1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/*
Copyright 2016 Martin Buck
This file is part of rust-3d.
rust-3d is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
rust-3d is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with rust-3d.  If not, see <http://www.gnu.org/licenses/>.
*/

//! Matrix4, a matrix with 4 rows and columns

use std::ops::Mul;

use prelude::*;
use functions::cross;

#[derive (Debug, PartialEq, PartialOrd, Clone)]
/// Matrix4, a matrix with 4 rows and columns
pub struct Matrix4 {
    pub data: [[f64; 4]; 4]
}

impl Matrix4 {
    /// Creates a new matrix which contains only zeroes
    pub fn zeroes() -> Matrix4 {
        Matrix4{
            data: [
                [0.0, 0.0, 0.0, 0.0],
                [0.0, 0.0, 0.0, 0.0],
                [0.0, 0.0, 0.0, 0.0],
                [0.0, 0.0, 0.0, 0.0]
            ]
        }
    }
    /// Creates a new matrix which applies translation
    pub fn translation(x: f64, y: f64, z: f64) -> Matrix4 {
        Matrix4{
            data: [
                [1.0, 0.0, 0.0, x],
                [0.0, 1.0, 0.0, y],
                [0.0, 0.0, 1.0, z],
                [0.0, 0.0, 0.0, 1.0]
            ]
        }
    }
    /// Creates a new matrix which applies scaling
    pub fn scale(x: f64, y: f64, z: f64) -> Matrix4 {
        Matrix4{
            data: [
                [x,   0.0, 0.0, 0.0],
                [0.0, y,   0.0, 0.0],
                [0.0, 0.0, z,   0.0],
                [0.0, 0.0, 0.0, 1.0]
            ]
        }
    }
    /// Creates a new matrix which applies rotation
    pub fn rotation(x: Rad, y: Rad, z: Rad) -> Matrix4 {
        let (mut mx, mut my, mut mz) = (Matrix4::default(), Matrix4::default(), Matrix4::default());
        let (rad_x, rad_y, rad_z) = (x.val, y.val, z.val);

        mx.data[0][0] = 1.0;     mx.data[0][1] = 0.0;           mx.data[0][2] = 0.0;            mx.data[0][3] = 0.0;
        mx.data[1][0] = 0.0;     mx.data[1][1] = rad_x.cos();    mx.data[1][2] = -rad_x.sin();    mx.data[1][3] = 0.0;
        mx.data[2][0] = 0.0;     mx.data[2][1] = rad_x.sin();    mx.data[2][2] = rad_x.cos();     mx.data[2][3] = 0.0;
        mx.data[3][0] = 0.0;     mx.data[3][1] = 0.0;           mx.data[3][2] = 0.0;            mx.data[3][3] = 1.0;

        my.data[0][0] = rad_y.cos();     my.data[0][1] = 0.0;      my.data[0][2] = rad_y.sin();   my.data[0][3] = 0.0;
        my.data[1][0] = 0.0;            my.data[1][1] = 1.0;      my.data[1][2] = 0.0;          my.data[1][3] = 0.0;
        my.data[2][0] = -rad_y.sin();    my.data[2][1] = 0.0;      my.data[2][2] = rad_y.cos();   my.data[2][3] = 0.0;
        my.data[3][0] = 0.0;            my.data[3][1] = 0.0;      my.data[3][2] = 0.0;          my.data[3][3] = 1.0;

        mz.data[0][0] = rad_z.cos(); mz.data[0][1] = -rad_z.sin();    mz.data[0][2] = 0.0;      mz.data[0][3] = 0.0;
        mz.data[1][0] = rad_z.sin(); mz.data[1][1] = rad_z.cos();     mz.data[1][2] = 0.0;      mz.data[1][3] = 0.0;
        mz.data[2][0] = 0.0;        mz.data[2][1] = 0.0;            mz.data[2][2] = 1.0;      mz.data[2][3] = 0.0;
        mz.data[3][0] = 0.0;        mz.data[3][1] = 0.0;            mz.data[3][2] = 0.0;      mz.data[3][3] = 1.0;

        mx * my * mz
    }
    /// Creates a new matrix which applies rotation around an axis
    pub fn rotation_axis<N>(axis: &N, r: Rad) -> Matrix4 where
        N: IsNormalized3D {

        let rad         = r.val;
        let ref u       = axis;
        let mut result  = Matrix4::default();
        result.data[0][0] = rad.cos() + u.x()*u.x()*(1.0 - rad.cos());          result.data[0][1] = u.x()*u.y()*(1.0 -rad.cos()) - u.z()*rad.sin();     result.data[0][2] = u.x()*u.z()*(1.0 - rad.cos()) + u.y()*rad.sin();    result.data[0][3] = 0.0;
        result.data[1][0] = u.y()*u.x()*(1.0 - rad.cos()) + u.z()*rad.sin();    result.data[1][1] = rad.cos() + u.y()*u.y()*(1.0 - rad.cos());          result.data[1][2] = u.y()*u.z()*(1.0 - rad.cos()) - u.x()*rad.sin();    result.data[1][3] = 0.0;
        result.data[2][0] = u.z()*u.x()*(1.0 - rad.cos()) - u.y()*rad.sin();    result.data[2][1] = u.z()*u.y()*(1.0 - rad.cos()) + u.x()*rad.sin();    result.data[2][2] = rad.cos() + u.z()*u.z()*(1.0 - rad.cos());          result.data[2][3] = 0.0;
        result.data[3][0] = 0.0;                                                result.data[3][1] = 0.0;                                                result.data[3][2] = 0.0;                                                result.data[3][3] = 1.0;
        result
    }
    /// Creates a new matrix which applies perspective transformation
    pub fn perspective(close: f64, away: f64, fov: Rad) -> Matrix4 {
        let fov_rad = fov.val;
        let range = close - away;
        let tan_fov_half = (fov_rad/2.0).tan();

        let mut result = Matrix4::default();
        result.data[0][0] = 1.0 / (tan_fov_half * away);  result.data[0][1] = 0.0;               result.data[0][2] = 0.0;                      result.data[0][3] = 0.0;
        result.data[1][0] = 0.0;                        result.data[1][1] = 1.0 / tan_fov_half;  result.data[1][2] = 0.0;                      result.data[1][3] = 0.0;
        result.data[2][0] = 0.0;                        result.data[2][1] = 0.0;               result.data[2][2] = (-close - away) / range;  result.data[2][3] = 2.0 * away * close / range;
        result.data[3][0] = 0.0;                        result.data[3][1] = 0.0;               result.data[3][2] = 1.0;                      result.data[3][3] = 1.0;
        result
    }
    /// Creates a new matrix which applies a look at transformation
    pub fn look_at<P, N>(target: &P, up: &N) -> Result<Matrix4> where
        P: IsBuildable3D,
        N: IsNormalized3D {

        let n = target.clone().normalized()?;
        let u = cross(&*up, target);
        let v = cross(&n, &u);

        let mut result = Matrix4::default();
        result.data[0][0] = u.x();  result.data[0][1] = u.y();  result.data[0][2] = u.z();  result.data[0][3] = 0.0;
        result.data[1][0] = v.x();  result.data[1][1] = v.y();  result.data[1][2] = v.z();  result.data[1][3] = 0.0;
        result.data[2][0] = n.x();  result.data[2][1] = n.y();  result.data[2][2] = n.z();  result.data[2][3] = 0.0;
        result.data[3][0] = 0.0;  result.data[3][1] = 0.0;  result.data[3][2] = 0.0;  result.data[3][3] = 1.0;
        Ok(result)
    }
}

impl Default for Matrix4 {
    fn default() -> Self {
        Matrix4{
            data: [
                [1.0, 0.0, 0.0, 0.0],
                [0.0, 1.0, 0.0, 0.0],
                [0.0, 0.0, 1.0, 0.0],
                [0.0, 0.0, 0.0, 1.0]
            ]
        }
    }
}

impl Mul for Matrix4 {
    type Output = Self;

    fn mul(self, other: Self) -> Self {
        let mut result = Matrix4::default();
        for i in 0..4 {
            for j in 0..4 {
                result.data[i][j] =
                    self.data[i][0] * other.data[0][j] +
                        self.data[i][1] * other.data[1][j] +
                        self.data[i][2] * other.data[2][j] +
                        self.data[i][3] * other.data[3][j];
            }
        }
        result
    }
}

impl Mul<f64> for Matrix4 {
    type Output = Self;

    fn mul(self, other: f64) -> Self {
        let mut result = Matrix4::default();
        for i in 0..4 {
            for j in 0..4 {
                result.data[i][j] = other * self.data[i][j];
            }
        }
        result
    }
}