1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
//! This is a copy of `core::hash::sip` adapted to providing 128 bit hashes.

use std::cmp;
use std::hash::Hasher;
use std::slice;
use std::ptr;
use std::mem;

#[cfg(test)]
mod tests;

#[derive(Debug, Clone)]
pub struct SipHasher128 {
    k0: u64,
    k1: u64,
    length: usize, // how many bytes we've processed
    state: State, // hash State
    tail: u64, // unprocessed bytes le
    ntail: usize, // how many bytes in tail are valid
}

#[derive(Debug, Clone, Copy)]
#[repr(C)]
struct State {
    // v0, v2 and v1, v3 show up in pairs in the algorithm,
    // and simd implementations of SipHash will use vectors
    // of v02 and v13. By placing them in this order in the struct,
    // the compiler can pick up on just a few simd optimizations by itself.
    v0: u64,
    v2: u64,
    v1: u64,
    v3: u64,
}

macro_rules! compress {
    ($state:expr) => ({
        compress!($state.v0, $state.v1, $state.v2, $state.v3)
    });
    ($v0:expr, $v1:expr, $v2:expr, $v3:expr) =>
    ({
        $v0 = $v0.wrapping_add($v1); $v1 = $v1.rotate_left(13); $v1 ^= $v0;
        $v0 = $v0.rotate_left(32);
        $v2 = $v2.wrapping_add($v3); $v3 = $v3.rotate_left(16); $v3 ^= $v2;
        $v0 = $v0.wrapping_add($v3); $v3 = $v3.rotate_left(21); $v3 ^= $v0;
        $v2 = $v2.wrapping_add($v1); $v1 = $v1.rotate_left(17); $v1 ^= $v2;
        $v2 = $v2.rotate_left(32);
    });
}

/// Loads an integer of the desired type from a byte stream, in LE order. Uses
/// `copy_nonoverlapping` to let the compiler generate the most efficient way
/// to load it from a possibly unaligned address.
///
/// Unsafe because: unchecked indexing at i..i+size_of(int_ty)
macro_rules! load_int_le {
    ($buf:expr, $i:expr, $int_ty:ident) =>
    ({
       debug_assert!($i + mem::size_of::<$int_ty>() <= $buf.len());
       let mut data = 0 as $int_ty;
       ptr::copy_nonoverlapping($buf.get_unchecked($i),
                                &mut data as *mut _ as *mut u8,
                                mem::size_of::<$int_ty>());
       data.to_le()
    });
}

/// Loads an u64 using up to 7 bytes of a byte slice.
///
/// Unsafe because: unchecked indexing at start..start+len
#[inline]
unsafe fn u8to64_le(buf: &[u8], start: usize, len: usize) -> u64 {
    debug_assert!(len < 8);
    let mut i = 0; // current byte index (from LSB) in the output u64
    let mut out = 0;
    if i + 3 < len {
        out = u64::from(load_int_le!(buf, start + i, u32));
        i += 4;
    }
    if i + 1 < len {
        out |= u64::from(load_int_le!(buf, start + i, u16)) << (i * 8);
        i += 2
    }
    if i < len {
        out |= u64::from(*buf.get_unchecked(start + i)) << (i * 8);
        i += 1;
    }
    debug_assert_eq!(i, len);
    out
}


impl SipHasher128 {
    #[inline]
    pub fn new_with_keys(key0: u64, key1: u64) -> SipHasher128 {
        let mut state = SipHasher128 {
            k0: key0,
            k1: key1,
            length: 0,
            state: State {
                v0: 0,
                v1: 0,
                v2: 0,
                v3: 0,
            },
            tail: 0,
            ntail: 0,
        };
        state.reset();
        state
    }

    #[inline]
    fn reset(&mut self) {
        self.length = 0;
        self.state.v0 = self.k0 ^ 0x736f6d6570736575;
        self.state.v1 = self.k1 ^ 0x646f72616e646f6d;
        self.state.v2 = self.k0 ^ 0x6c7967656e657261;
        self.state.v3 = self.k1 ^ 0x7465646279746573;
        self.ntail = 0;

        // This is only done in the 128 bit version:
        self.state.v1 ^= 0xee;
    }

    // Specialized write function that is only valid for buffers with len <= 8.
    // It's used to force inlining of write_u8 and write_usize, those would normally be inlined
    // except for composite types (that includes slices and str hashing because of delimiter).
    // Without this extra push the compiler is very reluctant to inline delimiter writes,
    // degrading performance substantially for the most common use cases.
    #[inline]
    fn short_write(&mut self, msg: &[u8]) {
        debug_assert!(msg.len() <= 8);
        let length = msg.len();
        self.length += length;

        let needed = 8 - self.ntail;
        let fill = cmp::min(length, needed);
        if fill == 8 {
            self.tail = unsafe { load_int_le!(msg, 0, u64) };
        } else {
            self.tail |= unsafe { u8to64_le(msg, 0, fill) } << (8 * self.ntail);
            if length < needed {
                self.ntail += length;
                return;
            }
        }
        self.state.v3 ^= self.tail;
        Sip24Rounds::c_rounds(&mut self.state);
        self.state.v0 ^= self.tail;

        // Buffered tail is now flushed, process new input.
        self.ntail = length - needed;
        self.tail = unsafe { u8to64_le(msg, needed, self.ntail) };
    }

    #[inline(always)]
    fn short_write_gen<T>(&mut self, x: T) {
        let bytes = unsafe {
            slice::from_raw_parts(&x as *const T as *const u8, mem::size_of::<T>())
        };
        self.short_write(bytes);
    }

    #[inline]
    pub fn finish128(mut self) -> (u64, u64) {
        let b: u64 = ((self.length as u64 & 0xff) << 56) | self.tail;

        self.state.v3 ^= b;
        Sip24Rounds::c_rounds(&mut self.state);
        self.state.v0 ^= b;

        self.state.v2 ^= 0xee;
        Sip24Rounds::d_rounds(&mut self.state);
        let _0 = self.state.v0 ^ self.state.v1 ^ self.state.v2 ^ self.state.v3;

        self.state.v1 ^= 0xdd;
        Sip24Rounds::d_rounds(&mut self.state);
        let _1 = self.state.v0 ^ self.state.v1 ^ self.state.v2 ^ self.state.v3;
        (_0, _1)
    }
}

impl Hasher for SipHasher128 {
    #[inline]
    fn write_u8(&mut self, i: u8) {
        self.short_write_gen(i);
    }

    #[inline]
    fn write_u16(&mut self, i: u16) {
        self.short_write_gen(i);
    }

    #[inline]
    fn write_u32(&mut self, i: u32) {
        self.short_write_gen(i);
    }

    #[inline]
    fn write_u64(&mut self, i: u64) {
        self.short_write_gen(i);
    }

    #[inline]
    fn write_usize(&mut self, i: usize) {
        self.short_write_gen(i);
    }

    #[inline]
    fn write_i8(&mut self, i: i8) {
        self.short_write_gen(i);
    }

    #[inline]
    fn write_i16(&mut self, i: i16) {
        self.short_write_gen(i);
    }

    #[inline]
    fn write_i32(&mut self, i: i32) {
        self.short_write_gen(i);
    }

    #[inline]
    fn write_i64(&mut self, i: i64) {
        self.short_write_gen(i);
    }

    #[inline]
    fn write_isize(&mut self, i: isize) {
        self.short_write_gen(i);
    }

    #[inline]
    fn write(&mut self, msg: &[u8]) {
        let length = msg.len();
        self.length += length;

        let mut needed = 0;

        if self.ntail != 0 {
            needed = 8 - self.ntail;
            self.tail |= unsafe { u8to64_le(msg, 0, cmp::min(length, needed)) } << (8 * self.ntail);
            if length < needed {
                self.ntail += length;
                return
            } else {
                self.state.v3 ^= self.tail;
                Sip24Rounds::c_rounds(&mut self.state);
                self.state.v0 ^= self.tail;
                self.ntail = 0;
            }
        }

        // Buffered tail is now flushed, process new input.
        let len = length - needed;
        let left = len & 0x7;

        let mut i = needed;
        while i < len - left {
            let mi = unsafe { load_int_le!(msg, i, u64) };

            self.state.v3 ^= mi;
            Sip24Rounds::c_rounds(&mut self.state);
            self.state.v0 ^= mi;

            i += 8;
        }

        self.tail = unsafe { u8to64_le(msg, i, left) };
        self.ntail = left;
    }

    fn finish(&self) -> u64 {
        panic!("SipHasher128 cannot provide valid 64 bit hashes")
    }
}

#[derive(Debug, Clone, Default)]
struct Sip24Rounds;

impl Sip24Rounds {
    #[inline]
    fn c_rounds(state: &mut State) {
        compress!(state);
        compress!(state);
    }

    #[inline]
    fn d_rounds(state: &mut State) {
        compress!(state);
        compress!(state);
        compress!(state);
        compress!(state);
    }
}