1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
// Copyright 2018 The Open AI Team Authors, The Google AI Language Team Authors
// Copyright 2018 The HuggingFace Inc. team.
// Copyright 2019 Guillaume Becquin
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//     http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use crate::preprocessing::vocab::base_vocab::Vocab;
use crate::preprocessing::tokenizer::tokenization_utils::{tokenize_cjk_chars, whitespace_tokenize, strip_accents, split_on_punct, clean_text, truncate_sequences};
use std::sync::Arc;
use rayon::prelude::*;
use itertools::Itertools;
use pyo3::prelude::*;

pub enum TruncationStrategy {
    LongestFirst,
    OnlyFirst,
    OnlySecond,
    DoNotTruncate,
}

#[pyclass]
#[derive(Debug, PartialEq, PartialOrd, Clone)]
pub struct TokenizedInput {
    #[pyo3(get)]
    pub token_ids: Vec<i64>,
    #[pyo3(get)]
    pub segment_ids: Vec<i8>,
    #[pyo3(get)]
    pub special_tokens_mask: Vec<i8>,
    #[pyo3(get)]
    pub overflowing_tokens: Vec<i64>,
    #[pyo3(get)]
    pub num_truncated_tokens: usize,
}

pub trait Tokenizer<T: Vocab> {
    fn vocab(&self) -> &T;

    fn tokenize(&self, text: &str) -> Vec<String>;

    fn tokenize_list(&self, text_list: Vec<&str>) -> Vec<Vec<String>> {
        text_list.
            iter().
            map(|&text| self.tokenize(text)).
            collect()
    }

    fn convert_tokens_to_ids(&self, tokens: &Vec<String>) -> Vec<i64> {
        tokens.iter().map(|v| self.vocab().token_to_id(v)).collect()
    }

    fn encode(&self, text_1: &str, text_2: Option<&str>, max_len: usize, truncation_strategy: &TruncationStrategy, stride: usize) -> TokenizedInput {
        let token_ids_1 = self.convert_tokens_to_ids(&self.tokenize(text_1));
        let len_1 = token_ids_1.len();
        let (token_ids_2, len_2, pair) = {
            if let Some(text) = text_2 {
                let token_ids_2: Vec<i64> = self.convert_tokens_to_ids(&self.tokenize(text));
                let len_2 = token_ids_2.len();
                (Some(token_ids_2), len_2, Some(vec!()))
            } else {
                (None, 0, None)
            }
        };
        let (additional_tokens, _, _) = self.build_input_with_special_tokens(vec!(), pair);
        let total_len = len_1 + len_2 + additional_tokens.len();
        let num_truncated_tokens = if total_len > max_len { total_len - max_len } else { 0 };
        let (token_ids_1,
            token_ids_2,
            overflowing_tokens) = truncate_sequences(token_ids_1,
                                                     token_ids_2,
                                                     num_truncated_tokens,
                                                     truncation_strategy,
                                                     stride).unwrap();

        let (token_ids, segment_ids, special_tokens_mask) = self.build_input_with_special_tokens(token_ids_1,
                                                                                                 token_ids_2);

        TokenizedInput { token_ids, segment_ids, special_tokens_mask, overflowing_tokens, num_truncated_tokens }
    }

    fn encode_list(&self, text_list: Vec<&str>, max_len: usize, truncation_strategy: &TruncationStrategy, stride: usize) -> Vec<TokenizedInput> {
        text_list
            .iter()
            .map(|text| self.encode(text, None, max_len, truncation_strategy, stride))
            .collect()
    }

    fn encode_pair_list(&self, text_list: Vec<(&str, &str)>, max_len: usize, truncation_strategy: &TruncationStrategy, stride: usize) -> Vec<TokenizedInput> {
        text_list
            .iter()
            .map(|text| self.encode(text.0, Some(text.1), max_len, truncation_strategy, stride))
            .collect()
    }


    fn build_input_with_special_tokens(&self, mut tokens_1: Vec<i64>, tokens_2: Option<Vec<i64>>) -> (Vec<i64>, Vec<i8>, Vec<i8>) {
        let mut token_segment_ids: Vec<i8> = vec![0; tokens_1.len()];
        let mut special_tokens_mask: Vec<i8> = vec![0; tokens_1.len()];

        let output = match tokens_2 {
            Some(tokens) => {
                token_segment_ids.extend(vec![1; tokens.len()]);
                special_tokens_mask.extend(vec![0; tokens.len()]);
                tokens_1.extend(tokens);
                tokens_1
            }
            None => tokens_1
        };
        (output, token_segment_ids, special_tokens_mask)
    }
}

pub trait MultiThreadedTokenizer<T: Vocab>
    where Self: std::marker::Sync + Send + Tokenizer<T> {
    fn tokenize_list(&self, text_list: Vec<&str>) -> Vec<Vec<String>> {
        text_list.
            par_iter().
            map(|text| self.tokenize(text)).
            collect()
    }

    fn encode_list(&self, text_list: Vec<&str>, max_len: usize, truncation_strategy: &TruncationStrategy, stride: usize) -> Vec<TokenizedInput> {
        text_list
            .par_iter()
            .map(|text| self.encode(text, None, max_len, truncation_strategy, stride))
            .collect()
    }

    fn encode_pair_list(&self, text_list: Vec<(&str, &str)>, max_len: usize, truncation_strategy: &TruncationStrategy, stride: usize) -> Vec<TokenizedInput> {
        text_list
            .par_iter()
            .map(|text| self.encode(text.0, Some(text.1), max_len, truncation_strategy, stride))
            .collect()
    }
}


pub struct BaseTokenizer<T: Vocab> {
    vocab: Arc<T>
}

impl<T: Vocab + Sync + Send> BaseTokenizer<T> {
    pub fn from_file(path: &str) -> BaseTokenizer<T> {
        let vocab = T::from_file(path);
        BaseTokenizer { vocab: Arc::new(vocab) }
    }

    pub fn from_existing_vocab(vocab: Arc<T>) -> BaseTokenizer<T> {
        BaseTokenizer { vocab }
    }
}

impl<T: Vocab + Sync + Send> Tokenizer<T> for BaseTokenizer<T> {
    fn vocab(&self) -> &T {
        &self.vocab
    }

    fn tokenize(&self, text: &str) -> Vec<String> {
        let tokenized_text: String = tokenize_cjk_chars(&clean_text(text, true));
        let mut tokenized_text: Vec<String> = whitespace_tokenize(&tokenized_text).iter().map(|s| s.to_string()).collect();

        for string in tokenized_text.iter_mut() {
            if !self.vocab.as_ref().special_values().contains_key(string) {
                *string = string.to_lowercase();
                *string = strip_accents(string.to_owned());
            }
        }

        let tokenized_text: Vec<String> = tokenized_text
            .iter()
            .map(|v| split_on_punct(v.to_owned(), self.vocab.as_ref()))
            .flatten()
            .map(|s| s.to_string())
            .collect();

        let tokenized_text: String = tokenized_text.iter().join(" ");
        let tokenized_text: Vec<String> = whitespace_tokenize(&tokenized_text)
            .iter()
            .map(|s| s.to_string())
            .collect();

        tokenized_text
    }
}

impl<T: Vocab + Sync + Send> MultiThreadedTokenizer<T> for BaseTokenizer<T> {}

//==============================
// Unit tests
//==============================
#[cfg(test)]
mod tests {
    use super::*;
    use crate::BertVocab;
    use std::collections::HashMap;
    use crate::preprocessing::vocab::base_vocab::swap_key_values;

    fn generate_test_vocab() -> BertVocab {
        let values: HashMap<String, i64> = [
            ("hello".to_owned(), 0),
            ("world".to_owned(), 1),
            ("[UNK]".to_owned(), 2),
            ("!".to_owned(), 3),
            ("[CLS]".to_owned(), 4),
            ("[SEP]".to_owned(), 5),
            ("[MASK]".to_owned(), 6),
            ("中".to_owned(), 7),
            ("华".to_owned(), 8),
            ("人".to_owned(), 9),
            ("[PAD]".to_owned(), 10),
            ("una".to_owned(), 11),
            ("##ffa".to_owned(), 12),
            ("##ble".to_owned(), 13)
        ].iter().cloned().collect();

        let special_values: HashMap<String, i64> = [
            ("[UNK]".to_owned(), 2),
            ("[CLS]".to_owned(), 4),
            ("[SEP]".to_owned(), 5),
            ("[MASK]".to_owned(), 6),
            ("[PAD]".to_owned(), 10)
        ].iter().cloned().collect();

        let indices = swap_key_values(&values);
        let special_indices = swap_key_values(&special_values);

        BertVocab { values, indices, unknown_value: "[UNK]", special_values, special_indices }
    }

    #[test]
    fn test_base_tokenizer() {
//        Given
        let vocab = Arc::new(generate_test_vocab());
        let base_tokenizer: BaseTokenizer<BertVocab> = BaseTokenizer::from_existing_vocab(vocab);
        let test_tuples = [
            (
                "Sentence with [MASK] token.",
                vec!("sentence", "with", "[MASK]", "token", ".")
            ),
            (
                "Sentence with [MASK] token.",
                vec!("sentence", "with", "[MASK]", "token", ".")
            ),
            (
                "[CLS]",
                vec!("[CLS]")
            ),
            (
                "[CLS] [PAD]",
                vec!("[CLS]", "[PAD]")
            ),
            (
                "[CLS]       [PAD]",
                vec!("[CLS]", "[PAD]")
            ),
            (
                "asdf",
                vec!("asdf")
            ),
            (
                "",
                vec!()
            ),
            (
                "Allons, Flipote, allons; que d'eux je me délivre.",
                vec!("allons", ",", "flipote", ",", "allons", ";", "que", "d", "\'", "eux", "je", "me", "delivre", ".")
            ),
            (
                "[UNK]中华人民共和国 [PAD] asdf",
                vec!("[UNK]", "中", "华", "人", "民", "共", "和", "国", "[PAD]", "asdf")
            )
        ];
        let source_texts: Vec<&str> = test_tuples.iter().map(|v| v.0).collect();
        let expected_results: Vec<Vec<&str>> = test_tuples.iter().map(|v| v.1.clone()).collect();

//        When & Then
        for (source_text, expected_result) in test_tuples.iter() {
            assert_eq!(base_tokenizer.tokenize(*source_text), *expected_result);
        }

        assert_eq!(Tokenizer::tokenize_list(&base_tokenizer, source_texts.clone()), expected_results);
        assert_eq!(MultiThreadedTokenizer::tokenize_list(&base_tokenizer, source_texts.clone()), expected_results);
    }

    #[test]
    fn test_convert_tokens_to_ids() {
//        Given
        let vocab = Arc::new(generate_test_vocab());
        let base_tokenizer: BaseTokenizer<BertVocab> = BaseTokenizer::from_existing_vocab(vocab);
        let test_tuples = [
            (
                vec!("hello", "[MASK]", "world", "!"),
                vec!(0, 6, 1, 3)
            ),
            (
                vec!("hello", ",", "una", "##ffa", "##ble", "world", "!"),
                vec!(0, 2, 11, 12, 13, 1, 3)
            ),
            (
                vec!("[UNK]", "[UNK]", "华", "[UNK]", "[UNK]", "[UNK]", "[UNK]", "[UNK]", "[PAD]", "[UNK]"),
                vec!(2, 2, 8, 2, 2, 2, 2, 2, 10, 2)
            )
        ];

//        When & Then
        for (source_text, expected_result) in test_tuples.iter() {
            assert_eq!(base_tokenizer.convert_tokens_to_ids(source_text.iter().map(|v| String::from(*v)).collect::<Vec<_>>().as_ref()),
                       *expected_result);
        }
    }

    #[test]
    fn test_encode_single_sentence() {
//        Given
        let vocab = Arc::new(generate_test_vocab());
        let base_tokenizer: BaseTokenizer<BertVocab> = BaseTokenizer::from_existing_vocab(vocab);
        let truncation_strategy = TruncationStrategy::LongestFirst;
        let test_tuples = [
            (
                "hello world!",
                TokenizedInput { token_ids: vec!(0, 1, 3), segment_ids: vec!(0, 0, 0), special_tokens_mask: vec!(0, 0, 0), overflowing_tokens: vec!(), num_truncated_tokens: 0 }
            ),
            (
                "hello, unaffable world!",
                TokenizedInput { token_ids: vec!(0, 2, 2, 1, 3), segment_ids: vec!(0, 0, 0, 0, 0), special_tokens_mask: vec!(0, 0, 0, 0, 0), overflowing_tokens: vec!(), num_truncated_tokens: 0 }
            ),
            (
                "[UNK]中华人民共和国 [PAD] asdf",
                TokenizedInput { token_ids: vec!(2, 7, 8, 9, 2, 2, 2, 2, 10, 2), segment_ids: vec!(0, 0, 0, 0, 0, 0, 0, 0, 0, 0), special_tokens_mask: vec!(0, 0, 0, 0, 0, 0, 0, 0, 0, 0), overflowing_tokens: vec!(), num_truncated_tokens: 0 }
            ),
            (
                "[UNK] a ! c ! e ! g ! i ! [PAD] a ! c ! e ! g ! i !",
                TokenizedInput { token_ids: vec!(2, 2, 3, 2, 3, 2, 3, 2, 3, 2), segment_ids: vec!(0, 0, 0, 0, 0, 0, 0, 0, 0, 0), special_tokens_mask: vec!(0, 0, 0, 0, 0, 0, 0, 0, 0, 0), overflowing_tokens: vec!(3, 10, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3), num_truncated_tokens: 12 }
            )
        ];
        let source_texts: Vec<&str> = test_tuples.iter().map(|v| v.0).collect();
        let expected_results: Vec<TokenizedInput> = test_tuples.iter().map(|v| v.1.clone()).collect();

//        When & Then
        for (source_text, expected_result) in test_tuples.iter() {
            assert_eq!(base_tokenizer.encode(source_text, None, 10, &truncation_strategy, 0),
                       *expected_result);
        }
        assert_eq!(Tokenizer::encode_list(&base_tokenizer, source_texts.clone(), 10, &truncation_strategy, 0), expected_results);
        assert_eq!(MultiThreadedTokenizer::encode_list(&base_tokenizer, source_texts.clone(), 10, &truncation_strategy, 0), expected_results);
    }

    #[test]
    fn test_encode_sentence_pair() {
//        Given
        let vocab = Arc::new(generate_test_vocab());
        let base_tokenizer: BaseTokenizer<BertVocab> = BaseTokenizer::from_existing_vocab(vocab);
        let truncation_strategy = TruncationStrategy::LongestFirst;
        let test_tuples = [
//            No truncation required
            (
                ("hello world!", "This is the second sentence"),
                TokenizedInput { token_ids: vec!(0, 1, 3, 2, 2, 2, 2, 2), segment_ids: vec!(0, 0, 0, 1, 1, 1, 1, 1), special_tokens_mask: vec!(0, 0, 0, 0, 0, 0, 0, 0), overflowing_tokens: vec!(), num_truncated_tokens: 0 }
            ),
//            Truncation of sentence 2 (longest)
            (
                ("hello world!", "!This is the second sentence!!!"),
                TokenizedInput { token_ids: vec!(0, 1, 3, 3, 2, 2, 2, 2, 2, 3), segment_ids: vec!(0, 0, 0, 1, 1, 1, 1, 1, 1, 1), special_tokens_mask: vec!(0, 0, 0, 0, 0, 0, 0, 0, 0, 0), overflowing_tokens: vec!(), num_truncated_tokens: 2 }
            ),
//            Truncation of sentence 1 (longest)
            (
                ("[UNK] hello  hello  hello  hello  hello  hello  hello  hello  hello  hello  hello", "!!!"),
                TokenizedInput { token_ids: vec!(2, 0, 0, 0, 0, 0, 0, 3, 3, 3), segment_ids: vec!(0, 0, 0, 0, 0, 0, 0, 1, 1, 1), special_tokens_mask: vec!(0, 0, 0, 0, 0, 0, 0, 0, 0, 0), overflowing_tokens: vec!(0, 0, 0, 0, 0), num_truncated_tokens: 5 }
            ),
//            Truncation of both sentences (longest)
            (
                ("[UNK] hello  hello  hello  hello  hello", "!!!!!!!!"),
                TokenizedInput { token_ids: vec!(2, 0, 0, 0, 0, 3, 3, 3, 3, 3), segment_ids: vec!(0, 0, 0, 0, 0, 1, 1, 1, 1, 1), special_tokens_mask: vec!(0, 0, 0, 0, 0, 0, 0, 0, 0, 0), overflowing_tokens: vec!(0), num_truncated_tokens: 4 }
            )
        ];
        let source_texts: Vec<(&str, &str)> = test_tuples.iter().map(|v| v.0).collect();
        let expected_results: Vec<TokenizedInput> = test_tuples.iter().map(|v| v.1.clone()).collect();

//        When & Then
        for (source_text, expected_result) in test_tuples.iter() {
            assert_eq!(base_tokenizer.encode(source_text.0, Some(source_text.1), 10, &truncation_strategy, 0),
                       *expected_result);
        }
        assert_eq!(Tokenizer::encode_pair_list(&base_tokenizer, source_texts.clone(), 10, &truncation_strategy, 0), expected_results);
        assert_eq!(MultiThreadedTokenizer::encode_pair_list(&base_tokenizer, source_texts.clone(), 10, &truncation_strategy, 0), expected_results);
    }
}