1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
// Copyright 2015 Michael Yang. All rights reserved.
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file.
use crate::math::Mat;
use crate::matrix::BandMatrix;
use crate::vector::ops::Copy;
use crate::Matrix;
use num::traits::NumCast;
use std::cmp::{max, min};
use std::fmt;
use std::fmt::Debug;
use std::iter::repeat;
use std::mem::ManuallyDrop;
use std::ops::Index;
use std::slice;

#[derive(Debug, PartialEq)]
/// Banded Matrix
/// A banded matrix is a matrix where only the diagonal, a number of super-diagonals and a number of
/// sub-diagonals are non-zero.
/// https://en.wikipedia.org/wiki/Band_matrix
pub struct BandMat<T> {
    rows: usize,
    cols: usize,
    sub_diagonals: u32,
    sup_diagonals: u32,
    data: Vec<T>,
}

impl<T> BandMat<T> {
    pub fn new(n: usize, m: usize, sub: u32, sup: u32) -> BandMat<T> {
        let len = n * m;
        let mut data = Vec::with_capacity(len);
        unsafe {
            data.set_len(len);
        }

        BandMat {
            rows: n,
            cols: m,
            data,
            sub_diagonals: sub,
            sup_diagonals: sup,
        }
    }

    pub fn rows(&self) -> usize {
        self.rows
    }
    pub fn cols(&self) -> usize {
        self.cols
    }
    /// Set Rows Manually
    /// # Safety
    /// No guarantees are made about rows x columns being equivalent to data length after this
    /// operation
    pub unsafe fn set_rows(&mut self, n: usize) {
        self.rows = n;
    }
    /// Set Columns Manually
    /// # Safety
    /// No guarantees are made about rows x columns being equivalent to data length after this
    /// operation
    pub unsafe fn set_cols(&mut self, n: usize) {
        self.cols = n;
    }
    pub unsafe fn set_sub_diagonals(&mut self, n: u32) {
        self.sub_diagonals = n;
    }
    pub unsafe fn set_sup_diagonals(&mut self, n: u32) {
        self.sup_diagonals = n;
    }

    pub unsafe fn push(&mut self, val: T) {
        self.data.push(val);
    }
}

impl<T: std::marker::Copy> BandMat<T> {
    /// Converts a [`Mat`] into a [`BandMat`].
    ///
    /// The idea is to compress the the band matrix by compressing it to a form that is as legible
    /// as possible but without many of the extraneous zeros. You can read more about the process
    /// here: [Wikipedia](https://en.wikipedia.org/wiki/Band_matrix#Band_storage) and [Official
    /// BLAS
    /// Docs](http://www.netlib.org/lapack/explore-html/d7/d15/group__double__blas__level2_ga0dc187c15a47772440defe879d034888.html#ga0dc187c15a47772440defe879d034888),
    /// but the best demonstration is probably by example.
    ///
    /// Say you have a matrix:
    ///
    /// ```
    /// let m =
    /// [
    ///   0.5, 2.0, 0.0, 0.0,
    ///   1.0, 0.5, 2.0, 0.0,
    ///   0.0, 1.0, 0.5, 2.0,
    ///   0.0, 0.0, 1.0, 0.5,
    /// ];
    /// ```
    ///
    /// This method will transform it into:
    ///
    /// ```
    /// let x = 0.0;
    /// let m =
    /// [
    ///   x,   0.5, 2.0,
    ///   1.0, 0.5, 2.0,
    ///   1.0, 0.5, 2.0,
    ///   1.0, 0.5,   x,
    /// ];
    /// ```
    ///
    /// The `x`'s represent the values that will not be read by the blas operation, and therefore
    /// can remain unchanged. Notice that the dimensions of the new matrix are `(rows, LDA)`, where
    /// `LDA = <sub diagonals> + <sup diagonals> + 1`. This matrix will be stored in the original
    /// memory of the matrix that is consumed by this method.
    ///
    ///  For details about how the conversion actually happens, consult the code comments.
    ///
    /// # Panics
    ///
    /// Panics if the size of the vector representing the input matrix is too small, that is
    /// `rows * LDA > rows * cols`. In this case there is not enough space to perform a safe
    /// conversion to the Band Storage format.
    ///
    /// [`BandMat`]: struct.BandMat.html
    /// [`Mat`]: ../mat/struct.Mat.html
    pub fn from_matrix(mat: Mat<T>, sub_diagonals: u32, sup_diagonals: u32) -> BandMat<T> {
        let mut mat = ManuallyDrop::new(mat);

        let cols = mat.cols();
        let rows = mat.rows();
        let lda = (sub_diagonals + 1 + sup_diagonals) as usize;
        let length = rows * cols;

        // Not enough space to represent the matrix in BandMatrix storage
        if rows * lda > length {
            panic!("BandMatrix conversion needed {} space, but only {} was provided. LDA was {}. Not enough space to safely convert to band matrix storage. Please consider expanding the size of the vector for the underlying Matrix", rows * lda, length, lda);
        }

        let mut v = unsafe { Vec::from_raw_parts(mat.as_mut_ptr(), length, length) };

        /*
         * For each row in the original matrix we do the following:
         *
         *    1. We identify where the numbers start. Represented by the s variable.
         *    2. We identify where the numbers end. Represented by the e variable.
         *    3. We identify at which index in the resulting matrix they should be placed. That is
         *       represented by i.
         *    4. We call copy_within to move all of those values to their positions in the new
         *       matrix.
         */
        for r in 0..rows {
            let s = (r * cols) + max(0, r as isize - sub_diagonals as isize) as usize;
            let e = (r * cols) + min(cols, r + sup_diagonals as usize + 1usize);

            let bandmat_offset =
                max(0, (lda as isize) - sup_diagonals as isize - r as isize - 1) as usize;

            let i = (r * lda) + bandmat_offset;
            let i = i as usize;
            (&mut v).copy_within(s..e, i);
        }

        BandMat {
            cols,
            rows,
            data: v,
            sub_diagonals,
            sup_diagonals,
        }
    }
}

impl<T: std::marker::Copy + Default> BandMat<T> {
    /// Converts a [`BandMat`] back into a [`Mat`].
    ///
    /// This method creates a [`Mat`] instance by reversing the steps from
    /// the [`from_matrix`] method. It will also fill in all the values that are "zero" to the
    /// default value of `T`.
    ///
    /// For more information about the implementation, please consult the code comments.
    ///
    /// # Panics
    ///
    /// Panics if the values of `rows * cols` doesn't correspond to the length of the data vector.
    ///
    /// [`BandMat`]: struct.BandMat.html
    /// [`Mat`]: ../mat/struct.Mat.html
    /// [`from_matrix`]: #method.from_matrix
    pub fn to_matrix(bandmat: Self) -> Mat<T> {
        let mut bandmat = ManuallyDrop::new(bandmat);

        let ku = bandmat.sup_diagonals() as usize;
        let kl = bandmat.sub_diagonals() as usize;
        let lda = ku + kl + 1;
        let rows = bandmat.rows();
        let cols = bandmat.cols();
        let length = rows * cols;

        if length < lda * rows {
            panic!("Could not convert BandMat to Mat. The specified length of the data vector is {}, which is less than the expected minimum {} x {} = {}", length, rows, lda, rows * lda);
        }
        let mut v = unsafe { Vec::from_raw_parts(bandmat.as_mut_ptr(), length, length) };

        let num_of_last_row_terms = kl + 1 - (rows - min(rows, cols));

        /*
         * Refer to the `from_matrix` method for explanations of the meanings of the variables, but
         * now with respect to the band matrix. That is, s now represents the start point in the
         * band matrix for a particular row. The offset variable just inverts the index of the row
         * (if we have a total of 10 rows, row 7 will have offset 3).
         *
         * We have to iterate on the rows in reverse order, because we need to be careful not to
         * overwrite anything from the space of the original band matrix and lose values.
         */
        for r in (0..rows).rev() {
            let offset = rows - r - 1;

            let s = max(
                0,
                -(kl as isize + 1)
                    + (num_of_last_row_terms - (if rows > cols { 1 } else { 2 })) as isize
                    + offset as isize,
            );
            let s = (r * lda) as isize + s;
            let s = s as usize;

            let e = min(lda, num_of_last_row_terms + offset);
            let e = (r * lda) + e;

            let original_mat_offset =
                cols as isize - num_of_last_row_terms as isize - offset as isize;
            let i = (r * cols) + max(0, original_mat_offset) as usize;

            v.copy_within(s..e, i);

            // Fill the rest of the values for that row with "0"
            let l = e - s;
            let zero_range = (r * cols)..max(0, i);
            let zero_range = zero_range.chain(min((r + 1) * cols, i + l)..((r + 1) * cols));
            for i in zero_range {
                v[i] = T::default();
            }
        }

        Mat::new_from_data(rows, cols, v)
    }
}

impl<T: Clone> BandMat<T> {
    pub fn fill(value: T, n: usize, m: usize) -> BandMat<T> {
        BandMat {
            rows: n,
            cols: m,
            data: repeat(value).take(n * m).collect(),
            sub_diagonals: n as u32,
            sup_diagonals: m as u32,
        }
    }
}

impl<T> Index<usize> for BandMat<T> {
    type Output = [T];

    fn index(&self, index: usize) -> &[T] {
        let offset = (index * self.cols) as isize;

        unsafe {
            let ptr = (&self.data[..]).as_ptr().offset(offset);
            slice::from_raw_parts(ptr, self.cols)
        }
    }
}

impl<T: fmt::Display> fmt::Display for BandMat<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        for i in 0usize..self.rows {
            for j in 0usize..self.cols {
                match write!(f, "{}", self[i][j]) {
                    Ok(_) => (),
                    x => return x,
                }
            }

            match writeln!(f) {
                Ok(_) => (),
                x => return x,
            }
        }

        Ok(())
    }
}

impl<T> Matrix<T> for BandMat<T> {
    fn lead_dim(&self) -> u32 {
        self.sub_diagonals + self.sup_diagonals + 1
    }

    fn rows(&self) -> u32 {
        let n: Option<u32> = NumCast::from(self.rows);
        n.unwrap()
    }

    fn cols(&self) -> u32 {
        let n: Option<u32> = NumCast::from(self.cols);
        n.unwrap()
    }

    fn as_ptr(&self) -> *const T {
        self.data[..].as_ptr()
    }

    fn as_mut_ptr(&mut self) -> *mut T {
        (&mut self.data[..]).as_mut_ptr()
    }
}

impl<T> BandMatrix<T> for BandMat<T> {
    fn sub_diagonals(&self) -> u32 {
        self.sub_diagonals
    }

    fn sup_diagonals(&self) -> u32 {
        self.sup_diagonals
    }

    fn as_matrix(&self) -> &dyn Matrix<T> {
        self
    }
}

impl<'a, T> From<&'a dyn BandMatrix<T>> for BandMat<T>
where
    T: Copy,
{
    fn from(a: &dyn BandMatrix<T>) -> BandMat<T> {
        let n = a.rows() as usize;
        let m = a.cols() as usize;
        let len = n * m;

        let sub = a.sub_diagonals() as u32;
        let sup = a.sup_diagonals() as u32;

        let mut result = BandMat {
            rows: n,
            cols: m,
            data: Vec::with_capacity(len),
            sub_diagonals: sub,
            sup_diagonals: sup,
        };
        unsafe {
            result.data.set_len(len);
        }

        Copy::copy_mat(a.as_matrix(), &mut result);
        result
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    fn write_to_memory<T: Clone>(dest: *mut T, source: &Vec<T>) -> () {
        let mut v1;
        unsafe {
            v1 = Vec::from_raw_parts(dest, source.len(), source.capacity());
            v1.clone_from(source);
        }
        let _ = ManuallyDrop::new(v1);
    }

    fn retrieve_memory<T: Clone>(t: &mut dyn Matrix<T>, l: usize) -> Vec<T> {
        let mut v: Vec<T> = vec![];

        unsafe {
            let v1 = Vec::from_raw_parts(t.as_mut_ptr(), l, l);
            v.clone_from(&v1);
            let _ = ManuallyDrop::new(v1);
        }

        v
    }

    #[test]
    fn basic_conversion_test() {
        let v: Vec<f32> = vec![
            0.5, 2.0, 0.0, 0.0, 1.0, 0.5, 2.0, 0.0, 0.0, 1.0, 0.5, 2.0, 0.0, 0.0, 1.0, 0.5,
        ];

        let mut m: Mat<f32> = Mat::new(4, 4);
        let length = m.rows() * m.cols();

        write_to_memory(m.as_mut_ptr(), &v);

        let mut band_m = BandMat::from_matrix(m, 1, 1);

        let result_vec = retrieve_memory(&mut band_m, length);

        // Check random values in position to make sure that they're correct, since it's hard to
        // actualy predict the real vector values
        assert_eq!(result_vec[1], 0.5f32);
        assert_eq!(result_vec[2], 2.0f32);
        assert_eq!(result_vec[3], 1.0f32);
        assert_eq!(result_vec[7], 0.5f32);
        assert_eq!(result_vec[9], 1.0f32);
    }

    #[test]
    fn nonsquare_conversion_test() {
        let v: Vec<f32> = vec![
            0.5, 1.0, 0.0, 0.0, 2.0, 0.5, 1.0, 0.0, 3.0, 2.0, 0.5, 1.0, 0.0, 3.0, 2.0, 0.5, 0.0,
            0.0, 3.0, 2.0, 0.0, 0.0, 0.0, 3.0,
        ];

        let mut m: Mat<f32> = Mat::new(6, 4);
        let length = m.rows() * m.cols();

        write_to_memory(m.as_mut_ptr(), &v);

        let mut band_m = BandMat::from_matrix(m, 2, 1);

        let result_vec = retrieve_memory(&mut band_m, length);

        assert_eq!(result_vec[2], 0.5);
        assert_eq!(result_vec[5], 2.0);
        assert_eq!(result_vec[7], 1.0);
        assert_eq!(result_vec[8], 3.0);
        assert_eq!(result_vec[16], 3.0);
        assert_eq!(result_vec[20], 3.0);
    }

    #[test]
    #[should_panic]
    fn from_big_matrix_panic_test() {
        let original: Vec<f32> = vec![
            0.5, 2.0, 3.0, 4.0, 1.0, 0.5, 2.0, 3.0, 5.0, 1.0, 0.5, 2.0, 6.0, 5.0, 1.0, 0.5,
        ];
        let mut m: Mat<f32> = Mat::new(4, 4);

        write_to_memory(m.as_mut_ptr(), &original);

        let _ = BandMat::from_matrix(m, 3, 3);
    }

    #[test]
    fn to_and_from_conversion_test() {
        let original: Vec<f32> = vec![
            0.5, 2.0, 0.0, 0.0, 1.0, 0.5, 2.0, 0.0, 0.0, 1.0, 0.5, 2.0, 0.0, 0.0, 1.0, 0.5,
        ];
        let v = original.clone();

        let mut m: Mat<f32> = Mat::new(4, 4);
        let length = m.rows() * m.cols();

        write_to_memory(m.as_mut_ptr(), &v);

        let band_m = BandMat::from_matrix(m, 1, 1);
        let mut m = BandMat::to_matrix(band_m);

        let result_vec = retrieve_memory(&mut m, length);

        assert_eq!(result_vec, original);
    }

    #[test]
    fn to_and_from_nonsquare_test() {
        let original: Vec<f32> = vec![
            0.5, 1.0, 0.0, 0.0, 2.0, 0.5, 1.0, 0.0, 3.0, 2.0, 0.5, 1.0, 0.0, 3.0, 2.0, 0.5, 0.0,
            0.0, 3.0, 2.0,
        ];
        let v = original.clone();

        let mut m: Mat<f32> = Mat::new(5, 4);
        let length = m.rows() * m.cols();

        write_to_memory(m.as_mut_ptr(), &v);

        let band_m = BandMat::from_matrix(m, 2, 1);
        let mut m = BandMat::to_matrix(band_m);

        let result_vec = retrieve_memory(&mut m, length);

        assert_eq!(result_vec, original);
    }

    #[test]
    fn to_and_from_nonsquare2_test() {
        let original: Vec<f32> = vec![
            0.5, 1.0, 0.0, 0.0, 2.0, 0.5, 1.0, 0.0, 3.0, 2.0, 0.5, 1.0, 0.0, 3.0, 2.0, 0.5, 0.0,
            0.0, 3.0, 2.0, 0.0, 0.0, 0.0, 3.0,
        ];
        let v = original.clone();

        let mut m: Mat<f32> = Mat::new(6, 4);
        let length = m.rows() * m.cols();

        write_to_memory(m.as_mut_ptr(), &v);

        let band_m = BandMat::from_matrix(m, 2, 1);
        let mut m = BandMat::to_matrix(band_m);

        let result_vec = retrieve_memory(&mut m, length);

        assert_eq!(result_vec, original);
    }
}