1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
//! The OpenCL specific implementation of a [`Buffer`], [`Device`], [`Program`] and [`Kernel`].

mod error;
mod utils;

use std::collections::HashMap;
use std::convert::TryFrom;
use std::fmt;
use std::hash::{Hash, Hasher};
use std::mem;
use std::ptr;

pub use error::{GPUError, GPUResult};

use opencl3::command_queue::CommandQueue;
use opencl3::context::Context;
use opencl3::device::{DeviceInfo::CL_DEVICE_ENDIAN_LITTLE, CL_UUID_SIZE_KHR};
use opencl3::error_codes::ClError;
use opencl3::kernel::ExecuteKernel;
use opencl3::memory::CL_MEM_READ_WRITE;
use opencl3::program::ProgramInfo::CL_PROGRAM_BINARIES;
use opencl3::types::CL_BLOCKING;

const AMD_DEVICE_VENDOR_STRING: &str = "Advanced Micro Devices, Inc.";
const AMD_DEVICE_VENDOR_ID: u32 = 0x1002;
// For some reason integrated AMD cards on Apple don't have the usual vendor name and ID
const AMD_DEVICE_ON_APPLE_VENDOR_STRING: &str = "AMD";
const AMD_DEVICE_ON_APPLE_VENDOR_ID: u32 = 0x1021d00;
const NVIDIA_DEVICE_VENDOR_STRING: &str = "NVIDIA Corporation";
const NVIDIA_DEVICE_VENDOR_ID: u32 = 0x10de;

#[allow(non_camel_case_types)]
pub type cl_device_id = opencl3::types::cl_device_id;

// The PCI-ID is the combination of the PCI Bus ID and PCI Device ID.
///
/// It is the first two identifiers of e.g. `lspci`:
///
/// ```text
///     4e:00.0 VGA compatible controller
///     || └└-- Device ID
///     └└-- Bus ID
/// ```
#[derive(Debug, Copy, Clone, PartialEq, Hash)]
pub struct PciId(u16);

impl From<u16> for PciId {
    fn from(id: u16) -> Self {
        Self(id)
    }
}

impl From<PciId> for u16 {
    fn from(id: PciId) -> Self {
        id.0
    }
}

/// Converts a PCI-ID formatted as Bus-ID:Device-ID, e.g. `e3:00`.
impl TryFrom<&str> for PciId {
    type Error = GPUError;

    fn try_from(pci_id: &str) -> GPUResult<Self> {
        let mut bytes = [0; mem::size_of::<u16>()];
        hex::decode_to_slice(pci_id.replace(":", ""), &mut bytes).map_err(|_| {
            GPUError::InvalidId(format!(
                "Cannot parse PCI ID, expected hex-encoded string formated as aa:bb, got {0}.",
                pci_id
            ))
        })?;
        let parsed = u16::from_be_bytes(bytes);
        Ok(Self(parsed))
    }
}

/// Formats the PCI-ID like `lspci`, Bus-ID:Device-ID, e.g. `e3:00`.
impl fmt::Display for PciId {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let bytes = u16::to_be_bytes(self.0);
        write!(f, "{:02x}:{:02x}", bytes[0], bytes[1])
    }
}

/// A unique identifier based on UUID of the device.
#[derive(Copy, Clone, Default, PartialEq, Eq, Hash)]
pub struct DeviceUuid([u8; CL_UUID_SIZE_KHR]);

impl From<[u8; CL_UUID_SIZE_KHR]> for DeviceUuid {
    fn from(uuid: [u8; CL_UUID_SIZE_KHR]) -> Self {
        Self(uuid)
    }
}

impl From<DeviceUuid> for [u8; CL_UUID_SIZE_KHR] {
    fn from(uuid: DeviceUuid) -> Self {
        uuid.0
    }
}

/// Converts a UUID formatted as aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee,
/// e.g. 46abccd6-022e-b783-572d-833f7104d05f
impl TryFrom<&str> for DeviceUuid {
    type Error = GPUError;

    fn try_from(uuid: &str) -> GPUResult<Self> {
        let mut bytes = [0; CL_UUID_SIZE_KHR];
        hex::decode_to_slice(uuid.replace("-", ""), &mut bytes)
            .map_err(|_| {
                GPUError::InvalidId(format!("Cannot parse UUID, expected hex-encoded string formated as aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee, got {0}.", uuid))
            })?;
        Ok(Self(bytes))
    }
}

/// Formats the UUID the same way as `clinfo` does, as an example:
/// the output should looks like 46abccd6-022e-b783-572d-833f7104d05f
impl fmt::Display for DeviceUuid {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(
            f,
            "{}-{}-{}-{}-{}",
            hex::encode(&self.0[..4]),
            hex::encode(&self.0[4..6]),
            hex::encode(&self.0[6..8]),
            hex::encode(&self.0[8..10]),
            hex::encode(&self.0[10..])
        )
    }
}

impl fmt::Debug for DeviceUuid {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.to_string())
    }
}

/// Unique identifier that can either be a PCI ID or a UUID.
#[derive(Debug, Copy, Clone, PartialEq)]
pub enum UniqueId {
    PciId(PciId),
    Uuid(DeviceUuid),
}

/// If the string contains a dash, it's interpreted as UUID, else it's interpreted as PCI ID.
impl TryFrom<&str> for UniqueId {
    type Error = GPUError;

    fn try_from(unique_id: &str) -> GPUResult<Self> {
        Ok(match unique_id.contains('-') {
            true => Self::Uuid(DeviceUuid::try_from(unique_id)?),
            false => Self::PciId(PciId::try_from(unique_id)?),
        })
    }
}

impl fmt::Display for UniqueId {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::PciId(id) => id.fmt(f),
            Self::Uuid(id) => id.fmt(f),
        }
    }
}

#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum Vendor {
    Amd,
    Nvidia,
}

impl TryFrom<&str> for Vendor {
    type Error = GPUError;

    fn try_from(vendor: &str) -> GPUResult<Self> {
        match vendor {
            AMD_DEVICE_VENDOR_STRING => Ok(Self::Amd),
            AMD_DEVICE_ON_APPLE_VENDOR_STRING => Ok(Self::Amd),
            NVIDIA_DEVICE_VENDOR_STRING => Ok(Self::Nvidia),
            _ => Err(GPUError::UnsupportedVendor(vendor.to_string())),
        }
    }
}

impl TryFrom<u32> for Vendor {
    type Error = GPUError;

    fn try_from(vendor: u32) -> GPUResult<Self> {
        match vendor {
            AMD_DEVICE_VENDOR_ID => Ok(Self::Amd),
            AMD_DEVICE_ON_APPLE_VENDOR_ID => Ok(Self::Amd),
            NVIDIA_DEVICE_VENDOR_ID => Ok(Self::Nvidia),
            _ => Err(GPUError::UnsupportedVendor(format!("0x{:x}", vendor))),
        }
    }
}

impl fmt::Display for Vendor {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let vendor = match self {
            Self::Amd => AMD_DEVICE_VENDOR_STRING,
            Self::Nvidia => NVIDIA_DEVICE_VENDOR_STRING,
        };
        write!(f, "{}", vendor)
    }
}

/// A Buffer to be used for sending and receiving data to/from the GPU.
pub struct Buffer<T> {
    buffer: opencl3::memory::Buffer<T>,
    /// The number of T-sized elements.
    length: usize,
}

/// OpenCL specific device.
#[derive(Debug, Clone)]
pub struct Device {
    vendor: Vendor,
    name: String,
    /// The total memory of the GPU in bytes.
    memory: u64,
    pci_id: PciId,
    uuid: Option<DeviceUuid>,
    device: opencl3::device::Device,
}

impl Hash for Device {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.vendor.hash(state);
        self.name.hash(state);
        self.memory.hash(state);
        self.pci_id.hash(state);
        self.uuid.hash(state);
    }
}

impl PartialEq for Device {
    fn eq(&self, other: &Self) -> bool {
        self.vendor == other.vendor
            && self.name == other.name
            && self.memory == other.memory
            && self.pci_id == other.pci_id
            && self.uuid == other.uuid
    }
}

impl Eq for Device {}

impl Device {
    /// Returns the [`Vendor`] of the GPU.
    pub fn vendor(&self) -> Vendor {
        self.vendor
    }

    /// Returns the name of the GPU, e.g. "GeForce RTX 3090".
    pub fn name(&self) -> String {
        self.name.clone()
    }

    /// Returns the memory of the GPU in bytes.
    pub fn memory(&self) -> u64 {
        self.memory
    }
    pub fn is_little_endian(&self) -> GPUResult<bool> {
        self.device
            .endian_little()
            .map_err(|_| GPUError::DeviceInfoNotAvailable(CL_DEVICE_ENDIAN_LITTLE))
    }

    /// Returns the PCI-ID of the GPU, see the [`PciId`] type for more information.
    pub fn pci_id(&self) -> PciId {
        self.pci_id
    }

    /// Returns the PCI-ID of the GPU if available, see the [`DeviceUuid`] type for more
    /// information.
    pub fn uuid(&self) -> Option<DeviceUuid> {
        self.uuid
    }

    /// Returns the best possible unique identifier, a UUID is preferred over a PCI ID.
    pub fn unique_id(&self) -> UniqueId {
        match self.uuid {
            Some(uuid) => UniqueId::Uuid(uuid),
            None => UniqueId::PciId(self.pci_id),
        }
    }

    /// Return all available GPU devices of supported vendors.
    pub fn all() -> Vec<&'static Device> {
        Self::all_iter().collect()
    }

    pub fn by_pci_id(pci_id: PciId) -> GPUResult<&'static Device> {
        Self::all_iter()
            .find(|d| pci_id == d.pci_id)
            .ok_or(GPUError::DeviceNotFound)
    }

    pub fn by_uuid(uuid: DeviceUuid) -> GPUResult<&'static Device> {
        Self::all_iter()
            .find(|d| match d.uuid {
                Some(id) => uuid == id,
                None => false,
            })
            .ok_or(GPUError::DeviceNotFound)
    }

    pub fn by_unique_id(unique_id: UniqueId) -> GPUResult<&'static Device> {
        Self::all_iter()
            .find(|d| unique_id == d.unique_id())
            .ok_or(GPUError::DeviceNotFound)
    }

    fn all_iter() -> impl Iterator<Item = &'static Device> {
        utils::DEVICES.iter()
    }

    /// Low-level access to the device identifier.
    ///
    /// It changes when the device is initialized and should only be used to interact with other
    /// libraries that work on the lowest OpenCL level.
    pub fn cl_device_id(&self) -> cl_device_id {
        self.device.id()
    }
}

/// Abstraction that contains everything to run an OpenCL kernel on a GPU.
///
/// The majority of methods are the same as [`crate::cuda::Program`], so you can write code using this
/// API, which will then work with OpenCL as well as CUDA kernels.
#[allow(broken_intra_doc_links)]
pub struct Program {
    device_name: String,
    queue: CommandQueue,
    context: Context,
    kernels_by_name: HashMap<String, opencl3::kernel::Kernel>,
}

impl Program {
    /// Returns the name of the GPU, e.g. "GeForce RTX 3090".
    pub fn device_name(&self) -> &str {
        &self.device_name
    }

    /// Creates a program for a specific device from OpenCL source code.
    pub fn from_opencl(device: &Device, src: &str) -> GPUResult<Program> {
        let cached = utils::cache_path(device, src)?;
        if std::path::Path::exists(&cached) {
            let bin = std::fs::read(cached)?;
            Program::from_binary(device, bin)
        } else {
            let context = Context::from_device(&device.device)?;
            let mut program = opencl3::program::Program::create_from_source(&context, src)?;
            if let Err(build_error) = program.build(context.devices(), "") {
                let log = program.get_build_log(context.devices()[0])?;
                return Err(GPUError::Opencl3(build_error, Some(log)));
            }
            let queue = CommandQueue::create(&context, context.default_device(), 0)?;
            let kernels = opencl3::kernel::create_program_kernels(&program)?;
            let kernels_by_name = kernels
                .into_iter()
                .map(|kernel| {
                    let name = kernel.function_name()?;
                    Ok((name, kernel))
                })
                .collect::<Result<_, ClError>>()?;
            let prog = Program {
                device_name: device.name(),
                queue,
                context,
                kernels_by_name,
            };
            let binaries = program
                .get_binaries()
                .map_err(|_| GPUError::ProgramInfoNotAvailable(CL_PROGRAM_BINARIES))?;
            std::fs::write(cached, binaries[0].clone())?;
            Ok(prog)
        }
    }

    /// Creates a program for a specific device from a compiled OpenCL binary.
    pub fn from_binary(device: &Device, bin: Vec<u8>) -> GPUResult<Program> {
        let context = Context::from_device(&device.device)?;
        let bins = vec![&bin[..]];
        let mut program =
            opencl3::program::Program::create_from_binary(&context, context.devices(), &bins)?;
        if let Err(build_error) = program.build(context.devices(), "") {
            let log = program.get_build_log(context.devices()[0])?;
            return Err(GPUError::Opencl3(build_error, Some(log)));
        }
        let queue = CommandQueue::create(&context, context.default_device(), 0)?;
        let kernels = opencl3::kernel::create_program_kernels(&program)?;
        let kernels_by_name = kernels
            .into_iter()
            .map(|kernel| {
                let name = kernel.function_name()?;
                Ok((name, kernel))
            })
            .collect::<Result<_, ClError>>()?;
        Ok(Program {
            device_name: device.name(),
            queue,
            context,
            kernels_by_name,
        })
    }

    /// Creates a new buffer that can be used for input/output with the GPU.
    ///
    /// The `length` is the number of elements to create.
    pub fn create_buffer<T>(&self, length: usize) -> GPUResult<Buffer<T>> {
        assert!(length > 0);
        let buff = opencl3::memory::Buffer::create(
            &self.context,
            CL_MEM_READ_WRITE,
            length,
            ptr::null_mut(),
        )?;

        Ok(Buffer::<T> {
            buffer: buff,
            length,
        })
    }

    /// Returns a kernel.
    ///
    /// The `global_work_size` does *not* follow the OpenCL definition. It is *not* the total
    /// number of threads. Instead it follows CUDA's definition and is the number of
    /// `local_work_size` sized thread groups. So the total number of threads is
    /// `global_work_size * local_work_size`.
    pub fn create_kernel(
        &self,
        name: &str,
        global_work_size: usize,
        local_work_size: usize,
    ) -> GPUResult<Kernel> {
        let kernel = self
            .kernels_by_name
            .get(name)
            .ok_or_else(|| GPUError::KernelNotFound(name.to_string()))?;
        let mut builder = ExecuteKernel::new(&kernel);
        builder.set_global_work_size(global_work_size * local_work_size);
        builder.set_local_work_size(local_work_size);
        Ok(Kernel {
            builder,
            queue: &self.queue,
        })
    }

    /// Puts data from an existing buffer onto the GPU.
    ///
    /// The `offset` is in number of `T` sized elements, not in their byte size.
    pub fn write_from_buffer<T>(
        &self,
        buffer: &Buffer<T>,
        offset: usize,
        data: &[T],
    ) -> GPUResult<()> {
        assert!(offset + data.len() <= buffer.length, "Buffer is too small");

        let mut buff = buffer
            .buffer
            .create_sub_buffer(CL_MEM_READ_WRITE, offset, data.len())?;

        self.queue
            .enqueue_write_buffer(&mut buff, CL_BLOCKING, 0, data, &[])?;

        Ok(())
    }

    /// Reads data from the GPU into an existing buffer.
    ///
    /// The `offset` is in number of `T` sized elements, not in their byte size.
    pub fn read_into_buffer<T>(
        &self,
        buffer: &Buffer<T>,
        offset: usize,
        data: &mut [T],
    ) -> GPUResult<()> {
        assert!(offset + data.len() <= buffer.length, "Buffer is too small");
        let buff = buffer
            .buffer
            .create_sub_buffer(CL_MEM_READ_WRITE, offset, data.len())?;

        self.queue
            .enqueue_read_buffer(&buff, CL_BLOCKING, 0, data, &[])?;

        Ok(())
    }

    /// Run some code in the context of the program
    ///
    /// On CUDA it sets the correct contexts and synchronizes the stream before returning.
    /// On OpenCL it's only executing the closure without any other side-effects.
    pub fn run<F, R, E>(&self, fun: F) -> Result<R, E>
    where
        F: FnOnce() -> Result<R, E>,
        E: From<GPUError>,
    {
        fun()
    }
}

/// Abstraction for kernel arguments.
///
/// The kernel doesn't support being called with custom types, hence some conversion might be
/// needed. This trait enables automatic coversions, so that any type implementing it can be
/// passed into a [`Kernel`].
pub trait KernelArgument {
    /// Apply the kernel argument to the kernel.
    fn push(&self, kernel: &mut Kernel);
}

impl<T> KernelArgument for Buffer<T> {
    fn push(&self, kernel: &mut Kernel) {
        kernel.builder.set_arg(&self.buffer);
    }
}

impl KernelArgument for i32 {
    fn push(&self, kernel: &mut Kernel) {
        kernel.builder.set_arg(self);
    }
}

impl KernelArgument for u32 {
    fn push(&self, kernel: &mut Kernel) {
        kernel.builder.set_arg(self);
    }
}

/// A local buffer.
pub struct LocalBuffer<T> {
    /// The number of T sized elements.
    length: usize,
    _phantom: std::marker::PhantomData<T>,
}
impl<T> LocalBuffer<T> {
    /// Returns a new buffer of the specified `length`.
    pub fn new(length: usize) -> Self {
        LocalBuffer::<T> {
            length,
            _phantom: std::marker::PhantomData,
        }
    }
}

impl<T> KernelArgument for LocalBuffer<T> {
    fn push(&self, kernel: &mut Kernel) {
        kernel
            .builder
            .set_arg_local_buffer::<T>(self.length * std::mem::size_of::<T>());
    }
}

/// A kernel that can be executed.
#[derive(Debug)]
pub struct Kernel<'a> {
    builder: ExecuteKernel<'a>,
    queue: &'a CommandQueue,
}

impl<'a> Kernel<'a> {
    /// Set a kernel argument.
    pub fn arg<T: KernelArgument>(mut self, t: &T) -> Self {
        t.push(&mut self);
        self
    }

    /// Actually run the kernel.
    pub fn run(mut self) -> GPUResult<()> {
        self.builder.enqueue_nd_range(&self.queue)?;
        Ok(())
    }
}

#[cfg(test)]
mod test {
    use super::{
        Device, DeviceUuid, GPUError, PciId, UniqueId, Vendor, AMD_DEVICE_ON_APPLE_VENDOR_ID,
        AMD_DEVICE_ON_APPLE_VENDOR_STRING, AMD_DEVICE_VENDOR_ID, AMD_DEVICE_VENDOR_STRING,
        NVIDIA_DEVICE_VENDOR_ID, NVIDIA_DEVICE_VENDOR_STRING,
    };
    use std::convert::TryFrom;

    #[test]
    fn test_device_all() {
        let devices = Device::all();
        for device in devices.iter() {
            println!("device: {:?}", device);
        }
        assert!(!devices.is_empty(), "No supported GPU found.");
    }

    #[test]
    fn test_vendor_from_str() {
        assert_eq!(
            Vendor::try_from(AMD_DEVICE_VENDOR_STRING).unwrap(),
            Vendor::Amd,
            "AMD vendor string can be converted."
        );
        assert_eq!(
            Vendor::try_from(AMD_DEVICE_ON_APPLE_VENDOR_STRING).unwrap(),
            Vendor::Amd,
            "AMD vendor string (on apple) can be converted."
        );
        assert_eq!(
            Vendor::try_from(NVIDIA_DEVICE_VENDOR_STRING).unwrap(),
            Vendor::Nvidia,
            "Nvidia vendor string can be converted."
        );
        assert!(matches!(
            Vendor::try_from("unknown vendor"),
            Err(GPUError::UnsupportedVendor(_))
        ));
    }

    #[test]
    fn test_vendor_from_u32() {
        assert_eq!(
            Vendor::try_from(AMD_DEVICE_VENDOR_ID).unwrap(),
            Vendor::Amd,
            "AMD vendor ID can be converted."
        );
        assert_eq!(
            Vendor::try_from(AMD_DEVICE_ON_APPLE_VENDOR_ID).unwrap(),
            Vendor::Amd,
            "AMD vendor ID (on apple) can be converted."
        );
        assert_eq!(
            Vendor::try_from(NVIDIA_DEVICE_VENDOR_ID).unwrap(),
            Vendor::Nvidia,
            "Nvidia vendor ID can be converted."
        );
        assert!(matches!(
            Vendor::try_from(0x1abc),
            Err(GPUError::UnsupportedVendor(_))
        ));
    }

    #[test]
    fn test_vendor_display() {
        assert_eq!(
            Vendor::Amd.to_string(),
            AMD_DEVICE_VENDOR_STRING,
            "AMD vendor can be converted to string."
        );
        assert_eq!(
            Vendor::Nvidia.to_string(),
            NVIDIA_DEVICE_VENDOR_STRING,
            "Nvidia vendor can be converted to string."
        );
    }

    #[test]
    fn test_uuid() {
        let valid_string = "46abccd6-022e-b783-572d-833f7104d05f";
        let valid = DeviceUuid::try_from(valid_string).unwrap();
        assert_eq!(valid_string, &valid.to_string());

        let too_short_string = "ccd6-022e-b783-572d-833f7104d05f";
        let too_short = DeviceUuid::try_from(too_short_string);
        assert!(too_short.is_err(), "Parse error when UUID is too short.");

        let invalid_hex_string = "46abccd6-022e-b783-572d-833f7104d05h";
        let invalid_hex = DeviceUuid::try_from(invalid_hex_string);
        assert!(
            invalid_hex.is_err(),
            "Parse error when UUID containts non-hex character."
        );
    }

    #[test]
    fn test_pci_id() {
        let valid_string = "01:00";
        let valid = PciId::try_from(valid_string).unwrap();
        assert_eq!(valid_string, &valid.to_string());
        assert_eq!(valid, PciId(0x0100));

        let too_short_string = "3f";
        let too_short = PciId::try_from(too_short_string);
        assert!(too_short.is_err(), "Parse error when PCI ID is too short.");

        let invalid_hex_string = "aaxx";
        let invalid_hex = PciId::try_from(invalid_hex_string);
        assert!(
            invalid_hex.is_err(),
            "Parse error when PCI ID containts non-hex character."
        );
    }

    #[test]
    fn test_unique_id() {
        let valid_pci_id_string = "aa:bb";
        let valid_pci_id = UniqueId::try_from(valid_pci_id_string).unwrap();
        assert_eq!(valid_pci_id_string, &valid_pci_id.to_string());
        assert_eq!(valid_pci_id, UniqueId::PciId(PciId(0xaabb)));

        let valid_uuid_string = "aabbccdd-eeff-0011-2233-445566778899";
        let valid_uuid = UniqueId::try_from(valid_uuid_string).unwrap();
        assert_eq!(valid_uuid_string, &valid_uuid.to_string());
        assert_eq!(
            valid_uuid,
            UniqueId::Uuid(DeviceUuid([
                0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff, 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
                0x88, 0x99
            ]))
        );

        let invalid_string = "aabbccddeeffgg";
        let invalid = UniqueId::try_from(invalid_string);
        assert!(
            invalid.is_err(),
            "Parse error when ID matches neither a PCI Id, nor a UUID."
        );
    }
}