) {
    match suffix {
        None => {/* everything ok */}
        Some(suf) => {
            let text = suf.as_str();
            if text.is_empty() {
                diag.span_bug(sp, "found empty literal suffix in Some")
            }
            let mut err = if kind == "a tuple index" &&
                ["i32", "u32", "isize", "usize"].contains(&text.to_string().as_str())
            {
                // #59553: warn instead of reject out of hand to allow the fix to percolate
                // through the ecosystem when people fix their macros
                let mut err = diag.struct_span_warn(
                    sp,
                    &format!("suffixes on {} are invalid", kind),
                );
                err.note(&format!(
                    "`{}` is *temporarily* accepted on tuple index fields as it was \
                        incorrectly accepted on stable for a few releases",
                    text,
                ));
                err.help(
                    "on proc macros, you'll want to use `syn::Index::from` or \
                        `proc_macro::Literal::*_unsuffixed` for code that will desugar \
                        to tuple field access",
                );
                err.note(
                    "for more context, see https://github.com/rust-lang/rust/issues/60210",
                );
                err
            } else {
                diag.struct_span_err(sp, &format!("suffixes on {} are invalid", kind))
            };
            err.span_label(sp, format!("invalid suffix `{}`", text));
            err.emit();
        }
    }
}

/// Parses a string representing a raw string literal into its final form. The
/// only operation this does is convert embedded CRLF into a single LF.
fn raw_str_lit(lit: &str) -> String {
    debug!("raw_str_lit: given {}", lit.escape_default());
    let mut res = String::with_capacity(lit.len());

    let mut chars = lit.chars().peekable();
    while let Some(c) = chars.next() {
        if c == '\r' {
            if *chars.peek().unwrap() != '\n' {
                panic!("lexer accepted bare CR");
            }
            chars.next();
            res.push('\n');
        } else {
            res.push(c);
        }
    }

    res.shrink_to_fit();
    res
}

// check if `s` looks like i32 or u1234 etc.
fn looks_like_width_suffix(first_chars: &[char], s: &str) -> bool {
    s.starts_with(first_chars) && s[1..].chars().all(|c| c.is_ascii_digit())
}

fn filtered_float_lit(data: Symbol, suffix: Option<Symbol>, diag: Option<(Span, &Handler)>)
                      -> Option<LitKind> {
    debug!("filtered_float_lit: {}, {:?}", data, suffix);
    let suffix = match suffix {
        Some(suffix) => suffix,
        None => return Some(LitKind::FloatUnsuffixed(data)),
    };

    Some(match &*suffix.as_str() {
        "f32" => LitKind::Float(data, ast::FloatTy::F32),
        "f64" => LitKind::Float(data, ast::FloatTy::F64),
        suf => {
            err!(diag, |span, diag| {
                if suf.len() >= 2 && looks_like_width_suffix(&['f'], suf) {
                    // if it looks like a width, lets try to be helpful.
                    let msg = format!("invalid width `{}` for float literal", &suf[1..]);
                    diag.struct_span_err(span, &msg).help("valid widths are 32 and 64").emit()
                } else {
                    let msg = format!("invalid suffix `{}` for float literal", suf);
                    diag.struct_span_err(span, &msg)
                        .span_label(span, format!("invalid suffix `{}`", suf))
                        .help("valid suffixes are `f32` and `f64`")
                        .emit();
                }
            });

            LitKind::FloatUnsuffixed(data)
        }
    })
}
fn float_lit(s: &str, suffix: Option<Symbol>, diag: Option<(Span, &Handler)>)
                 -> Option<LitKind> {
    debug!("float_lit: {:?}, {:?}", s, suffix);
    // FIXME #2252: bounds checking float literals is deferred until trans

    // Strip underscores without allocating a new String unless necessary.
    let s2;
    let s = if s.chars().any(|c| c == '_') {
        s2 = s.chars().filter(|&c| c != '_').collect::<String>();
        &s2
    } else {
        s
    };

    filtered_float_lit(Symbol::intern(s), suffix, diag)
}

fn integer_lit(s: &str, suffix: Option<Symbol>, diag: Option<(Span, &Handler)>)
                   -> Option<LitKind> {
    // s can only be ascii, byte indexing is fine

    // Strip underscores without allocating a new String unless necessary.
    let s2;
    let mut s = if s.chars().any(|c| c == '_') {
        s2 = s.chars().filter(|&c| c != '_').collect::<String>();
        &s2
    } else {
        s
    };

    debug!("integer_lit: {}, {:?}", s, suffix);

    let mut base = 10;
    let orig = s;
    let mut ty = ast::LitIntType::Unsuffixed;

    if s.starts_with('0') && s.len() > 1 {
        match s.as_bytes()[1] {
            b'x' => base = 16,
            b'o' => base = 8,
            b'b' => base = 2,
            _ => { }
        }
    }

    // 1f64 and 2f32 etc. are valid float literals.
    if let Some(suf) = suffix {
        if looks_like_width_suffix(&['f'], &suf.as_str()) {
            let err = match base {
                16 => Some("hexadecimal float literal is not supported"),
                8 => Some("octal float literal is not supported"),
                2 => Some("binary float literal is not supported"),
                _ => None,
            };
            if let Some(err) = err {
                err!(diag, |span, diag| {
                    diag.struct_span_err(span, err)
                        .span_label(span, "not supported")
                        .emit();
                });
            }
            return filtered_float_lit(Symbol::intern(s), Some(suf), diag)
        }
    }

    if base != 10 {
        s = &s[2..];
    }

    if let Some(suf) = suffix {
        if suf.as_str().is_empty() {
            err!(diag, |span, diag| diag.span_bug(span, "found empty literal suffix in Some"));
        }
        ty = match &*suf.as_str() {
            "isize" => ast::LitIntType::Signed(ast::IntTy::Isize),
            "i8"  => ast::LitIntType::Signed(ast::IntTy::I8),
            "i16" => ast::LitIntType::Signed(ast::IntTy::I16),
            "i32" => ast::LitIntType::Signed(ast::IntTy::I32),
            "i64" => ast::LitIntType::Signed(ast::IntTy::I64),
            "i128" => ast::LitIntType::Signed(ast::IntTy::I128),
            "usize" => ast::LitIntType::Unsigned(ast::UintTy::Usize),
            "u8"  => ast::LitIntType::Unsigned(ast::UintTy::U8),
            "u16" => ast::LitIntType::Unsigned(ast::UintTy::U16),
            "u32" => ast::LitIntType::Unsigned(ast::UintTy::U32),
            "u64" => ast::LitIntType::Unsigned(ast::UintTy::U64),
            "u128" => ast::LitIntType::Unsigned(ast::UintTy::U128),
            suf => {
                // i<digits> and u<digits> look like widths, so lets
                // give an error message along those lines
                err!(diag, |span, diag| {
                    if looks_like_width_suffix(&['i', 'u'], suf) {
                        let msg = format!("invalid width `{}` for integer literal", &suf[1..]);
                        diag.struct_span_err(span, &msg)
                            .help("valid widths are 8, 16, 32, 64 and 128")
                            .emit();
                    } else {
                        let msg = format!("invalid suffix `{}` for numeric literal", suf);
                        diag.struct_span_err(span, &msg)
                            .span_label(span, format!("invalid suffix `{}`", suf))
                            .help("the suffix must be one of the integral types \
                                   (`u32`, `isize`, etc)")
                            .emit();
                    }
                });

                ty
            }
        }
    }

    debug!("integer_lit: the type is {:?}, base {:?}, the new string is {:?}, the original \
           string was {:?}, the original suffix was {:?}", ty, base, s, orig, suffix);

    Some(match u128::from_str_radix(s, base) {
        Ok(r) => LitKind::Int(r, ty),
        Err(_) => {
            // small bases are lexed as if they were base 10, e.g, the string
            // might be `0b10201`. This will cause the conversion above to fail,
            // but these cases have errors in the lexer: we don't want to emit
            // two errors, and we especially don't want to emit this error since
            // it isn't necessarily true.
            let already_errored = base < 10 &&
                s.chars().any(|c| c.to_digit(10).map_or(false, |d| d >= base));

            if !already_errored {
                err!(diag, |span, diag| diag.span_err(span, "int literal is too large"));
            }
            LitKind::Int(0, ty)
        }
    })
}