1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
// Copyright 2012-2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use std::borrow::{Borrow, BorrowMut, ToOwned};
use std::fmt;
use std::iter;
use std::marker::PhantomData;
use std::mem;
use std::ops::{Deref, DerefMut, Range};
use std::slice;
use bitslice::{BitSlice, Word};
use bitslice::{bitwise, Union, Subtract, Intersect};
use indexed_vec::Idx;
use rustc_serialize;

/// Represents a set (or packed family of sets), of some element type
/// E, where each E is identified by some unique index type `T`.
///
/// In other words, `T` is the type used to index into the bitvector
/// this type uses to represent the set of object it holds.
#[derive(Eq, PartialEq)]
pub struct IdxSetBuf<T: Idx> {
    _pd: PhantomData<fn(&T)>,
    bits: Vec<Word>,
}

impl<T: Idx> Clone for IdxSetBuf<T> {
    fn clone(&self) -> Self {
        IdxSetBuf { _pd: PhantomData, bits: self.bits.clone() }
    }
}

impl<T: Idx> rustc_serialize::Encodable for IdxSetBuf<T> {
    fn encode<E: rustc_serialize::Encoder>(&self,
                                     encoder: &mut E)
                                     -> Result<(), E::Error> {
        self.bits.encode(encoder)
    }
}

impl<T: Idx> rustc_serialize::Decodable for IdxSetBuf<T> {
    fn decode<D: rustc_serialize::Decoder>(d: &mut D) -> Result<IdxSetBuf<T>, D::Error> {
        let words: Vec<Word> = rustc_serialize::Decodable::decode(d)?;

        Ok(IdxSetBuf {
            _pd: PhantomData,
            bits: words,
        })
    }
}


// pnkfelix wants to have this be `IdxSet<T>([Word]) and then pass
// around `&mut IdxSet<T>` or `&IdxSet<T>`.
//
// WARNING: Mapping a `&IdxSetBuf<T>` to `&IdxSet<T>` (at least today)
// requires a transmute relying on representation guarantees that may
// not hold in the future.

/// Represents a set (or packed family of sets), of some element type
/// E, where each E is identified by some unique index type `T`.
///
/// In other words, `T` is the type used to index into the bitslice
/// this type uses to represent the set of object it holds.
pub struct IdxSet<T: Idx> {
    _pd: PhantomData<fn(&T)>,
    bits: [Word],
}

impl<T: Idx> Borrow<IdxSet<T>> for IdxSetBuf<T> {
    fn borrow(&self) -> &IdxSet<T> {
        &*self
    }
}

impl<T: Idx> BorrowMut<IdxSet<T>> for IdxSetBuf<T> {
    fn borrow_mut(&mut self) -> &mut IdxSet<T> {
        &mut *self
    }
}

impl<T: Idx> ToOwned for IdxSet<T> {
    type Owned = IdxSetBuf<T>;
    fn to_owned(&self) -> Self::Owned {
        IdxSet::to_owned(self)
    }
}

impl<T: Idx> fmt::Debug for IdxSetBuf<T> {
    fn fmt(&self, w: &mut fmt::Formatter) -> fmt::Result {
        w.debug_list()
         .entries(self.iter())
         .finish()
    }
}

impl<T: Idx> fmt::Debug for IdxSet<T> {
    fn fmt(&self, w: &mut fmt::Formatter) -> fmt::Result {
        w.debug_list()
         .entries(self.iter())
         .finish()
    }
}

impl<T: Idx> IdxSetBuf<T> {
    fn new(init: Word, universe_size: usize) -> Self {
        let bits_per_word = mem::size_of::<Word>() * 8;
        let num_words = (universe_size + (bits_per_word - 1)) / bits_per_word;
        IdxSetBuf {
            _pd: Default::default(),
            bits: vec![init; num_words],
        }
    }

    /// Creates set holding every element whose index falls in range 0..universe_size.
    pub fn new_filled(universe_size: usize) -> Self {
        Self::new(!0, universe_size)
    }

    /// Creates set holding no elements.
    pub fn new_empty(universe_size: usize) -> Self {
        Self::new(0, universe_size)
    }
}

impl<T: Idx> IdxSet<T> {
    unsafe fn from_slice(s: &[Word]) -> &Self {
        mem::transmute(s) // (see above WARNING)
    }

    unsafe fn from_slice_mut(s: &mut [Word]) -> &mut Self {
        mem::transmute(s) // (see above WARNING)
    }
}

impl<T: Idx> Deref for IdxSetBuf<T> {
    type Target = IdxSet<T>;
    fn deref(&self) -> &IdxSet<T> {
        unsafe { IdxSet::from_slice(&self.bits) }
    }
}

impl<T: Idx> DerefMut for IdxSetBuf<T> {
    fn deref_mut(&mut self) -> &mut IdxSet<T> {
        unsafe { IdxSet::from_slice_mut(&mut self.bits) }
    }
}

impl<T: Idx> IdxSet<T> {
    pub fn to_owned(&self) -> IdxSetBuf<T> {
        IdxSetBuf {
            _pd: Default::default(),
            bits: self.bits.to_owned(),
        }
    }

    /// Removes all elements
    pub fn clear(&mut self) {
        for b in &mut self.bits {
            *b = 0;
        }
    }

    /// Removes `elem` from the set `self`; returns true iff this changed `self`.
    pub fn remove(&mut self, elem: &T) -> bool {
        self.bits.clear_bit(elem.index())
    }

    /// Adds `elem` to the set `self`; returns true iff this changed `self`.
    pub fn add(&mut self, elem: &T) -> bool {
        self.bits.set_bit(elem.index())
    }

    pub fn range(&self, elems: &Range<T>) -> &Self {
        let elems = elems.start.index()..elems.end.index();
        unsafe { Self::from_slice(&self.bits[elems]) }
    }

    pub fn range_mut(&mut self, elems: &Range<T>) -> &mut Self {
        let elems = elems.start.index()..elems.end.index();
        unsafe { Self::from_slice_mut(&mut self.bits[elems]) }
    }

    /// Returns true iff set `self` contains `elem`.
    pub fn contains(&self, elem: &T) -> bool {
        self.bits.get_bit(elem.index())
    }

    pub fn words(&self) -> &[Word] {
        &self.bits
    }

    pub fn words_mut(&mut self) -> &mut [Word] {
        &mut self.bits
    }

    pub fn clone_from(&mut self, other: &IdxSet<T>) {
        self.words_mut().clone_from_slice(other.words());
    }

    pub fn union(&mut self, other: &IdxSet<T>) -> bool {
        bitwise(self.words_mut(), other.words(), &Union)
    }

    pub fn subtract(&mut self, other: &IdxSet<T>) -> bool {
        bitwise(self.words_mut(), other.words(), &Subtract)
    }

    pub fn intersect(&mut self, other: &IdxSet<T>) -> bool {
        bitwise(self.words_mut(), other.words(), &Intersect)
    }

    pub fn iter(&self) -> Iter<T> {
        Iter {
            cur: None,
            iter: self.words().iter().enumerate(),
            _pd: PhantomData,
        }
    }

    /// Calls `f` on each index value held in this set, up to the
    /// bound `max_bits` on the size of universe of indexes.
    pub fn each_bit<F>(&self, max_bits: usize, f: F) where F: FnMut(T) {
        each_bit(self, max_bits, f)
    }

    /// Removes all elements from this set.
    pub fn reset_to_empty(&mut self) {
        for word in self.words_mut() { *word = 0; }
    }

    pub fn elems(&self, universe_size: usize) -> Elems<T> {
        Elems { i: 0, set: self, universe_size: universe_size }
    }
}

pub struct Elems<'a, T: Idx> { i: usize, set: &'a IdxSet<T>, universe_size: usize }

impl<'a, T: Idx> Iterator for Elems<'a, T> {
    type Item = T;
    fn next(&mut self) -> Option<T> {
        if self.i >= self.universe_size { return None; }
        let mut i = self.i;
        loop {
            if i >= self.universe_size {
                self.i = i; // (mark iteration as complete.)
                return None;
            }
            if self.set.contains(&T::new(i)) {
                self.i = i + 1; // (next element to start at.)
                return Some(T::new(i));
            }
            i = i + 1;
        }
    }
}

fn each_bit<T: Idx, F>(words: &IdxSet<T>, max_bits: usize, mut f: F) where F: FnMut(T) {
    let usize_bits: usize = mem::size_of::<usize>() * 8;

    for (word_index, &word) in words.words().iter().enumerate() {
        if word != 0 {
            let base_index = word_index * usize_bits;
            for offset in 0..usize_bits {
                let bit = 1 << offset;
                if (word & bit) != 0 {
                    // NB: we round up the total number of bits
                    // that we store in any given bit set so that
                    // it is an even multiple of usize::BITS. This
                    // means that there may be some stray bits at
                    // the end that do not correspond to any
                    // actual value; that's why we first check
                    // that we are in range of bits_per_block.
                    let bit_index = base_index + offset as usize;
                    if bit_index >= max_bits {
                        return;
                    } else {
                        f(Idx::new(bit_index));
                    }
                }
            }
        }
    }
}

pub struct Iter<'a, T: Idx> {
    cur: Option<(Word, usize)>,
    iter: iter::Enumerate<slice::Iter<'a, Word>>,
    _pd: PhantomData<fn(&T)>,
}

impl<'a, T: Idx> Iterator for Iter<'a, T> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        let word_bits = mem::size_of::<Word>() * 8;
        loop {
            if let Some((ref mut word, offset)) = self.cur {
                let bit_pos = word.trailing_zeros() as usize;
                if bit_pos != word_bits {
                    let bit = 1 << bit_pos;
                    *word ^= bit;
                    return Some(T::new(bit_pos + offset))
                }
            }

            let (i, word) = self.iter.next()?;
            self.cur = Some((*word, word_bits * i));
        }
    }
}