Struct rust_bert::models::reformer::ReformerForQuestionAnswering
source · pub struct ReformerForQuestionAnswering { /* private fields */ }Expand description
Reformer Model for question answering
Extractive question-answering model based on a Reformer language model. Identifies the segment of a context that answers a provided question. Please note that a significant amount of pre- and post-processing is required to perform end-to-end question answering. See the question answering pipeline (also provided in this crate) for more details. It is made of the following blocks:
reformer:ReformerModelBase Reformer modelqa_outputs: Linear layer for question answering, mapping to start and end logits for the answer.
Implementations§
source§impl ReformerForQuestionAnswering
impl ReformerForQuestionAnswering
sourcepub fn new<'p, P>(
p: P,
config: &ReformerConfig
) -> Result<ReformerForQuestionAnswering, RustBertError>
pub fn new<'p, P>( p: P, config: &ReformerConfig ) -> Result<ReformerForQuestionAnswering, RustBertError>
Build a new ReformerForQuestionAnswering
Arguments
p- Variable store path for the root of the BART modelconfig-ReformerConfigobject defining the model architecture
Example
use rust_bert::reformer::{ReformerConfig, ReformerForQuestionAnswering};
use rust_bert::Config;
use std::path::Path;
use tch::{nn, Device};
let config_path = Path::new("path/to/config.json");
let device = Device::Cpu;
let p = nn::VarStore::new(device);
let config = ReformerConfig::from_file(config_path);
let reformer_model: ReformerForQuestionAnswering =
ReformerForQuestionAnswering::new(&p.root(), &config).unwrap();sourcepub fn forward_t(
&self,
input_ids: Option<&Tensor>,
position_ids: Option<&Tensor>,
input_embeds: Option<&Tensor>,
attention_mask: Option<&Tensor>,
num_hashes: Option<i64>,
train: bool
) -> Result<ReformerQuestionAnsweringModelOutput, RustBertError>
pub fn forward_t( &self, input_ids: Option<&Tensor>, position_ids: Option<&Tensor>, input_embeds: Option<&Tensor>, attention_mask: Option<&Tensor>, num_hashes: Option<i64>, train: bool ) -> Result<ReformerQuestionAnsweringModelOutput, RustBertError>
Forward pass through the model
Arguments
input_ids- Optional input tensor of shape (batch size, sequence_length). Must be provided when no pre-computed embeddings are given.position_ids- Optional input tensor of shape (batch size, sequence_length). If not provided will be calculated on the fly starting from position 0.input_embeds- Optional input tensor of shape (batch size, sequence_length, embeddings_dim). Must be provided when no input ids are given.attention_mask- Optional attention mask of shape (batch size, sequence_length). Positions with a mask with value 0 will be masked.num_hashes- Optional specification of the number of hashes to use. If not provided will use the value provided in the model configuration.train- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
ReformerClassificationOutputcontaining:start_logits-Tensorof shape (batch size, sequence_length) containing the logits for start of the answerend_logits-Tensorof shape (batch size, sequence_length) containing the logits for end of the answerall_hidden_states-Option<Vec<Tensor>>of length n_layers with shape (batch size, sequence_length, hidden_size)all_attentions-Option<Vec<Tensor>>of length n_layers with shape (batch size, sequence_length, hidden_size)
Example
use rust_bert::reformer::{ReformerConfig, ReformerForQuestionAnswering};
let (batch_size, sequence_length) = (64, 128);
let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
let input_positions = Tensor::arange(sequence_length, (Kind::Int64, device)).unsqueeze(0).expand(&[batch_size, sequence_length], true);
let attention_mask = Tensor::ones(&[batch_size, sequence_length], (Int64, device));
let model_output = no_grad(|| {
reformer_model.forward_t(
Some(&input_tensor),
Some(&input_positions),
None,
Some(&attention_mask),
Some(4),
false,
)
});Auto Trait Implementations§
impl RefUnwindSafe for ReformerForQuestionAnswering
impl Send for ReformerForQuestionAnswering
impl !Sync for ReformerForQuestionAnswering
impl Unpin for ReformerForQuestionAnswering
impl UnwindSafe for ReformerForQuestionAnswering
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more